首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
An ecological study of Saccharomyces cerevisiae strains in spontaneous alcoholic fermentation has been made in the same winery on two consecutive years (1993 and 1994) with Merlot type musts, and with Malbec type must on a third year (1998). Saccharomyces cerevisiae strains associated with winery surfaces were also analysed. Differential killer sensitivity patterns related to a killer reference panel of 10 killer yeasts belonging to nine species of four genera were used as a quick and simple procedure to discriminate between indigenous S. cerevisiae isolates at the strain level. Although a great diversity of wild strains was observed, two main indigenous S. cerevisiae strains, designated as S. cerevisiae 9 and S. cerevisiae 13, took over the Merlot type fermentation in both years. These strains also appeared in Malbec must fermentation during the year 1998 and they were again found on the winery surface the next year. These results show that some few and stable indigenous S. cerevisiae strains remained in the environmental winery over the considered period of time (1993–1999) and they represent an additional evidence of the taking over of musts by local strains of S. cerevisiae.  相似文献   

2.
The aim of this research was the study of indigenous yeasts isolated from spontaneous fermentation of Inzolia grapes, one of the most widespread native white grapes in Sicily (Italy). The use of selective medium for the isolation and the screening for sulphur dioxide tolerance were useful for the first selection among 640 isolates. The yeasts characterized by high SO2 tolerance were identified at species level by restriction analysis of ITS region; although the majority of isolates were identified as S. cerevisiae, some non-Saccharomyces yeasts were found. Forty-seven selected yeasts, both S. cerevisiae and non-Saccharomyces yeasts, were characterized for genetic and technological diversity. The genetic polymorphism was evaluated by RAPD-PCR analysis, whereas the technological diversity was analyzed by determining the main secondary compounds in the experimental wines obtained by inoculating these yeasts. Both the molecular and metabolic profiles of selected yeasts were able to clearly discriminate S. cerevisiae from non-Saccharomyces yeasts. This research was useful for the constitution of a collection of selected indigenous yeast strains, including S. cerevisiae and non-Saccharomyces species possessing interesting enological traits. This collection represents a source of wild yeasts, among of which it is possible to select indigenous starters able to maintain the specific organoleptic characteristics of Inzolia wine.  相似文献   

3.
In this work we evaluate the implantation capacity of the selected S. cerevisiae indigenous strain MMf9 and the quality of the produced wines in a traditional (T) and a modern (M) cellar with different ecological and technological characteristics in North Patagonia (Argentina). Red musts were fermented in 10,000 l vats using the indigenous strain MMf9 as well as the respective controls: a fermentation conducted with a foreign starter culture (BC strain) in M cellar and a natural fermentation in T cellar. Since commercial S. cerevisiae starters are always used for winemaking in M cellar and in order to compare the results, natural fermentations and fermentations conducted by the indigenous strain MMf9 were performed at pilot (200 l) scale in this cellar, concomitantly. Thirty indigenous yeasts were isolated at three stages of fermentation: initial, middle and end. The identification of the yeast biota associated to vinifications was carried out using ITS1-5.8S-ITS2 PCR-RFLP. The intra-specific variability of the S. cerevisiae populations was evaluated using mtDNA-RFLP analysis. Wines obtained from all fermentations were evaluated for their chemical and volatile composition and for their sensory characteristics. A higher capacity of implantation of the indigenous MMf9 strain was evidenced in the fermentation carried out in M cellar (80% at end stage) than the one carried out in T cellar (40%). This behaviour could indicate that each cellar differs in the diversity of S. cerevisiae strains associated to wine fermentations. Moreover a higher capacity of implantation of the native starter MMf9 with regard to the foreign (BC) one was also found in M cellar. The selected indigenous strain MMf9 was able to compete with the yeast biota naturally present in the must. Additionally, a higher rate of sugar consumption and a lower fermentation temperature were observed in vinifications conducted by MMf9 strain with regard to control fermentations, producing wines with favourable characteristics. Even when its implantation in T fermentation was lower than that observed in M one, we can conclude that the wine features from MMf9 fermentations were better than those from their respective controls. Therefore, MMf9 selected indigenous strain could be an interesting yeast starter culture in North Patagonian wines.  相似文献   

