首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neuropeptide W (NPW) was recently discovered as the endogenous ligand for GPR7 and GPR8, which are orphan G protein-coupled receptors isolated from the porcine brain. These receptors are assumed to be involved in feeding regulation and/or energy homeostasis. Recent anatomical studies have revealed that high levels of GPR7 mRNA are distributed in the brain, including the hypothalamus and amygdala. However immunohistochemical studies on the distribution and localization of NPW have revealed differing results concerning whether or not NPW-containing cell bodies and their processes are present in the hypothalamus. Only a few immunohistochemical reports have been published concerning the presence of NPW-containing neurons in the brains of rodents, while there have been no anatomical studies of the co-localization of this neuropeptide with other transmitters. On this basis, we used a specific antiserum against NPW to determine immunohistochemically the presence of NPW-containing neurons in the rat hypothalamus. Many NPW-like immunoreactive cell bodies and their processes could be detected in the caudal region of the lateral hypothalamus but not in its anterior or middle regions. Given this positive identification of NPW-containing neurons in the lateral hypothalamus, we further studied the nature of interaction between NPW-containing neurons and neurons containing feeding regulating peptides such as orexin- and melanin-concentrating hormone (MCH). Very close interactions between NPW-containing nerve processes and orexin- and MCH-containing neuronal cell bodies and processes could be observed. These morphological findings strongly suggest that NPW is involved in the regulation of feeding and/or sleep/arousal behavior through orexin- and/or MCH-mediated neuronal pathways.  相似文献   

2.
The neuropeptide melanin-concentrating hormone (MCH) was originally isolated from the pituitary of salmon, in which it causes skin paling. MCH is also found abundantly in mammalian neurons, and has been detected in the lateral hypothalamus and zona incerta, brain regions that are at the center of feeding behavior. Acute central administration of MCH leads to a rapid and significant increase in food intake, while MCH expression changes in states of altered energy balance, such as fasting and obesity. Furthermore, MCH knockout mice tend toward hypophagia and leanness. In 1999, we and four other groups identified an orphan G-protein-coupled receptor (GPCR) as a specific receptor for MCH (MCH-1 receptor). Although a second MCH receptor (MCH-2 receptor) was isolated in humans, it was found to be non-functional or encode a non-functional pseudogene in non-human species, including rodents. The discovery of these MCH receptors permitted the launch of a broad array of drug screening efforts and three MCH-1 receptor antagonists were identified to reduce food intake and body weight. Interestingly, some antagonists unexpectedly produced evidence that blockade of these receptors has antidepressant and anxiolytic activities. The expressions of the MCH receptors, which have been implicated in regulating emotion, stress and motivation, make MCH an excellent candidate for integrating the various homeostatic stimuli necessary for maintaining the proper conditions of energy metabolism and other physiological functions. Finally, the speed at which MCH receptor studies have been undertaken exemplifies the impact that this deorphanized GPCR will have on setting the stage for more detailed physiological studies.  相似文献   

3.
Summary Melanin-concentrating hormone (MCH) has been purified from the chum salmon pituitary. Its complete amino acid sequence has recently been established. To identify the precise site of origin of MCH, immunostaining was performed in the brain and pituitary gland of the chum salmon and the rainbow trout using a highly sensitive and specific antiserum raised against synthetic MCH. In these two salmonid species immunoreactivity for MCH was detected in neurons and neuronal processes in the pars lateralis of the nucleus lateralis tuberis (NLT) in the basal hypothalamus. Numerous positive-staining processes of these MCH-neurons project to the pituitary gland, extending into neurohypophysial tissues within the pars intermedia and, to a lesser extent, into the pars distalis. No pituitary cells showed cross-reactivity. These results suggest that MCH is biosynthesized in the neurons of the NLT/pars lateralis and released in the neurohypophysis. On the other hand, prominent but less numerous MCH-positive processes could be traced to the pretectal area in which projection of both optic and pineal fibers has been detected using tracers. This observation suggests that the synthesis and/or release of MCH might be under the influence of either of these photosensory neurons. Moreover, the existence of an extrahypothalamic projection from MCH-positive neurons suggests that, in addition to melanin-concentration, MCH might be involved in other neuronal functions, perhaps serving as neuromodulator in the brain.  相似文献   

