首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of [Ph4As] [MoOCl2(SalphO)], where SalphO is N-2-oxophenylsalicylideniminate dianion, has been determined by X-ray crystallography. The complex crystallizes in the monoclinic space group P21/n with a = 11.829(2), b = 16.149(3), c = 17.410(3) Å, β = 97.485(15)° and Z = 4. The calculated and observed densities and 1.566 and 1.573(10) g cm?3, respectively. Block-diagonal least-squares refinement of the structure using 4722 independent reflections with I ? 3σ(I) converged at R = 0.0345 and Rw = 0.0484. The crystal contains [Ph4As]+ cations and [MoOCl2(SalphO)]? anions. The Mo atom in the anion is in a distorted octahedral coordination environment. A planar terdentate Schiff base ligand occupies meridional positions with the N atom trans to the terminal oxo group (Ot). Two Cl atoms are cis to the Ot atom. The Mo atom is displaced by 0.33 Å from the equatorial plane toward the Ot atom. The MoOt distance is 1.673(3) Å. The MoN bond trans to the Ot atom is 2.298(4) Å. The two MoCl bond lengths are 2.371(1) and 2.408(1) Å. The difference of 0.037 Å is significant (30 σ). Preparations of the title complex and the related complexes are also described.  相似文献   

2.
《Inorganica chimica acta》1988,146(2):181-185
The reactions between [TcOCl4] and the sterically bulky thiols ArSH (Ar = 2,4,6-Me3C6H2, 2,4,6- Pri3C6H2 and 2,6-Ph2C6H3) in methanol afford complexes of formula [TcO(SAr)4] which may be isolated as salts with bulky organic cations. The molecular structure of [Bun4N][TcO(2,4,6-Me3C6H2S)4] was determined by X-ray diffraction methods. The Tc(V) centre was found to adopt the expected square pyramidal geometry in which an oxo group occupies the apical site and the four thiolate sulphurs the basal sites. The TcO distance is 1.659(11) Å and the average TcS distance 2.38(2) Å. The average cis STcS, trans STcS and OTcS angles are respectively 82.7(6)°, 138.4(3)° and 110.8(4)°.  相似文献   

3.
The complexes LMoVIO2X [L?=?hydrotris(3,5-dimethylpyrazol-1-yl)borate; X?=?Cl, Br, NCS, OPh, SPh, SCH2Ph] are converted to air-stable complexes LMoVO(OSiMe3)X by one-electron coupled electron-electrophile transfer (CEET) reactions involving cobaltocene and the electrophilic reagent Me3SiCl. These complexes may also be obtained from LMoVO(OH)X by reaction with Me3SiCl in the presence of base. LMoVO(OSiMe3)(SCH2Ph) crystallises in space group P21/n, with a?=?8.526 (1) Å, b?=?23.141 (3) Å, c?=?16.499 (2) Å, β?=?103.75 (12)° and Z?=?4. The complex exhibits a distorted octahedral structure with a facially tridentate L ligand and mutually cis oxo [Mo=O?=?1.675 (4) Å], silyloxo [Mo–O?=?1.932 (4) Å] and thiolato [Mo–S?=?2.398 (2) Å] ligands. The detailed redox properties of LMoVO(OR)X (R?=?SiMe3, alkyl, aryl) differ from those of LMoVO(OH)X. Centres [MoVO(OR)] are candidates for the stable "inhibited" forms of certain molybdenum enzymes formed under conditions which apparently disfavour the catalytically active [MoVO(OH)] centres. In the coordinating solvent pyridine (py), both LMoVIO2(SPh) and LMoVO(OSiMe3)(SPh) are reduced in one-electron steps to stable LMoIVO(py)(SPh). LMoIVO(py)(SR) complexes are also obtained from LMoVIO2(SR) (R?=?Ph, CH2Ph, CHMe2) via a two-electron oxygen atom transfer reaction with tertiary phosphines in pyridine. Consequently, the Mo(IV) product is accessible via a concerted two-electron step or via two one-electron steps.  相似文献   

