首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Concatemer DNA duplexes which contain at the EcoRII restriction endonuclease cleavage sites (formula; see text) phosphodiester, phosphoamide or pyrophosphate internucleotide bonds have been synthesized. It has been shown that this enzyme did not cleave the substrate at phosphoamide bond. EcoRII endonuclease catalyzes single-strand cleavages both in dA- and dT-containing strands of the recognition site if the cleavage of the other strand has been blocked by modification of scissile bond or if the other strand has been cleaved. This enzyme interacts with both strands of the DNA recognition site, each of them being cleaved independently on the cleavage of another one. Nucleotide sequences flanking the EcoRII site on both sides are necessary for effective cleavage of the substrate.  相似文献   

2.
The interaction of MvaI restriction endonuclease with 14-membered deoxyribonucleotide duplexes containing modifications within the recognition site (CCA/TGG) has been studied. Substitution of m5dC for the internal dC residue, as well as substitution of fl5dU or rU for dT did not influence the initial rate of hydrolysis (v0) of modified strands, whereas the hydrolysis of unmodified strands was inhibited in some cases. Furthermore, the substitution of a pyrophosphate bond for a scissile phosphodiester bond in one strand completely inhibited digestion in this strand without any decrease of the rate of hydrolysis of the unmodified strand. In contrast to EcoRII endonuclease, which recognizes the same DNA sequence, in the case of MvaI endonuclease substrate recognition is possible in a wide range of conformational, electronic and hydrophobic alterations within the recognition site.  相似文献   

3.
The present study deals with the binding and cleavage by EcoRII endonuclease of concatemer DNA duplexes containing EcoRII recognition sites (formula; see text) in which dT is replaced by dU or 5-bromodeoxyuridine, or 5'-terminal dC in the dT-containing strand is methylated at position 5. The enzyme molecule is found to interact with the methyl group of the dT residue of the DNA recognition site and to be at least in proximity to the H5 atom of the 5'-terminal dC residue in dT-containing strand of this site. Modification of any of these positions exerts an equal effects on the cleavage of both DNA strands. Endonuclease EcoRII was found to bind the substrate specifically. At the same time modification of the bases in recognized sequence may result in the formation of unproductive, though stable, enzyme-substrate complexes.  相似文献   

4.
The efficiency of cleavage of DNA duplexes with single EcoRII recognition sites by the EcoRII restriction endonuclease decreases with increasing substrate length. DNA duplexes of more than 215 bp are not effectively cleaved by this enzyme. Acceleration of the hydrolysis of long single-site substrates by EcoRII is observed in the presence of 11-14-bp substrates. The stimulation of hydrolysis depends on the length and concentration of the second substrate. To study the mechanism of EcoRII endonuclease stimulation, DNA duplexes with base analogs and modified internucleotide phosphate groups in the EcoRII site have been investigated as activators. These modified duplexes are cleaved by EcoRII enzyme with different efficiencies or are not cleaved at all. It has been discovered that the resistance of some of them can be overcome by incubation with a susceptible canonical substrate. The acceleration of cleavage of long single-site substrates depends on the type of modification of the activator. The modified DNA duplexes can activate EcoRII catalyzed hydrolysis if they can be cleaved by EcoRII themselves or in the presence of the second canonical substrate. It has been demonstrated that EcoRII endonuclease interacts in a cooperative way with two recognition sites in DNA. The cleavage of one of the recognition sites depends on the cleavage of the other. We suggest that the activator is not an allosteric effector but acts as a second substrate.  相似文献   

5.
Interaction of the EcoRII restriction endonuclease with a set of 30-membered substrates having structural anomalies in the recognition site (decreases CCT/AGG) and in adjacent sequences has been studied. A nick in the centre of the EcoRII recognition site between dC and dA residues slows down hydrolysis of the nonmodified strand, whereas the modified one is not cleaved. Removal of the phosphate group from the nick in this substrate does not alter the rate of the cleavage. The absence of one of the phosphate groups in the flanking sequence at a two-base-pair "distance" from the recognition site slows down the enzymatic hydrolysis. Removal of dA or dT out of the EcoRII recognition site blocks the enzymatic reaction. It appears that EcoRII does not interact with the phosphate group between dC and dA residues in the recognition site. Suggestions are made concerning possible contacts of the EcoRII restriction endonuclease with dA- and dT-residues of the recognition site and with the sugar-phosphate backbone of the adjacent nucleotide sequences.  相似文献   