4.
【背景】商业酵母的使用造成葡萄酒同质化问题严重,发掘优良本土酿酒酵母具有十分重要的意义。【目的】从168株宁夏本土酿酒酵母菌株中筛选出性能优良、具有出色葡萄酒发酵能力的菌株。【方法】基于杜氏管发酵试验和乙醇、高糖等耐受性试验分析产H2S能力及生长曲线测定的方法,筛选出发酵力好、耐受性强、低产H2S的本土酿酒酵母进行赤霞珠葡萄酒发酵试验,测定葡萄酒样基础理化指标、酚类物质和挥发性成分,探究筛选出的酿酒酵母发酵特性。【结果】初步筛选出发酵快速,能适应13%乙醇、350 g/L葡萄糖、250 mg/L SO2、pH 1.0的生存环境且低产H2S的4株本土酿酒酵母YC-E8、QTX-D17、QTX-D7、YQY-E18。菌株YC-E8产甘油能力强,所发酵酒样香气与商业酵母XR、F33最为接近,适用于赤霞珠葡萄酒的发酵。菌株QTX-D17发酵酒样中酒精、单宁、总酚和花色苷含量最高,表现出本土酿酒酵母优良的发酵特性。菌株QTX-D7所发酵酒样香气中乙酸乙酯、辛酸乙酯、1-壬醇等物质含量较高,赋予了葡萄酒香蕉味、苹果味、菠萝味、椰子味等愉悦花果香。【结论】最终筛选出3株优良本土酿酒酵母QTX-D17...  相似文献   

5.
Of 31 yeasts, from different surfaces of two cellars from the northwest region of Argentina, 11 expressed killer activity against the sensitive strain Saccharomyces cerevisiae P351. Five of these killer yeasts were identified as S. cerevisiae by phenotypic tests and PCR-RFLP analysis. Two S. cerevisiae killer strains, Cf5 and Cf8, were selected based on their excellent kinetic and enological properties as potential autochthonous mixed starter cultures to be used during wine fermentation. They could dominate the natural microbiota in fermentation vats and keep the typical sensorial characteristics of the wine of this region.  相似文献   

6.
Indigenous yeasts associated with surfaces in three North Patagonian cellars were isolated by means of selective media developed for the isolation of Dekkera/Brettanomyces yeasts; 81 isolates were identified as belonging to Candida boidinii (16%), Hanseniaspora uvarum (38%), Pichia guilliermondii (3%), Saccharomyces cerevisiae (1%), Geotrichum silvicola (16%) and the new yeast species Candida patagonica (26%). No Dekkera/Brettanomyces isolate was obtained, however, 41 isolates (51% of the total isolates) produced some enologically undesirable features under laboratory conditions including the production of 4-ethylphenol and 4-vinylphenol, observed in the Candida boidinii and Pichia guilliermondii isolates. The sensitivity of the 41 spoilage isolates and seven Brettanomyces bruxellensis collection strains was evaluated against a panel of 55 indigenous and ten reference killer yeasts. Killer cultures belonging to Pichia anomala and Kluyveromyces lactis species showed the broadest killer spectrum against spoilage yeasts, including Dekkera bruxellensis collection strains. These killer isolates could be good candidates for use in biocontrol of regionally relevant spoilage yeasts.  相似文献   