4.
The sleep disorder narcolepsy is now linked with a loss of neurons containing the neuropeptide hypocretin (also known as orexin). The hypocretin neurons are located exclusively in the lateral hypothalamus, a brain region that has been implicated in arousal based on observations made by von Economo during the viral encephalitic epidemic of 1916–1926. There are other neuronal phenotypes located in the lateral hypothalamus that are distinct and separate from the hypocretin neurons. Here the authors identify these neurons based on peptides and neurotransmitters that they express and review roles of these neurons in sleep. Given the heterogeneity of the neuronal phenotypes in the lateral hypothalamus, it is likely that hypocretin neurons, as well as other types of neurons in the lateral hypothalamus, influence sleep and provide state-dependent regulation of physiological functions.  相似文献   

5.
6.
Blood glucose levels are tightly controlled, a process thought to be orchestrated primarily by peripheral mechanisms (insulin secretion by β cells, and insulin action on muscle, fat, and liver). The brain also plays an important, albeit less well-defined role. Subsets of neurons in the brain are excited by glucose; in many cases this involves ATP-mediated closure of K(ATP) channels. To understand the relevance of this, we are manipulating glucose sensing within glucose-excited neurons. In the present study, we demonstrate that glucose excitation of MCH-expressing neurons in the lateral hypothalamus is mediated by K(ATP) channels and is negatively regulated by UCP2 (a mitochondrial protein that reduces ATP production), and that glucose sensing by MCH neurons plays an important role in regulating glucose homeostasis. Combined, the glucose-excited neurons are likely to play key, previously unexpected roles in regulating blood glucose.  相似文献   

7.
Melanin-concentrating hormone (MCH) was first discovered in the pituitary of chum salmon because of its role in the regulation of skin pallor. Later, it was found that MCH could also play a role as a central neurotransmitter or neuromodulator in the brain. However, knowledge of the function of MCH in fish has been restricted to certain fish species. Therefore, in the present study, the immunocytochemical localization and ontogenic development of MCH in the brain of a pleuronectiform fish, the barfin flounder Verasper moseri, were examined to obtain a better understanding of this hormone. In adult barfin flounder, MCH-immunoreactive (ir) neuronal somata were most prevalent in the magnocellular neurons of the nucleus tuberis lateralis (NLT), which project to the pituitary. In the pituitary, MCH-ir fibers were distributed in the neurohypophysial tissues within the pars intermedia and, to a lesser extent, into the pars distalis. MCH-ir neuronal somata were also present in dorsally projecting parvocellular neurons, located more posteriorly in the area above the lateral ventricular recess (LVR). LVR-MCH neurons did not seem to project to the pituitary. In the brain, MCH-ir fibers were detected not only in the hypothalamus but also in areas such as the optic tectum and thalamus. MCH-ir neuronal somata and fibers were not detected on the day of hatching. MCH-ir neuronal somata and fibers were first detected in the hypothalamus and the pituitary, respectively, 7 days after hatching. Subsequently, MCH-ir neuronal somata were observed in the NLT and in the area above the LVR 14 days after hatching. The distribution of MCH-ir neuronal somata and fibers showed a pattern similar to that in the adult fish 35-42 days after hatching. These results indicate that MCH neurons were located in the NLT and in the area above the LVR and that NLT-MCH neurons project to the pituitary. MCH neurons were first detected 7 days after hatching, suggesting that MCH plays some physiological role in the early development of barfin flounder.  相似文献   

8.
Melanin-concentrating hormone (MCH), a cyclic nonadecapeptide, is predominantly expressed in mammalian neurons located in the zona incerta and lateral hypothalamus. Current interest in MCH relates to its role in the control of feeding behaviour. Two receptors for MCH were recently found: MCH-R(1) and MCH-R(2). We show here by RT-PCR analysis and immunofluorescence studies that the human neuroblastoma cell line Kelly expresses MCH and MCH-R(1) but not MCH-R(2). In competition assays using 125I-labelled MCH an inhibitory concentration 50% (IC(50)) of 76nM was determined for MCH, indicating a high affinity of Kelly cells for MCH. MCH induces mitogen-activated protein kinase (MAPK) phosphorylation in Kelly cells but no increase in the intracellular free Ca(2+) concentration. This suggests that MCH signals via Galpha(i)/Galpha(0) in these cells. The presence and functionality of MCH-R(1) renders this neuronal cell a very useful model for future structure-activity studies in a physiological environment mimicking the human brain for the evaluation of potential appetite-regulating drugs.  相似文献   

