首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An integron is a genetic unit that includes the determinants of the components of a site-specific recombination system capable of capturing and mobilizing genes that are contained in mobile elements called gene cassettes. An integron also provides a promoter for expression of the cassette genes, and integrons thus act both as natural cloning systems and as expression vectors. The essential components of an integron are an int gene encoding a site-specific recombinase belonging to the integrase family, an adjacent site, attl, that is recognized by the integrase and is the receptor site for the cassettes, and a promoter suitably oriented for expression of the cassette-encoded genes. The cassettes are mobile elements that include a gene (most commonly an antibiotic-resistance gene) and an integrase-specific recombination site that is a member of a family of sites known as 59-base elements. Cassettes can exist either free in a circularized form or integrated at the attl site, and only when integrated is a cassette formally part of an integron. A single site-specific recombination event involving the integron-associated attl site and a cassette-associated 59-base element leads to insertion of a free circular cassette into a recipient integron. Multiple cassette insertions can occur, and integrons containing several cassettes have been found in the wild. The integrase also catalyses excisive recombination events that can lead to loss of cassettes from an integron and generate free circular cassettes. Due to their ability to acquire new genes, integrons have a clear role in the evolution of the genomes of the plasmids and transposons that contain them. However, a more general role in evolution is also likely. Events involving recombination between a specific 59-base-element site and a nonspecific secondary site have recently been shown to occur. Such events should lead either to the insertion of cassettes at non-specific sites or to the formation of stable cointegrates between different plasmid molecules, and a cassette situated outside the integron context has recently been identified.  相似文献   

2.
Bouvier M  Demarre G  Mazel D 《The EMBO journal》2005,24(24):4356-4367
Integrons play a major role in the dissemination of antibiotic resistance genes among Gram-negative pathogens. Integron gene cassettes form circular intermediates carrying a recombination site, attC, and insert into an integron platform at a second site, attI, in a reaction catalyzed by an integron-specific integrase IntI. The IntI1 integron integrase preferentially binds to the 'bottom strand' of single-stranded attC. We have addressed the insertion mechanism in vivo using a recombination assay exploiting plasmid conjugation to exclusively deliver either the top or bottom strand of different integrase recombination substrates. Recombination of a single-stranded attC site with an attI site was 1000-fold higher for one strand than for the other. Conversely, following conjugative transfer of either attI strand, recombination with attC is highly unfavorable. These results and those obtained using mutations within a putative attC stem-and-loop strongly support a novel integron cassette insertion model in which the single bottom attC strand adopts a folded structure generating a double strand recombination site. Thus, recombination would insert a single strand cassette, which must be subsequently processed.  相似文献   

3.
Integrons are DNA elements which generally include one or more discrete gene cassettes inserted at a specific site. We have recently proposed a model for the acquisition and dissemination of genes found in the insert region of integrons, which requires the existence of circularized gene cassettes. Evidence for the existence of covalently closed circular molecules consisting of one or more gene cassettes has now been obtained. Low levels of small molecules which hybridize to probes specific for individual gene cassettes were detected in plasmid DNA isolated from cells containing a plasmid which includes an integron fragment with three gene cassettes aacC1, orfE and aadA2. These molecules were only detected when the gene encoding the integron DNA integrase was also present and are thus products of site-specific cassette excision. The excised cassettes have been shown to be in the form of covalently closed supercoiled circles, by digestion with restriction enzymes exonuclease III and DNase I. The circular excision products detected included either one cassette, aadA2 or orfE, two cassettes, aacC1 and orfE or all three cassettes. The predicted sequence of the recombinant junction in the excised aadA2 cassette confirmed that excision was precise. The predicted unique sequences of the 59-base elements associated with individual genes in the circular cassette form were compiled, and the sequences of the seven-base core sites which flank 59-base elements are now, with few exceptions, exact inverted repeats.  相似文献   

4.
5.
H W Stokes  R M Hall 《Plasmid》1992,28(3):225-234
The sequence of the insert region of the integron In1 found in the IncN plasmid R46 was completed. The insert region is 2929 bases long and includes four gene cassettes, two of which are identical copies of the oxa2 gene cassette flanking an aadA1 cassette. The fourth cassette encodes an open reading frame orfD. From comparison of these data with published maps and sequences it is argued that the integrons found in the IncN plasmids pCU1 and R1767 and in the transposon Tn2410 are closely related to In1 from R46. Both site-specific gene insertion and recA-dependent recombination are likely to have contributed to the evolution of these integrons.  相似文献   

