首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
4.
Razin SV 《Genetika》2003,39(2):173-181
In this review, of problems concerning initiation of DNA replication in higher eukaryotes is discussed, with special emphasis on the methods of replication origin mapping and biological tests for the activity of DNA replication origins in higher eukaryotes. Protein factors interacting with replication origins are considered in detail. The main events of replication initiation in higher eukaryotes are briefly analyzed. New data on the control of replication timing of large genomic regions are discussed.  相似文献   

5.
6.
DNA replication within the first 10 min of the S phase was studied using synchronized human diploid cells. It appeared that every chromosome in the human genome, including late-replicating X, had segment(s) which initiated DNA replication within the first 10 min of the S phase. The position, the shape and the size of these segments corresponded to those of Q(G)-negative bands suggesting that each of them constitutes a basic unit of initiation of DNA replication.  相似文献   

7.
A family of DNA fragments from the yeast genome has properties that suggest that chromosome replication starts at specific DNA sequences. These elements (autonomously replicating sequences: ARS) have a bipartite structure: a small (less than 20 base pairs) AT-rich region essential for function, flanked by larger regions important for maximal activity of the replicator. In an attempt to identify proteins involved in initiation of replication, yeast mutants that show an enhanced ability to replicate minichromosomes with defective ARSS have been isolated.  相似文献   

8.
9.
10.
11.
Initiation of adenovirus DNA replication.   总被引:3,自引:1,他引:3       下载免费PDF全文
In an attempt to study the mechanism of initiation of adenovirus DNA replication, an assay was developed to investigate the pattern of DNA synthesis in early replicative intermediates of adenovirus DNA. By using wild-type virus-infected cells, it was possible to place the origin of adenovirus type 2 DNA replication within the terminal 350 to 500 base pairs from either of the two molecular termini. In addition, a variety of parameters characteristic of adenovirus DNA replication were compared with those obtained in a soluble nuclear extract competent for viral DNA replication. It was observed that in vitro DNA replication, which is dependent on the exogenously added viral DNA-protein complex as its optimal template, occurs in a manner apparently indistinguishable from the situation in virus-infected cells. This includes the presence of proteinaceous material on the molecular termini of newly initiated viral DNA.  相似文献   

12.
Autorepressor model for control of DNA replication   总被引:25,自引:0,他引:25  
  相似文献   

13.
14.
Initiation of DNA replication in Escherichia coli.   总被引:4,自引:1,他引:3  
  相似文献   

15.
Initiation of eukaryotic DNA replication is a complex process including the recognition of initiation sites on DNA, multi-step DNA preparation for duplication, and assembly of multi-protein complexes capable of beginning DNA synthesis at initiation sites. The process starts at the late M phase and lasts till the appropriate time of the S phase for each initiation site. A chain of interesting interactions between Orc1p-6p, Cdc6p, Mcm2p-7p, Mcm10p, Cdt1, Cdc45p, Dbf4/Cdc7p, RPA, and DNA polymerase takes place during this period. The sequence of these interactions is controlled by cyclin-dependent kinases, as well as by ubiquitin-dependent proteolysis in the proteasome. This review summarizes the data on proteins initiating DNA replication and factors controlling their activities.  相似文献   

16.
Initiator proteins are key components of the DNA replication machinery that determine where initiation will occur. In the past few years, due to a greatly improved understanding of what viral initiators look like and how they function, we can now identify the basic tasks that are required of initiators, as well as begin to comprehend what activities are required to perform these tasks. The improved knowledge of the viral initiators also demonstrates an unexpected level of conservation between different viral initiators, which might extend also to their cellular counterparts.  相似文献   

17.
Liberi G  Foiani M 《Cell》2004,116(1):3-4
In this issue, Robinson and coworkers provide new insights into the mechanisms of initiation of chromosome replication in Archea. This and other studies, focused on model organisms, will certainly help to understand how the replication process has evolved in Eukaryotes.  相似文献   

18.
Summary When E. coli F+ cells carrying the dna-167 or dnaC2 mutation, which causes the temperature-sensitive initiation of DNA replication, are exposed to a non-permissive temperature to stop the replication of chromosome and F factor, and then transferred back to a permissive temperature with the addition of chloramphenicol, one round of the chromosomal replication occurs, but further replication is inhibited. Under these conditions, F DNA replicates coincidentally with the initiation of the chromosomal replication in both strains. When rifampicin is added to the cells upon lowering of the temperature, the chromosome can not replicate in the F+ dna-167 strain, but can do so in the F+ dnaC2 strain. F DNA can replicate in both of the mutant strains under these conditions.  相似文献   

19.
20.
In all organisms, multi-subunit replicases are responsible for the accurate duplication of genetic material during cellular division. Initiator proteins control the onset of DNA replication and direct the assembly of replisomal components through a series of precisely timed protein-DNA and protein-protein interactions. Recent structural studies of the bacterial protein DnaA have helped to clarify the molecular mechanisms underlying initiator function, and suggest that key structural features of cellular initiators are universally conserved. Moreover, it appears that bacteria use a diverse range of regulatory strategies dedicated to tightly controlling replication initiation; in many cases, these mechanisms are intricately connected to the activities of DnaA at the origin of replication. This Review presents an overview of both the mechanism and regulation of bacterial DNA replication initiation, with emphasis on the features that are similar in eukaryotic and archaeal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号