7.
Wild killer yeasts have been identified as inhibitory to strains used as starters in the production of alcoholic beverages such as beer and wine; therefore, killer or killer-resistant strains have been sought for use in alcoholic fermentations. In the current paper a total of 16 strains belonging to six species were isolated. From two samples of Agave sap (aguamiel) the following yeast strains were isolated: Candida lusitaneae (1), Kluyveromyces marxianus var. bulgaricus (2), and Saccharomyces cerevisiae (capensis) (1). Additionally, in seven samples of pulque (the fermented product), the species C. valida (six strains), S. cerevisiae (chevalieri) (4), S. cerevisiae (capensis) (1), and K. marxianus var. lactis (1) were found. The killer strains were C. valida and K. marxianus var. lactis from pulque and K. marxianus var. bulgaricus from aguamiel. One strain of S. cerevisiae (chevalieri) isolated from pulque which did not show killer activity was, on the other hand, resistant to other killer strains and it had a remarkable ethanol tolerance, suggesting that this strain could be used for alcohol production.  相似文献   

8.
The apiculate yeasts are the species predominating the first stage of grape must alcoholic fermentation and are important for the production of desired volatile compounds. The aim of the present investigation was to establish a protocol for the enological selection of non-Saccharomyces strains directly isolated from a natural must fermentation during the tumultuous phase. At this scope, fifty Hanseniaspora uvarum isolates were characterized at strain level by employing a new combined PCR-based approach. One isolate representative of each identified strain was used in fermentation assays to assess strain-specific enological properties. The chemical analysis indicated that all the analyzed strains were low producers of acetic acid and hydrogen sulphide, whereas they showed fructophilic character and high glycerol production. Analysis of volatile compounds indicated that one strain could positively affect, during the alcoholic fermentation process, the taste and flavour of alcoholic beverages. The statistical evaluation of obtained results indicated that the selected autochthonous H. uvarum strain possessed physiological and technological properties which satisfy the criteria indicated for non-Saccharomyces wine yeasts selection. Our data suggest that the described protocol could be advantageously applied for the selection of non-Saccharomyces strains suitable for the formulation of mixed or sequential starters together with Saccharomyces cerevisiae.  相似文献   

9.
The PCR amplification and subsequent restriction analysis of the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene was applied to the identification of yeasts belonging to the genus Saccharomyces. This methodology has previously been used for the identification of some species of this genus, but in the present work, this application was extended to the identification of new accepted Saccharomyces species (S. kunashirensis, S. martiniae, S. rosinii, S. spencerorum, and S. transvaalensis), as well as to the differentiation of an interesting group of Saccharomyces cerevisiae strains, known as flor yeasts, which are responsible for ageing sherry wine. Among the species of the Saccharomyces sensu lato complex, the high diversity observed, either in the length of the amplified region (ranged between 700 and 875 bp) or in their restriction patterns allows the unequivocal identification of these species. With respect to the four sibling species of the Saccharomyces sensu stricto complex, only two of them, S. bayanus and S. pastorianus, cannot be differentiated according to their restriction patterns, which is in accordance with the hybrid origin (S. bayanus × S. cerevisiae) of S. pastorianus. The flor S. cerevisiae strains exhibited restriction patterns different from those typical of the species S. cerevisiae. These differences can easily be used to differentiate this interesting group of strains. We demonstrate that the specific patterns exhibited by flor yeasts are due to the presence of a 24-bp deletion located in the ITS1 region and that this could have originated as a consequence of a slipped-strand mispairing during replication or be due to an unequal crossing-over. A subsequent restriction analysis of this region from more than 150 flor strains indicated that this deletion is fixed in flor yeast populations.  相似文献   

10.
The aim of this work was to characterize the indigenous wine Saccharomyces cerevisiae diversity within the Argentinean Patagonia. Two cellars with particular enological practices located in different winegrowing areas were selected and 112 indigenous S. cerevisiae isolates were obtained from spontaneous red wine fermentations carried out in them. Thirty-five and 19 patterns were distinguished among the total indigenous isolates using mtDNA-RFLP and killer biotype analysis, respectively. The combination of both typing techniques rendered a higher variability with 42 different patterns, i.e. 42 strains, evidencing a great diversity in S. cerevisiae populations associated with spontaneous red wine fermentations in Northwestern Patagonia. The analysis of the relatedness among strains using Principal Coordinates Analysis from combined data allowed the clustering of the strains into two populations significantly related to their origin fermentations. The combined use of the mtDNA-RFLP analysis together with the killer biotype method proved to be a powerful tool in the fingerprinting of the enological S. cerevisiae strains.  相似文献   