4.
《Inorganica chimica acta》1987,128(2):161-167
The complexes (Bu4N)[TcO(O2C6H4)2] (1) and Na[TcO(OCH2CH2O)2] (2) have been prepared by reacting TcOCl4- with respective diols in methanol. Compound 2 was identified by its elemental analysis and field desorption mass spectrum. Crystals of compound 1 are monoclinic, C2/c, with cell dimensions a = 10.393(3), b = 13.835(3), c = 20.643(5) Å, β = 101.74(3)° and four formula units in the unit cell. The crystal structure was determined by standard methods and refined to R1 = 0.0694, R2 = 0.0613, on the basis of 2887 independent reflections. The data were collected with use of Mo Kα radiation and a Syntex P21 diffractometer. The anion of 1 is square pyramidal with a short TcO(oxo) bond (1.648(5) Å). TcO distances to the diolate groups are longer (1.956(3), 1.958(3) Å). The technetium atom lies 0.7014(4) Å out of the plane of the four diolate oxygen atoms. Compound 2 is hydrolytically unstable in pure water, but can be stabilized by the addition of a several-fold molar excess of ethylene glycol. Compound 1 decomposes minimally in pure water after 24 h. These complexes are shown to be good structural models for 99mTc-radiopharmaceuticals containing purely oxygen-donor ligands. Comparison of the physical properties of the structurally characterized members of the series of complexes with core structures TcOSxO(4-x) (x = O, 2, 4) shows a shift to low energy in the frequency of the terminal oxygen-technetium band in the IR correlated with increasing softness of the basal plane donor atom set.  相似文献   

5.
The crystal and molecular structures of the complexes MoO2((SCH2CH2)2NCH2CH2SCH3), I and MoO2((SCH2CH2)2NCH2CH2N(CH3)2), II, have been determined from X-ray intensity data collected by counter methods. Compound I crystallizes in two forms, Ia and Ib. In form Ia the space group is P21/n with cell parameters a = 7.235(2), b = 7.717(2), c = 24.527(6) Å, β = 119.86(2)°, V = 1188(1) Å3, Z = 4. In form Ib the space group is P21/c with cell parameters a = 14.945(5), b = 11.925(5), c = 14.878(4) Å, β = 114.51(2)°, V = 2413(3) Å3, Z = 8. The molecules of I in Ia and Ib are very similar having an octahedral structure with cis oxo groups, trans thiolates (cis to both oxo groups) and N and thioether sulfur atoms trans to oxo groups. Average ditances are MoO = 1.70, MoS (thiolate) = 2.40, MoN = 2.40 and MoS (thioether) = 2.79 Å. Molecule II crystallizes in space group P212121 with a = 7.188(1), b = 22.708(8), c = 7.746(2) Å, V = 1246(1) Å3 and Z = 4. The coordination about Mo is octahedral with cis oxo groups, trans thiolates and N atoms trans to oxo. Distances in the first coordination sphere are MoO = 1.705(2), 1.699(2), MoS = 2.420(1), 2.409(1) and MoN = 2.372(2), 2.510(2) Å. The conformational features of the complexes are discussed. Complex I displays MoO and MoS distances which are very similar to those found by EXAFS in sulfite oxidase. This similarity is discussed.  相似文献   

6.
Two compounds of empirical formula MCl3- (THF)3, M = V and Cr, have been characterized by single crystal X-ray studies. The VCl3(THF)3 molecule, which has a mer octahedral stereochemistry, crystallizes in the monoclinic space group P21/c with a= 8.847(2),b= 12.861(5),c= 15.134(3) Å, β = 91.94(2)°, V = 1721(1) Å3 and Z = 4. The V-Ci(1) and V-CI(2) distances have a mean value of 2.330 [3] Å while V-CI(3) = 2.297(2) Å, The VO(1) and VO(2) distances have a mean value of 2.061[8] Å while V-O(3) = 2.102(3) Å cis ClVCl angles average 92.0[5]° and cis OVO angles average 86.2[2]° . The isostmctural complex, CrCl3(THF)3, has a crystal structure made up of discrete octahedral mer-CrCl3(THF)3 molecules with the following unit cell dimensions (space group P21/c): a = 8.715(1), b= 12.786(3), c = 15.122(3) Å, β = 92.15(1)°, V = 1684(1) Å3 and Z = 4. The CrCl(1) and CrCl(2) distances have a mean value of 2.310131 Å while CrCl(3) = 2.283(2) Å. The CrO(1) and CrO(2) distances have a mean value of 2.0101171 Å while CrO(3) = 2.077(4) Å. cis ClCrCl angles average 90.9[4]° and cis OCrO angles average 86.1 [2]°. The structures of these two octahedral complexes and those previously reported for ScCl3(THF)3 and TiCl3(THF)3 are compared and certain general trends are discussed.  相似文献   