6.
To elucidate the mechanism of action of restriction endonucleases MvaI and EcoRII a study was made of their interaction with a set of synthetic substrates in which the heterocyclic bases or the sugar-phosphate backbone had been modified; individual nucleotide residues had been removed or replaced with hydrocarbon bridges, and mismatched base pairs had been introduced. The groups of atoms in the heterocyclic bases and the phosphates in the recognition site that produce the most significant influence on the functioning of endonucleases MvaI and EcoRII were discerned. Profound differences were found in the functioning of the MvaI and EcoRII neoschizomers. The catalytic activity of EcoRII is significantly affected by any alteration in the recognition site structure and conformation, with a modification in one strand of the substrate causing the same decrease in the hydrolysis rate of both strands. Endonuclease MvaI is tolerant to a number of structural abnormalities; the latter sometimes affect only hydrolysis of one strand of the recognition site. The enzyme can preferentially cleave one of the substrate strands. Mismatched base pairs retard and sometimes block the hydrolysis. The effect depends on the particular enzyme, mismatch and its location.  相似文献   

7.
A set of DNA duplexes with repeated EcoRII, EcoRI and AluI restriction endonuclease recognition sites in which EcoRII scissile phosphodiester bonds were replaced by phosphoramide or uncleavable pyrophosphate bonds have been synthesized. Endonuclease EcoRII was found not to cleave the substrate at the phosphoramide bond. The substrates containing non-nydrolysable pyrophosphate or phosphoramide bonds in one of the chains of EcoRII recognition sites were used to show that this enzyme is able to catalyze single-strand scissions. These scissions occur both in dA- and dT-containing chains of the recognition site. Endonuclease EcoRII interacts with both strands of the DNA recognition site, each of them being cleaved independently on the cleavage of the other. Synthesized DNA-duplexes are cleaved specifically by EcoRI and AluI endonucleases, this cleavage being retarded if the modified bonds are in the recognition site (EcoRI) or flank it (AluI). For EcoRII and AluI this effect is more pronounced in the case of substrates with pyrophosphate bonds than with the phosphoramide ones.  相似文献   

8.
14-membered DNA-duplexes containing modified nucleoside residues, viz 4-N-methyldeoxycytidine (m4dC), 6-N-methyldeoxyadenosine (m6dA) or deoxyinosine (dI), in only one strand of the recognition site (CCA/TGG) of MvaI and EcoRII endonucleases were synthesized. It was shown that MvaI and EcoRII endonucleases interact with the exocyclic amino groups of the external dC residues and of the central dA residue of the recognition site exposed into the DNA major groove. These endonucleases which are isochizomers were found to possess different mechanisms of substrate cleavage. The ability of MvaI endonuclease to hydrolyze only unmodified strand of methylated duplexes allows one to make site-directed single-strand nicks in double-stranded DNA. Elimination of the 2-NH2-group located in the minor groove of DNA by substituting dI for dG had little, if any, effect on the hydrolytic activity of EcoRII and MvaI endonucleases.  相似文献   

9.
We studied the interaction of EcoRII and SsoII restriction endonucleases with synthetic DNA duplexes, containing 3'N----5'P and 3'P----5'N phosphoamide internucleotide bonds in one of the cleavage points. Enzymatic hydrolysis of the modified strand of the duplexes is blocked in all cases. The presence of phosphoamide bonds was found to reduce the rate of cleavage of the natural strand by EcoRII and to have no influence in case of SsoII. Properties of the EcoRII endonuclease complex with its substrate, containing non-cleavable 3'N----5'P internucleotide bonds in each cleavage point, were examined. In the presence of Mg2+ ions the equilibrium association constant of the enzyme-substrate complex is 3-fold reduced, and the dissociation rate constant of the complex is increased by 1.5 times.  相似文献   

10.
The purine analog, 2-chloro-2'-deoxyadenosine triphosphate (CldATP), was incorporated enzymatically in place of dATP into the minus strand of M13mp18 duplex DNA. Its effect on protein-DNA interactions was assessed by determining the amount of DNA cleavage by type II restriction endonucleases. Substitution of chloroadenine (CIAde) for adenine (Ade) in DNA appreciably decreased the amount and rate of DNA cleavage of the minus strand when the analog was situated within the appropriate endonuclease recognition site. CIAde residues flanking a restriction site had variable effects. SmaI cleaved both CIAde-containing and control substrates with equal efficiency. NarI, however, was stimulated 1.5-fold by the presence of CIAde outside its recognition site. The effects of analog incorporation on restriction enzyme cleavage of an opposing unsubstituted strand of duplex DNA was examined by enzymatically incorporating CIdATP into the complementary minus strand of a 36-base oligonucleotide. Endonucleolytic cleavage of both plus and minus strands was reduced on 36-mers containing CIAde residues located within only the minus strand. These data suggest that CIAde residues incorporated into a single DNA strand may have an appreciable effect on DNA-protein interactions that involve one or both strands of duplex DNA.  相似文献   