11.
The physiological characteristics of two strains of brewery ale yeasts,Saccharomyces cerevisiae, with sedimentation abilities, were investigated to see if the strains were suitable for lager beer production. Compared with typical industrial ale strains ofS. cerevisiae and lager strains ofS. uvarum (nowS. cerevisiae), the investigated strains differ in fermentation dynamics, as well as in biological properties. The differences, however, particularly between the two strains and the lager brewing yeasts, were not significant.  相似文献   

12.
Fifty-one yeast strains isolated from fermented mash of Balinese rice wine, brem, fermented using five different types of starters, ragi tape, were identified on the basis of their internal transcribed spacer (ITS) regions and their 18S rDNA sequences. The results revealed that Saccharomyces cerevisiae(35 strains), Candida glabrata(six strains), Pichia anomala(three strains) and Issatchenkia orientalis(seven strains) were the main yeasts in the fermentation of the rice wine. These yeasts undergo succession during the fermentation in which S. cerevisiae was mostly found as the principal yeast at the end of fermentation. Phylogenetic analysis based on the 18S rDNA sequences of selected strains placed the isolated S. cerevisiae strains in the Saccharomyces sensu stricto group. Karyotype analysis of the S. cerevisiae strains resolved using pulsed field gel electrophoresis (PFGE) showed that the strains are typically associated with different types of starters.  相似文献   

13.
The effect of pure and mixed fermentation by Saccharomyces cerevisiae and Hanseniaspora valbyensis on the formation of major volatile components in cider was investigated. When the interaction between yeast strains of S. cerevisiae and H. valbyensis was studied, it was found that the two strains each affected the cell growth of the other upon inoculation of S. cerevisiae during growth of H. valbyensis. The effects of pure and mixed cultures of S. cerevisiae and H. valbyensis on alcohol fermentation and major volatile compound formation in cider were assessed. S. cerevisiae showed a conversion of sugar to alcohol of 11.5%, while H. valbyensis produced alcohol with a conversion not exceeding 6%. Higher concentrations of ethyl acetate and phenethyl acetate were obtained with H. valbyensis, and higher concentrations of isoamyl alcohol and isobutyl were formed by S. cerevisiae. Consequently, a combination of these two yeast species in sequential fermentation was used to increase the concentration of ethyl esters by 7.41–20.96%, and to decrease the alcohol concentration by 25.06–51.38%. Efficient control of the formation of volatile compounds was achieved by adjusting the inoculation time of the two yeasts.  相似文献   

14.
This work deals with biogenic amine production by yeast strains isolated from grapes and wines. A total of 50 strains were tested for their capacity to produce biogenic amines in wine. In general, all the species produced very low or non-detectable amounts of histamine, whereas methylamine and agmatine were formed by all the species considered. The highest concentration of total biogenic amines was formed by Brettanomyces bruxellensis, with an average value of 15 mg/l, followed by Saccharomyces cerevisiae with an average of 12.14 mg/l. The other species formed less than 10 mg of total biogenic amines per litre. Wines fermented with the most fermentative strains of S. cerevisiae species had the highest contents of ethanolamine, from 2.3 to 16 mg/l, and of agmatine, from 3.1 to 7.5 mg/l. The strains of the other species, which exhibited a low fermentative ability, Kloeckera apiculata, B. bruxellensis and Metschnikowia pulcherrima, varied in the production of agmatine and phenylethylamine. A significant variability in the production of cadaverine was characteristic of Candida stellata strains, which varied also in ethanolamine production. Our results emphasize the importance of using selected strains of S. cerevisiae, not only for the expression of desirable technological traits, but also to avoid potentially negative effects on human health. Therefore, the characterization of strains of S. cerevisiae for the 'production of biogenic amines' becomes of applicative interest.  相似文献   