7.
The reaction of mercaptoacetyl diglycine (MAG2) with technetium(V) gluconate in aqueous solution produced [TcO(MAG2)]. A single X-ray structure determination was carried out for the tetraphenylarsonium salt. The dark brown crystals are monoclinic, space group P2(1)/n, with a=12.478(5), b=14.922(5), c=17.183(9) Å and Z=4. The [TcO(MAG2)] ion has a square pyramidal geometry with the technetium atom displaced by 0.756 Å towards the oxo ligand from the plane formed by the equatorial S,N,N,O atoms. The rhenium complex AsPh4[ReO(MAG2)] was prepared analogously starting from Re(V) gluconate and characterized.  相似文献   

8.
A family of complexes containing the {VO(OMe)}2+ motif with the O,N,S-donor Schiff bases (H2tbhsR) derived from thiobenzhydrazide and 5-substituted salicylaldehydes has been reported. Reactions of [VO(acac)2] with H2tbhsR in methanol provide the complexes having the general formula [VO(OMe)(tbhsR)] (R = H, OMe, Cl, Br and NO2) in 40-53% yields. Microanalytical, various spectroscopic (IR, UV-Vis and NMR) and electrochemical measurements have been used for the characterization of the complexes. All the complexes are redox active and display a near reversible metal centred reduction in the potential range 0.20-0.47 V (versus Ag/AgCl). The trend in these potential values reflects the polar effect of the substituent on the salicylidene fragment of tbhsR2−. The X-ray crystal structures of all the complexes have been determined. In each of the complexes where R = H, OMe, Cl and Br, the metal ion is in a distorted square-pyramidal O3NS coordination sphere assembled by the O,N,S-donor tbhsR2−, the methoxo and the oxo groups. The complex where R = NO2, crystallizes as a hexacoordinated species due to coordination of a methanol O-atom at the vacant sixth site. The bond parameters associated with the metal ions and the physical properties of the complexes are consistent with the +5 oxidation state of the metal ion in all the complexes. Scrutiny of crystal packing reveals dimeric, one-dimensional and two-dimensional self-assembled structures via intermolecular C-H?O and O-H?O interactions. The two-dimensional network contains the cyclic tetramer of methanol.  相似文献   

9.
A series of dioxouranium(VI) complexes was synthesised with some Schiff base ligands containing substituent groups at para positions to CHN groups. These molecules were obtained by the condensation of para-nitro, chloro, bromo, hydroxy, methyl and methoxy aniline with salicylaldehyde. The bidentate ligands formed complexes of the type UO2(NCS)2 (X-N-Sal)n·mH2O, where n = 2, m = 3, x = NO2, Cl, Br and OH; n = 3, m = 2, x = CH3 and OCH3.Conductivity measurements indicate that all the complexes are non-electrolytes in nitromethane solution, whereas in DMF they correspond to 1:1 electrolytes.IR spectral data suggest that the molecules and not the anions of the Schiff base are coordinated to the central uranium atom. IR and Raman spectra suggest that the complexes UO2(NCS)2(X-N-Sal)2· 3H2O (X = NO2, Cl, Br) have C2h molecular symmetry, whereas UO2(NCS)2(X-N-Sal)3·2H2O (X = OCH3, CH3) have C2v symmetry.The frequencies of UO2(asym) (IR) and UO2(sym) (R) in the complexes seem to vary with the various substituents of the Schiff base ligand, in the order:NO2 > Cl > Br > OH > CH3 > OCH3  相似文献   

10.
《Inorganica chimica acta》1986,117(2):103-109
The hybrid, bidentate, diarylphosphino-alkoxide ligand PPh2CH2C(CF3)2O, L1, gives the Pd2+ bis- complex Pd(L1)2, from which the chloride-bridged dinuclear complex [(L1)Pd(μ-Cl)2Pd(L1)] is made by reaction with PdCl2(PhCN)2. Cleavage of the dinuclear complex with monodentate ligands L2 then gives Pd(L1)Cl(L2) (L2 =PPh3, PPh2Me, PPhMe2, PMe3, SMe2, or pyridine); NMR data show that PR3 is cis to the phosphine site in L1 in these complexes, but SMe2 or pyridine are probably trans.A complete crystal and molecular structural determination has been made for cis-Pd(L1)Cl(PPh2Me). Crystals are monoclinic, space group P21/c, a = 10.821(1), b = 14.600(1), c = 18.674(2) Å, β = 101.25(1)°, V = 2893 Å3, Z = 4. Least-squares refinement on F of 361 variables using 3977 observations converged at a conventional agreement factor R = 0.025. The complex is square-planar, with the two phosphines cis; the 5-membered chelate ring is in a dissymmetric envelope conformation. The PdP bonds differ in length, with that to the unidentate phosphine, 2.259(1) Å, being significantly longer than that to the phosphine on the chelating ligand, 2.231(1) Å.  相似文献   