6.
Integrons and gene cassettes: hotspots of diversity in bacterial genomes   总被引:1,自引:0,他引:1  
Integrons are genetic units found in many bacterial species that are defined by their ability to capture small mobile elements called gene cassettes. Cassettes usually contain only one gene, potentially any gene, and an attC recombination site, and thousands of cassettes have been sequenced. A specialized IntI site-specific recombinase encoded by the integron recognizes attC and incorporates cassettes into an attI site located adjacent to the intI gene. Over 100 types of integrons have been found, most in bacterial chromosomes. They can all potentially share the same cassettes and, as recombination between attC in a cassette and an attI can occur repeatedly, an integron can contain from zero to hundreds of cassettes. Cassette arrays that are not located next to an intI gene, or solo cassettes at apparently random sites, are also seen. Hence, integrons contribute to generation of diversity in bacterial, plasmid, and transposon genomes and facilitate extensive sharing of information among bacteria.  相似文献   

7.
The sequence of the insert region of the integron In1 found in the IncN plasmid R46 was completed. The insert region is 2929 bases long and includes four gene cassettes, two of which are identical copies of the oxa2 gene cassette flanking an aadA1 cassette. The fourth cassette encodes an open reading frame orfD. From comparison of these data with published maps and sequences it is argued that the integrons found in the IncN plasmids pCU1 and R1767 and in the transposon Tn2410 are closely related to In1 from R46. Both site-specific gene insertion and recA-dependent recombination are likely to have contributed to the evolution of these integrons.  相似文献   

8.
The lack of information about mobile DNA in deep-sea hydrothermal vents limits our understanding of the phylogenetic diversity of the mobile genome of bacteria in these environments. We used culture-independent techniques to explore the diversity of the integron/mobile gene cassette system in a variety of hydrothermal vent communities. Three samples, which included two different hydrothermal vent fluids and a mussel species that contained essentially monophyletic sulfur-oxidizing bacterial endosymbionts, were collected from Suiyo Seamount, Izu-Bonin, Japan, and Pika site, Mariana arc. First, using degenerate polymerase chain reaction (PCR) primers, we amplified integron integrase genes from metagenomic DNA from each sample. From vent fluids, we discovered 74 new integrase genes that were classified into 11 previously undescribed integron classes. One integrase gene was recorded in the mussel symbiont and was phylogenetically distant from those recovered from vent fluids. Second, using PCR primers targeting the gene cassette recombination site (59-be), we amplified and subsequently identified 60 diverse gene cassettes. In multicassette amplicons, a total of 13 59-be sites were identified. Most of these sites displayed features that were atypical of the features previously well conserved in this family. The Suiyo vent fluid was characterized by gene cassette open reading frames (ORFs) that had significant homologies with transferases, DNA-binding proteins and metal transporter proteins, while the majority of Pika vent fluid gene cassettes contained novel ORFs with no identifiable homologues in databases. The symbiont gene cassette ORFs were found to be matched with DNA repair proteins, methionine aminopeptidase, aminopeptidase N, O-sialoglycoprotein endopeptidase and glutamate synthase, which are proteins expected to play a role in animal/symbiont metabolism. The success of this study indicates that the integron/gene cassette system is common in deep-sea hydrothermal vents, an environment type well removed from anthropogenic disturbance.  相似文献   

9.
10.
11.

Background  

Integrons are genetic elements capable of the acquisition, rearrangement and expression of genes contained in gene cassettes. Gene cassettes generally consist of a promoterless gene associated with a recombination site known as a 59-base element (59-be). Multiple insertion events can lead to the assembly of large integron-associated cassette arrays. The most striking examples are found in Vibrio, where such cassette arrays are widespread and can range from 30 kb to 150 kb. Besides those found in completely sequenced genomes, no such array has yet been recovered in its entirety. We describe an approach to systematically isolate, sequence and annotate large integron gene cassette arrays from bacterial strains.  相似文献   

12.
13.
Lateral gene transfer has been proposed as a fundamental process underlying bacterial diversity. Transposons, plasmids and phage are widespread and have been shown to significantly contribute to lateral gene transfer. However, the processes by which disparate genes are assembled and integrated into the host regulatory network to yield new phenotypes are poorly known. Recent discoveries about the integron/gene cassette system indicate it has the potential to play a role in this process. Gene cassettes are small mobile elements typically consisting of a promoterless orf and a recombination site. Integrons are capable of acquisition and re-arrangement of gene cassettes and of the expression of their associated genes. The potential of the integron/gene cassette system is thus largely determined by the diversity contained within the cassette pool and the rate at which integrons sample this pool. We show here using a polymerase chain reaction (PCR) approach by which the environmental gene cassette (EGC) metagenome can be directly sampled that this metagenome contains both protein-coding and non-protein coding genes. Environmental gene cassette-associated recombination sites showed greater diversity than previously seen in integron arrays. Class 1 integrons were shown to be capable of accessing this gene pool through tests of recombinational activity with a representative range of EGCs. We propose that gene cassettes represent a vast, prepackaged genetic resource that could be thought of as a metagenomic template for bacterial evolution.  相似文献   