15.
Yeast ecology, biogeography and biodiversity are important and interesting topics of research. The population dynamics of yeasts in several cellars of two Spanish wine-producing regions was analysed for three consecutive years (1996 to 1998). No yeast starter cultures had been used in these wineries which therefore provided an ideal winemaking environment to investigate the dynamics of grape-related indigenous yeast populations. Non-Saccharomyces yeast species were identified by RFLPs of their rDNA, while Saccharomyces species and strains were identified by RFLPs of their mtDNA. This study confirmed the findings of other reports that non-Saccharomyces species were limited to the early stages of fermentation whilst Saccharomyces dominated towards the end of the alcoholic fermentation. However, significant differences were found with previous studies, such as the survival of non-Saccharomyces species in stages with high alcohol content and a large variability of Saccharomyces strains (a total of 112, all of them identified as Saccharomyces cerevisiae) with no clear predominance of any strain throughout all the fermentation, probably related to the absence of killer phenotype and lack of previous inoculation with commercial strains.  相似文献   

16.
《Fungal biology》2022,126(10):658-673
In northwestern Argentina, sugarcane-derived industrial fermentation is being extensively used for bioethanol production, where highly adaptive native strains compete with the baker's yeast Saccharomyces cerevisiae traditionally used as starter culture. Yeast populations of 10 distilleries from Tucumán (Argentina) were genotypic and phenotypic characterized to select well-adapted bioethanol-producing autochthonous strains to be used as starter cultures for the industrial production of bioethanol fuel. From the 192 isolates, 69.8% were identified as S. cerevisiae, 25.5% as non-Saccharomyces, and 4.7% as Saccharomyces sp. wild yeasts. The majority of S. cerevisiae isolates (68.5%) were non-flocculating yeasts, while the flocculating strains were all obtained from the only continuous fermentation process included in the study. Simple Sequence Repeat analysis revealed a high genetic diversity among S. cerevisiae genotypes, where all of them were very different from the original baker's strain used as starter. Among these, 38 strains multi-tolerant to stress by ethanol (8%), temperature (42.5 °C) and pH (2.0) were obtained. No major differences were found among these strains in terms of ethanol production and residual sugars in batch fermentation experiments with cell recycling. However, only 10 autochthonous strains maintained their viability (more than 80%) throughout five consecutive cycles of sugarcane-based fermentations. In summary, 10 autochthonous isolates were found to be superior to baker's yeast used as starter culture (S. cerevisiae Calsa) in terms of optimal technological, physiological and ecological properties. The knowledge generated on the indigenous yeast populations in industrial fermentation processes of bioethanol-producing distilleries allowed the selection of well-adapted bioethanol-producing strains.  相似文献   

17.
Inoculation of active dry yeasts during the wine-making process has become a common practice in most wine-producing regions; this practice may affect the diversity of the indigenous population of Saccharomyces cerevisiae in the winery. The aim of this work was to study the incidence of commercial yeasts in the experimental winery of Estación de Viticultura e Enoloxía de Galicia (EVEGA) and their ability to lead spontaneous fermentations. To do this, 64 spontaneous fermentations were carried out in the experimental cellar of EVEGA over a period of 7 years. Samples were taken from must and at the beginning, vigorous and final stages of fermentation. A representative number of yeast colonies was isolated from each sample. S. cerevisiae strains were characterised by analysis of mitochondrial DNA restriction patterns. The results showed that although more than 40 different strains of S. cerevisiae were identified, only 10 were found as the dominant strain or in codominance with other strains in spontaneous fermentations. The genetic profiles (mtDNA-RFLPs) of eight of these strains were similar to those of different commercial yeasts that had been previously used in the EVEGA cellar. The remaining two strains were autochthonous ones that were able to reach implantation frequencies as high of those of commercial yeasts. These results clearly indicated that commercial wine yeasts were perfectly adapted to survive in EVEGA cellar conditions, and they successfully competed with the indigenous strains of S. cerevisiae, even during spontaneous fermentations. On the other hand, autochthonous dominant strains that presented desirable oenological traits could be of interest to preserve wine typicity.  相似文献   