11.
Ligand exchange reactions of oxorhenium(V) precursors with bidentate SN and tridentate Schiff bases derived from the condensation of ketones or aldehydes with dithiocarbazic acid methyl ester (H2NNHC(S)SCH3) produce novel ‘3+2’ mixed-ligand complexes carrying the SNO/SN donor atom set. Thus, reactions of either [NBu4][ReOCl4] or Na[ReO(Gluconate)2] with SNO ligands (H2Ln) or a mixture of bidentate SN (HLm) and tridentate SNO (H2Ln) in methanol solutions lead, respectively, to the six-coordinated mixed ligand oxorhenium(V) compounds of types [ReO(Ln)(HLn)] and [ReO(Ln)(Lm)], combining one tridentate dianionic SNO donor Schiff base (L) and one bidentate anionic SN donor ligand (HL). Coordination geometry around rhenium is distorted octahedral with the two SN donor atom sets of each ligand defining the equatorial plane, while apical positions are occupied by the oxo group and the oxygen atom of the tridentate SNO ligand (L), as shown by single-crystal X-ray diffraction structure of [ReO(L1)(HL1)] 1.  相似文献   

12.
The complexes CuX2L2 (X = Cl, Br; L = 2-aminobenzophenone) were prepared and characterized by means of magnetic and spectroscopic measurements. For the Cl compound the crystal structure was also determined. Crystals are triclinic, space group P1, with a = 13.397(3), b = 10.752(2), c = 9.205(2) Å, α = 72.26(1)°, β = 91.58(1)°, γ = 106.86(1)°, and Z = 2. The structure was solved by the heavy-atom method and refined by least-squares calculations to R = 0.034 for 2581 counter data. It consists of discrete CuX2L2 monomers showing distorted trigonal bipyramidal coordination geometry about the copper ion. The amino nitrogens are axial ligands, with the equatorial positions occupied by two chlorine atoms and a carbonyl oxygen from one L molecule acting as a bidentate ligand. Infrared and ligand field spectroscopies and magnetic measurements, interpreted on the basis of the known crystal structure, also suggest a similar structure for the related Br compound.  相似文献   

13.
2,2′-Diaminobiphenyl-R,R-trans-1,2-diaminocyclohexaneplatinum(II) Chloride Trihydrate, (R,R-chxn)(dabp)Pt]Cl2·3H2O, crystallizes in the space group p212121 (D24, No. 19) with a = 6.219(4) Å, b = 17.633(2) Å, c = 21.523(3) Å, V = 2,360.4(8) Å3, ?calcd = 1.739 g cm?3, ?measd = 1.74 g cm?3, and Z = 4. Diffraction data were collected with a Picker FACS-1 four-circle diffractometer. The structure was solved by the heavy atom method and refined by least-square calculations to residuals R = 0.0586 and weighted R = 0.0668. The 2,2′-diaminobiphenyl ligand exhibits complete stereospecificity in its coordination to platinum(II) ion with λ chiral conformation.  相似文献   

14.
Reaction of the oxo-molybdenum(V) precursor [MoTp*(O)Cl2] [Tp* = hydrotris(3,5-dimethyl-1-pyrazolyl)borate] with H2NC6H4R-4 (R = OEt; OPr) in refluxing toluene in the presence of Et3N afforded the binuclear oxo-bridged oxo(arylimido) molybdenum(V) complexes [Tp*Mo(O)Cl](μ-O)[Tp*Mo(NC6H4OR-4)Cl]. Surprisingly, a similar reaction between [MoTp*(O)Cl2] and C6H5NH2 yielded the previously reported compound [{MoTp*(O)Cl}2(μ-O)] as the only product. The new compounds were characterized by microanalytical data, mass spectrometry, IR and 1H NMR spectroscopy. Cyclic voltammetric studies of the new compounds, of the previously reported compounds [Tp*Mo(O)Cl](μ-O)[Tp*Mo(NAr)Cl] (Ar = C6H4OMe-4, C6H4F-3, C6H4Cl-4, C6H4Br-4, and C6H4I-3), and of [{MoTp*(O)Cl}2(μ-O)] revealed a reversible one-electron oxidation process that is little affected by the nature of the substituent on the aryl group, whereas it is greatly affected by replacement of the imido ligand with an oxo ligand. The [{MoTp*(O)Cl}2(μ-O)] compound also shows a one-electron reduction process.  相似文献   