9.
10.
Cellular models for the study of the neuropeptide melanin-concentrating hormone (MCH) have become indispensable tools for pharmacological profiling and signaling analysis of MCH and its synthetic analogues. Although expression of MCH receptors is most abundant in the brain, MCH-R1 is also found in different peripheral tissues. Therefore, not only cell lines derived from nervous tissue but also from peripheral tissues that naturally express MCH receptors have been used to study receptor signaling and regulation. For screening of novel compounds, however, heterologous expression of MCH-R1 or MCH-R2 genes in HEK293, Chinese hamster ovary, COS-7, or 3T3-L1 cells, or amplified MCH-R1 expression/signaling in IRM23 cells transfected with the Gq protein gene are the preferred tools because of more distinct pharmacological effects induced by MCH, which include inhibition of cAMP formation, stimulation of inositol triphosphate production, increase in intracellular free Ca2+ and/or activation of mitogen-activated protein kinases. Most of the published data originate from this type of model system, whereas data based on studies with cell lines endogenously expressing MCH receptors are more limited. This review presents an update on the different cellular models currently used for the analysis of MCH receptor interaction and signaling.  相似文献   

11.
Nicotinic acetylcholine receptors (nAChRs) play an important role in regulating appetite and have been shown to do so by influencing neural activity in the hypothalamus. To shed light on the hypothalamic circuits governing acetylcholine’s (ACh) regulation of appetite this study investigated the influence of hypothalamic nAChRs expressing the α4 subunit. We found that antagonizing the α4β2 nAChR locally in the lateral hypothalamus with di-hydro-ß-erythroidine (DHβE), an α4 nAChR antagonist with moderate affinity, caused an increase in food intake following free access to food after a 12 hour fast, compared to saline-infused animals. Immunocytochemical analysis revealed that orexin/hypocretin (HO), oxytocin, and tyrosine hydroxylase (TH)-containing neurons in the A13 and A12 of the hypothalamus expressed the nAChR α4 subunit in varying amounts (34%, 42%, 50%, and 51%, respectively) whereas melanin concentrating hormone (MCH) neurons did not, suggesting that DHβE-mediated increases in food intake may be due to a direct activation of specific hypothalamic circuits. Systemic DHβE (2 mg/kg) administration similarly increased food intake following a 12 hour fast. In these animals a subpopulation of orexin/hypocretin neurons showed elevated activity compared to control animals and MCH neuronal activity was overall lower as measured by expression of the immediate early gene marker for neuronal activity cFos. However, oxytocin neurons in the paraventricular hypothalamus and TH-containing neurons in the A13 and A12 did not show differential activity patterns. These results indicate that various neurochemically distinct hypothalamic populations are under the influence of α4β2 nAChRs and that cholinergic inputs to the lateral hypothalamus can affect satiety signals through activation of local α4β2 nAChR-mediated transmission.  相似文献   

12.
Galanin-like peptide (GALP) is a novel orexigenic neuropeptide that is recently isolated from the porcine hypothalamus. GALP-containing neurons predominantly locate in the hypothalamic arcuate nucleus (ARC). The expression of GALP mRNA within the ARC is increased after the administration of leptin. GALP-containing neurons express leptin receptor and contain alpha-melanocyte-stimulating hormone. We have recently reported that neuropeptide Y (NPY)- and orexin-containing axon terminals are in close apposition with GALP-containing neurons in the ARC. In addition, GALP-containing neurons express orexin-1 receptor (OX1-R). Thus, GALP may function under the influence of leptin and orexin. However, the target neurons of GALP have not yet been clarified. To clarify the neuronal interaction between GALP-containing and other feeding regulating neurons, double-immunostaining method using antibodies against GALP- and orexin- or melanin-concentrating hormone (MCH) was performed in the rat lateral hypothalamus (LH). GALP-immunoreactive fibers appeared to project to the LH around the fornix. They were also found from the rostral to the caudal part of the ARC, paraventricular nucleus (PVH), stria terminalis (BST), medial preoptic area (MPA), and lateral septal nucleus (LSV). Moreover, GALP-like immunoreactive nerve fibers were directly contacted with orexin- and melanin-concentrating hormone (MCH)-like immunoreactive neurons in the LH. Our findings strongly suggest that GALP-containing neurons interact with orexin- and/or MCH-containing neurons in the lateral hypothalamus and that it participates in the regulation of feeding behavior in harmony with other feeding-regulating neurons in the hypothalamus.  相似文献   