18.
Saccharomyces cerevisiae is the most widely used yeast in industrial/commercial food and beverage production and is even consumed as a nutritional supplement. Various cases of fungemia caused by this yeast species in severely debilitated traumatized or immune-deficient patients have been reported in recent years, suggesting that this species could be an opportunistic pathogen in such patients. To determine whether the industrial S. cerevisiae strains can be included in this virulent group of strains, we carried out a comparative study between clinical and industrial yeasts based on the various phenotypic traits associated with pathogenicity in two other yeast species (Candida albicans and Cryptococcus neoformans). The majority of the clinical isolates were found to secrete higher levels of protease and phospholipase, grow better at 42°C and show strong pseudohyphal growth relative to industrial yeasts. However three industrial yeast strains, one commercial wine strain, baker’s yeast and one commercial strain of S. cerevisiae (var. boulardii), were exceptions and based on their physiological traits these yeasts would appear to be related to clinical strains.  相似文献   

19.
The aim of this research was to identify the Saccharomyces spp. associated with Žilavka grapes and to evaluate their enzymatic activities, H2S production and micro-fermentation performance. For this purpose, a total of 143 yeast strains isolated from three production areas of the Mostar wine region (Bosnia and Herzegovina) were studied and analysed. Firstly, yeasts were identified to genus level by growth on WL nutrient agar and the test of assimilation of lysine. Later, molecular identification at species level was carried out with RFLP analysis of 18S rDNA + ITS region, and at strain level with microsatellite-primed PCR (MSP-PCR). At physiological level yeast strains were grouped into different clusters by means of the Joining-Tree-Clustering-Method. All yeasts tested were identified as S. cerevisiae, resulting a total of 18 different strains. All of the investigated strains produced hydrogen sulphide, 89% were able to complete the fermentation, and none of them was able to synthesize killer toxins. Since enzymes play a very important role in wine aroma development, it was very encouraging that 33% of the strains were able to synthesize pectinolytic enzyme but only one produced β-glucosidase. In the second part of the selection process two indigenous strains were compared with commercial yeast in a microvinification and Žilavka wines with different profiles of volatiles were obtained. This research represents a first step in the selection of indigenous yeast strains from the Mostar region with the goal of maintaining the specific organoleptic characteristics of Žilavka wine.  相似文献   

20.
The objectives of this study were to evaluate the potential of gabiroba Campomanesia pubescens (DC) O. Berg in the production of a beverage fermented using selected and wild yeasts from indigenous fermentation, analyze the volatile compounds profile present during the process of fermentation, and evaluate the sensory quality of the final beverage produced. Throughout the process of fermentation, when Saccharomyces cerevisiae UFLA CA 1162 was inoculated, there were stable viable populations around 9 log cells ml−1. During indigenous fermentation, yeast population increased from 3.7 log CFU ml−1 to 8.1 log CFU ml−1 after 14 days. The diversity and dynamics of the yeast population during indigenous fermentation observed by PFGE analysis showed five different karyotyping profiles in the first days of fermentation. After the seventh day, there was a higher frequency of a similar S. cerevisiae profile. The yeast non-Saccharomyces were identified by sequencing of the ITS region as Candida quercitrusa and Issatchenkia terricola. Inoculated fermentations yielded a higher amount of alcohol than indigenous ones, indicating the efficiency of selected strains. There was also a greater concentration of higher alcohols, which are usually responsible for the flavor found in alcoholic beverages. Based on the characteristics of the pulp and acceptance in the sensory analysis, gabiroba fruits showed good potential for use in the production of fermented beverage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号