15.
Iron(III) complexes of three aroyl hydrazones, pyridoxal isonicotinoyl hydrazone (H2pih), pyridoxal benzoyl hydrazone (H2pbh), and salicylaldehyde benzoyl hydrazone (H2sbh), were synthesized and characterized. In aqueous medium at pH 7, [Fe(pih)(Hpih)]·3H2O is formed. In acidic methanol, a 1:1 ligand-to-metal complex is formed, [FeCl2(H2pih)]Cl (1), whereas in aqueous medium at low pH cis-[FeCl2(H2pih)(H2O)]Cl·H2O (2) is formed. Compounds 1 and 2 are high-spin d5 with μeff = 5.88 μB and 5.93 μB (298 K). The crystal structures of 1 and 2 show that H2pih acts as a tridentate neutral ligand in which the phenolic and hydrazidic protons have shifted to the pyridine nitrogen atoms. The co- ordination polyhedron of 1 is ‘square’ pyramidal, whereas that of 2 is pseudo-octahedral. Compound 1 is triclinic, space group Pl, with a = 12.704(2) Å, b = 8.655(2) Å, c = 8.820(2) Å, α = 105.42(1)°, β = 89.87(1)°, γ = 107.60(1)°, V = 888 Å3, and Z = 2; 2 is monoclinic, space group P21/c, with a = 15.358(4) Å, b = 7.304(3) Å, c = 17.442(4) Å, β = 101.00(2)°, V = 1921 Å3, and Z = 4.  相似文献   

16.
Synthesis of complexes cis,cis-WVOXL (X=Cl, NCS), cis,trans-WVOXL (X=Cl, OPh, SPh) and cis,trans-WVIE2L (E2=O2, OS, S2) of the title ligand LH2 are reported. cis,cis-WVOCIL crystallises in space group P21/c with a=13.6541(9) Å, b=7.1555(11) Å, c=18.198(2) Å, β=95.294(6)°, V=1770.4(3) Å3 and Z=4 while the cis,trans isomer crystallises in space group P21/n with a=10.361(3) Å, b=14.141(4) Å, c=12.213(5) Å, β=102.56(3)°, V=1747(2) Å3 and Z=4. cis,trans-WVIS2L crystallises in space group P21/n with a=10.645(2) Å, b=13.929(2) Å, c=12.189(2) Å, β=103.14(2)°, V=1760(1) Å3 and Z=4. A short CH3···Cl distance of 3.067(7) Å and an acute OWCl angle of 94.1(2)° are seen in cis,cis-WVOClL, which converts to the cis,trans form on heating in MeCN. The latter isomer features a CH3···Cl distance of 3.38(2) Å and an OWCl angle of 105.1(8)°. Electrochemical and EPR data are reported. In particular, cis,trans-WVIE2L may be reduced to [WVE2L]. EPR properties of these anions and those of complexes WVOXL are discussed in the context of WV centres in tungsten enzymes.  相似文献   