13.
The development of the hypothalamic melanin-concentrating hormone (MCH) system of the teleost Sparus auratus has been studied by immunocytochemistry using an anti-salmon MCH serum. Immunoreactive perikarya and fibers are found in embryos, larvae, and juvenile specimens. In juveniles, most labeled neurons are present in the nucleus lateralis tuberis; some are dispersed in the nucleus recessus lateralis and nucleus periventricularis posterior. From the nucleus lateralis tuberis, MCH neurons project a conspicuous tract of fibers to the ventral hypothalamus; this penetrates the pituitary stalk and reaches the neurohypophysis. Most fibers end close to the cells of the pars intermedia, and some reach the adenohypophysial rostral pars distalis. Immunoreactive fibers can also be seen in extrahypophysial localizations, such as the preoptic region and the nucleus sacci vasculosi. In embryos, MCH-immunoreactive neurons first appear at 36 h post-fertilization in the ventrolateral margin of the developing hypothalamus. In larvae, at 4 days post-hatching, perikarya can be observed in the ventrolateral border of the hypothalamus and in the mid-hypothalamus, near the ventricle. At 26 days post-hatching, MCH perikarya are restricted to the nucleus lateralis tuberis. The neurohypophysis possesses MCH-immunoreactive fibers from the second day post-hatching. The results indicate that MCH plays a role in larval development with respect to skin melanophores and cells that secrete melanocyte-stimulating hormone. Received: 4 April 1995 / Accepted: 17 July 1995  相似文献   

14.
Orexin A is a member of a wider family of orexigenic neuropeptides that have been recently discovered. They are produced by a small group of neurons located in the area of the brain, round the nucleus of the fornix (posterior hypothalamus), in the paraventricular nucleus, the dorsomedial nucleus, the ventromedial hypothalamus, as well as in the lateral hypothalamic region; these are sites that are known to be involved in regulating feeding in mammals. Orexin A is a neuropeptide, which is involved in appetite regulation and energy homeostasis. An intracerebroventricular (i.c.v.) injection of Orexin A in the brain of rats causes an impressive increase in food consumption. In addition, a subcutaneous or intravenous (IV) injection of Orexin A produces changes on insulin plasma concentrations in rats. Recent research suggests that Orexin A is also involved in regulating many other physiological functions. In this study, we examined the potential effects of the central administration of porcine Orexin A on insulin plasma concentrations in pigs, and whether these changes are connected with the possible effect of the neuropeptide on the enteroinsular axis.  相似文献   

15.
Regulation of energy homeostasis in animals involves adaptation of energy intake to its loss, through a perfect regulation of feeding behavior and energy storage/expenditure. Factors from the periphery modulate brain activity in order to adjust food intake as needed. Particularly, “first order” neurons from arcuate nucleus are able to detect modifications in homeostatic parameters and to transmit information to “second order” neurons, partly located in the lateral hypothalamic area. These “second order” neurons have widespread projections throughout the brain and their proper activation leads them to a coordinated response associated to an adapted behavior. Among these neurons, melanin-concentrating hormone (MCH) expressing neurons play an integrative role of the various factors arising from periphery, first order neurons and extra-hypothalamic arousal systems neurons and modulate regulation of feeding, drinking and seeking behaviors. As regulation of MCH release is correlated to regulation of MCH neuronal activity, we focused this review on the electrophysiological properties of MCH neurons from the lateral hypothalamic area. We first reviewed the knowledge on the endogenous electrical properties of MCH neurons identified according to various criteria which are described. Then, we dealt with the modulations of the electrical activity of MCH neurons by different factors such as glucose, glutamate and GABA, peptides and hormones regulating feeding and transmitters of extra-hypothalamic arousal systems. Finally, we described the current knowledge on the modulation of MCH neuronal activity by cytokines and chemokines. Because of such regulation, MCH neurons are some of the best candidate to account for infection-induced anorexia, but also obesity.  相似文献   

16.
17.
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide that has been initially characterized from a salmon pituitary extract and subsequently identified in various species from all classes of vertebrates. The present review summarizes the current knowledge regarding the neuroanatomical distribution of MCH-immunoreactive neurons in submammalian vertebrates. In all species examined, MCH-immunoreactive perikarya are confined to the hypothalamus, with the exception of the cyclostome Lampetra fluvialis and the lungfish Protopterus annectens, in which additional populations of MCH-immunoreactive cell bodies occur in the telencephalon, and the frogs Rana ridibunda and Rana esculenta which exhibit MCH-positive perikarya in thalamic nuclei. In teleosts, in the frog R. ridibunda and in the L. fluvialis, MCH is present in the classical hypothalamic-neurohypophysial system indicating that the peptide may play the role of a neurohormone. In other groups, MCH-immunoreactive nerve fibers are widely distributed in various brain regions suggesting that, in these species, MCH in the central nervous system may act as a neurotransmitter or/and a neuromodulator rather than a neurohormone.  相似文献   