14.
We describe codon cassette mutagenesis, a simple method of mutagenesis that uses universal mutagenic cassettes to deposit single codons at specific sites in double-stranded DNA. A target molecule is first constructed that contains a blunt, double-strand break at the site targeted for mutagenesis. A double-stranded mutagenic codon cassette is then inserted at the target site. Each mutagenic codon cassette contains a three base pair direct terminal repeat and two head-to-head recognition sequences for the restriction endonuclease Sapl, an enzyme that cleaves outside of its recognition sequence. The intermediate molecule containing the mutagenic cassette is then digested with Sapl, thereby removing most of the mutagenic cassette, leaving only a three base cohesive overhang that is ligated to generate the final insertion or substitution mutation. A general method for constructing blunt-end target molecules suitable for this approach is also described. Because the mutagenic cassette is excised during this procedure and alters the target only by introducing the desired mutation, the same cassette can be used to introduce a particular codon at all target sites. Each cassette can deposit two different codons, depending on the orientation in which it is inserted into the target molecule. Therefore, a series of eleven cassettes is sufficient to insert all possible amino acids at any constructed target site. Thus codon cassettes are 'off-the-shelf' reagents, and this methodology should be a particularly useful and inexpensive approach for subjecting multiple different positions in a protein sequence to saturation mutagenesis.  相似文献   

15.
16.
17.
Deletion of individual antibiotic resistance genes found within the variable region of integrons is demonstrated. Evidence for gene duplications and rearrangements resulting from the insertion of gene units at new locations is also presented. Deletion, duplication, and rearrangement occur only in the presence of the integron-encoded DNA integrase. These events are precise and involve loss or gain of one or more complete insert units or gene cassettes. This confirms the recent definition of gene cassettes as consisting of the gene coding sequences, all except the last 7 bases of the 59-base element found at the 3' end of the gene, and the core site located 5' to the gene (Hall et al., Mol. Microbiol. 5:1941-1959, 1991) and demonstrates that individual gene cassettes are functional units which can be independently mobilized. Both deletions and duplications can be generated by integrase-mediated cointegrate formation followed by integrase-mediated resolution involving a different pair of sites. However, deletion occurs 10 times more frequently than duplication, and we propose that the majority of deletion events are likely to involve integrase-dependent excision of the gene unit to generate a circular gene cassette. The implications of these findings in understanding the evolution of integrons and the spread of antibiotic resistance genes in bacterial populations is discussed.  相似文献   

18.
19.
Investigation of integron carriage in a global collection of multi-drug resistant Salmonella enterica identified 3 unique class 1 integron gene cassette arrays not previously reported in this species. The present study used PCR and DNA sequence analysis to characterize the structure of these gene cassette arrays. A ~4.0 kb integron containing the gene cassette array arr2/cmlA5/bla OXA10 /aadA1 was found in isolates belonging to serovars Isangi and Typhimurium from South Africa. A ~6.0 kb integron containing the gene cassettes aac(6′)IIc/ereA2/IS1247/aac/arr/ereA2 was found in isolates belonging to serovar Heidelberg from the Philippines. In this gene cassette array, the insertion sequence, IS1247, and two putative resistance genes, disrupt the erythromycin resistance gene cassette. Finally, a ~6.0 kb integron containing the gene cassette qacH/dfrA32/ereA1/aadA2/cmlA/aadA1 was found in serovar Stanley isolates from Taiwan. This integron, which has not been previously reported in any bacterial species, contains a new dihydrofolate reductase gene cassette sequence designated dfrA32, with only 90% sequence similarity to previously reported dfrA cassettes. The S. enterica integrons described in the present study represent novel collections of resistance genes which confer multi-drug resistance and have the potential to be widely disseminated among S. enterica as well as other bacterial species.  相似文献   

20.
根据重组工程原理,建立了一种用于构建重组质粒的“neo/E”(抗生素/单酶切位点)选择与反选择新方法。首先采用PCR方法扩增出线性打靶分子:然后进行两步体内同源重组,(1)neo/E基因敲入,重组子呈现neo抗性表型;(2)目的基因替换M/E基因。用限制酶E消化时,发生第二步重组的DNA分子不能被消化,能够转化大肠杆菌受体菌DH5α。应用该方法构建了重组质粒pGL3-Basic PC1900T。PCR及测序鉴定证明:外源片段重组率为20%,所建立的重组工程选择与反选择新技术为质粒构建提供了新的解决方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号