17.
《Inorganica chimica acta》1988,144(2):241-248
The syntheses and ligand dissociation kinetics of vitamin B12 model compounds LCo(DH)2CHX2 with X = Cl and Br and L = different neutral N- and P- ligands are reported together with the crystal structures of the CHCl2 derivatives with L = py (1) and 1,5,6-trimethylbenzimidazole, Me3Bzm (2). Compound 1 crystallizes in the space group P21/n with cell parameters a = 9.617(1), b = 12.601(2), c = 15.586(2) Å, β = 95.44(1)°; 2 crystallizes in the space group P1 with cell parameters a = 8.867(2), b = 10.719(2), c = 13.345(2) Å, α = 94.81(2), β = 90.89(1), γ = 105.63(2)°. The two structures were solved by Patterson and Fourier methods and refined by least-squares methods to final R values of 0.037 (1) and 0.036 (2), using 3474 (1) and 4435 (2) independent reflections.The axial NCoC fragment is characterized by CoN and CoC distances of 2.045(2) and 1.995(2) Å in 1 and 2.043(2) and 1.983(2) Å in 2, respectively. The CoC bond lengths have the smallest values so far reported in both py and Me3Bzm alkylcobaloximes.The displacement of the L ligand followed SN1 LIM behaviour and the corresponding rate constants depend upon the nature of L and vary in CHCl2 derivatives from 2.42 X 10−1 s−1 for 2-aminopyridine to 1.99 X 10−5 s−1 for P(OMe)3. For fewer CHBr2 analogs the rate constants were smaller.Kinetic results confirm previous findings that the donating ability of CHBr2 is less than that of CHCl2, although the electronegativity of Cl and Br species would suggest an opposite trend. Some relationships between kinetic and structural properties are discussed.  相似文献   

18.
《Inorganica chimica acta》2006,359(5):1513-1518
[ReOX3(PPh3)2] complexes (X = Cl and Br) react with equivalent amounts of 2-hydroxypyridine (Hhp) under formation of the mono-substituted, zwitterionic complexes mer-[ReOCl3(Hhp)(PPh3)] (1) and mer-[ReOBr3(Hhp)(PPh3)] (2). Crystal structure determinations of 1 · CH2Cl2 and 2 revealed the Cl and Br ligands adopt a mer arrangement. The Hhp ligands coordinate neutral and monodentate via their exocyclic oxygen atoms in axial positions, trans to the oxo groups. The distorted octahedral coordination sphere of the rhenium(V) complexes is completed by the phosphorus atom of the remaining PPh3 ligand.  相似文献   

19.
A number of di-Cu(II) complexes of the new tetraimine macrocyclic ligand derived from the Schiff base [2 + 2] condensation of 2,5-diformylfuran with 3-oxa-pentane-1,5-diamine have been prepared by methods which employ the heavier alkaline earth metal ions as templates followed by transmetallation. The complexes have been characterised by spectroscopic and other physical methods. Several of the di-Cu(I) complexes react reversibly with CO in solution and irreversibly with O2 in a 4:1 Cu:O2 stoicheiometry. Depending on conditions the oxidation product may be a dinuclear Cu(II) complex of the macrocycle or a mononuclear Cu(II) complex of a new ring-opened ligand. The single crystal X-ray structure of the latter complex has been determined.[CuL](BPh4)2 is monoclinic, space group C2/c with a=20.12(1), b=14.48(1), c=22.37(2) Å, β=110.1(1)°, Z=4. 1389 Independent reflections above background were measured on a diffractometer and the structure refined to R=0.108. The cation has imposed C2 symmetry. The copper atom is bonded to four nitrogen atoms in the ‘outer’ compartment of the ligand with unique CuN distances of 2.050(17) and 1.977(17) Å. The geometry of the copper atom is intermediate between square planar and tetrahedral with an angle of 39.7° between two CuN2 planes. Molecular mechanics calculations show that this distortion is due to steric effects.  相似文献   

20.
The crystal structure of the nickel(II) complex (C20H22N6S2Ni) of the N2S2 ligand hexan-2,5-dionebis(4-phenyl-thiosemicarbazone) has been solved using diffractometric data. The complex, exhibiting greater antibacterial activity than the free ligand, crystallizes in the space group C2 with a = 17.414(1) Å, b = 8.485(1) Å, c = 15.129(3) Å, β = 104.09(3)°, Z = 4, d(obsd) = 1.425 g cm?3, d(calc) = 1.438 g cm?3 and μ(Mo-Kga) = 10.978 cm?1. The structure has been refined by full-matrix least squares to a final R = 0.033 and Rw = 0.041 using 1743 reflections with I ≥ 3σ(I) out of 2049 unique reflections measured (2° ≤ gq ≤ 27°). The hydrogens were either located or placed in their calculated positions. The nickel(II) ion lies in the tetrahedrally distorted square planar ligand field of the tetradentate ligand forming two five membered and one seven membered chelate rings. It is observed that the lack of conjugation in the seven membered chelate rings of the present complex and of similar complexes leads to dissymmetry in the ring geometry. The metal ion is coordinatively unsaturated and available for additional coordination in its axial directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号