18.
In the brain, apolipoprotein E (APOE) delivers cholesterol-rich lipoproteins to neurons to support synaptogenesis and maintenance of synaptic connections. Three APOE alleles exist in the human population with ε4 being an Alzheimer disease (AD) risk gene and ε2 being protective relative to the common ε3 variant. Many hypotheses have been advanced concerning allele-specific effects of APOE on neurodegeneration including effects on Aβ clearance, synaptic transmission, or neurotoxicity. Central to most proposed APOE functions is its interaction with receptors that mediate cellular uptake of this ligand. Several members of the LDL receptor gene family have been implicated as APOE receptors in the (patho)physiology of APOE in the brain, yet their specific modes of action in AD remain controversial. Recently, the pro-neurotrophin receptor sortilin has been identified as a novel APOE receptor in neurons. Ablation of sortilin expression in mice results in accumulation of APOE and Aβ in the brain. Moreover, primary neurons lacking sortilin exhibit significantly impaired uptake of APOE/Aβ complexes. Despite increased brain APOE levels, sortilin-deficient animals recapitulate anomalies in brain lipid homeostasis seen in APOE null mice, indicating functional deficiency in APOE uptake pathways. Taken together, these findings suggest a link between Aβ catabolism and pro-neurotrophin signaling converging on this receptor pathway.  相似文献   

19.
Nociceptin/orphanin FQ (N/OFQ) is known to induce food intake when administered into the lateral ventricle or certain brain areas. This is somewhat contradictory to its reward-suppressing role, as food is a strong rewarding stimulus. This discrepancy may be due to the functional diversity of N/OFQ’s target brain areas. N/OFQ has been shown to inhibit orexin and melanin-concentrating hormone (MCH) neurons, both of which are appetite-inducing cells. As the expression of these neurons is largely confined to the lateral hypothalamus/perifornical area (LH/PFA), we hypothesized that N/OFQ inhibits food intake by acting in this area. To test this hypothesis, we examined the effect of local N/OFQ infusion within the LH/PFA on food intake in the rat and found that N/OFQ decreased sugar pellet as well as chow intake. This effect was not seen when the injection site was outside of the LH/PFA, suggesting a site-specific effect. Next, to determine a possible cellular mechanism of N/OFQ action on food intake, whole cell patch clamp recordings were performed on rat orexin neurons. As previously reported in mice, N/OFQ induced a strong and long lasting hyperpolarization. Pharmacological study indicated that N/OFQ directly inhibited orexin neurons by activating ATP-sensitive potassium (KATP) channels. This effect was partially but significantly attenuated by the inhibitors of PI3K, PKC and PKA, suggesting that the N/OFQ signaling is mediated by these protein kinases. In summary, our results demonstrate a KATP channel-dependent N/OFQ signaling and that N/OFQ is a site-specific anorexic peptide.  相似文献   

20.
Iron is crucial for a variety of cellular functions in neuronal cells. Neuronal iron uptake is reflected in a robust and consistent expression of transferrin receptors and divalent metal transporter 1 (DMT 1). Conversely, the mechanisms by which neurons neutralize and possibly excrete iron are less clear. Studies indicate that neurons express ferroportin which could reflect a mechanism for iron export. We mapped the distribution of ferroportin in the adult mouse brain using an antibody prepared from a peptide representing amino acid sequences 223–303 of mouse ferroportin. The antibody specifically detected ferroportin in brain homogenates, whereas homogenates of cultured endothelial cells were devoid of immunoreactivity. In brain sections, ferroportin was confined to neuronal cell bodies and peripheral processes of cerebral cortex, hippocampus, thalamus, brain stem, and cerebellum. In brain stem ferroportin-labeling was particularly high in neurons of cranial nerve nuclei and reticular formation. Ferroportin was hardly detectable in striatum, pallidum, or hypothalamus. Among non-neuronal cells, ferroportin was detected in oligodendrocytes and choroid plexus epithelial cells. A comparison with previous studies on the distribution of transferrin receptors in neurons shows that many neuronal pools coincide with those expressing ferroportin. The data therefore indicate that neuronal iron homeostasis consists of a delicate balance between transferrin receptor-mediated uptake of iron-transferrin and ferroportin-related iron excretion. The findings also suggest a particular high turnover of iron in neuronal regions, such as habenula, hippocampus, reticular formation and cerebellum, as several neurons in these regions exhibit a prominent co-expression of transferrin receptors and ferroportin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号