11.
D B Olsen  G Kotzorek  F Eckstein 《Biochemistry》1990,29(41):9546-9551
The inhibitory effect of phosphorothioate residues, located within one strand of double-stranded DNA, on the hydrolytic activity of the restriction endonuclease EcoRV was investigated. Specific incorporation of a phosphorothioate group at the site of cleavage yielded the sequence 5'-GATsATC-3'. This modified sequence was cleaved at a relative rate of 0.1 compared to the unmodified substrate. Substrates 5'-GATsAsTC-3' and 5'-GsATsATC-3', both containing one additional phosphorothioate substitution, were linearized at a rate of 0.04 relative to unmodified DNA. However, under the same conditions, fully dAMPS-substituted DNA was found to be virtually resistant to the hydrolytic activity of EcoRV. Further experiments showed that double-stranded DNA fragments generated by PCR containing phosphorothioate groups within both strands are potent inhibitors of EcoRV catalysis. The inhibition was independent of whether the inhibitor fragment contained an EcoRV recognition site. We concluded that substitution of the phosphate group at the site of cleavage by a phosphorothioate residue decreases the rate of EcoRV-catalyzed hydrolysis most significantly. Substitution of other phosphate groups within the recognition sequence plays a limited role in enzyme inhibition. The presence of multiple dNMPS residues at regions of the DNA removed from the EcoRV recognition site may decrease the amount of enzyme available for catalysis by nonspecific binding to EcoRV.  相似文献   

12.
A complete understanding of the sequence-specific interaction between the EcoRI restriction endonuclease and its DNA substrate requires identification of all contacts between the enzyme and substrate, and evaluation of their significance. We have searched for possible contacts adjacent to the recognition site, GAATTC, by using a series of substrates with differing lengths of flanking sequence. Each substrate is a duplex of non-self-complementary oligodeoxyribonucleotides in which the recognition site is flanked by six base pairs on one side and from zero to three base pairs on the other. Steady-state kinetic values were determined for the cleavage of each strand of these duplexes. A series of substrates in which the length of flanking sequence was varied on both sides of the hexamer was also examined. The enzyme cleaved both strands of each of the substrates. Decreasing the flanking sequence to fewer than three base pairs on one side of the recognition site induced an asymmetry in the rates of cleavage of the two strands. The scissile bond nearest the shortening sequence was hydrolyzed with increasing rapidity as base pairs were successively removed. Taken together, the KM and kcat values obtained may be interpreted to indicate the relative importance of several likely enzyme-substrate contacts located outside the canonical hexameric recognition site.  相似文献   

13.
Oligonucleotides containing 2-aminopurine (2-AP) in place of G or A in the recognition site of EcoRII (CCT/AGG) or SsoII (CCNGG) restriction endonucleases have been synthesized in order to investigate the specific interaction of DNA with these enzymes. Physicochemical properties (CD spectra and melting behaviour) have shown that DNA duplexes containing 2-aminopurine exist largely in a stable B-like form. 2-Aminopurine base paired with cytidine, however, essentially influences the helix structure. The presence of a 2-AP-C mismatch strongly reduces the stability of the duplexes in comparison with the natural double strand, indicated by a biphasic melting behaviour. SsoII restriction endonuclease recognizes and cleaves the modified substrate with a 2-AP-T mismatch in the centre of the recognition site, but it does not cleave the duplexes containing 2-aminopurine in place of inner and outer G, or both. EcoRII restriction endonuclease does not cleave duplexes containing 2-aminopurine at all. The two-substrate mechanism of EcoRII-DNA interaction, however, allows hydrolysis of the duplex containing 2-aminopurine in place of adenine in the presence of the canonical substrate.  相似文献   

14.
The restriction endonuclease EcoRII is unable to cleave DNA molecules when recognition sites are very far apart. The enzyme, however can be activated in the presence of DNA molecules with a high frequency of EcoRII sites or by oligonucleotides containing recognition sites: Addition of the activator molecules stimulates cleavage of the refractory substrate. We now show that endonucleolysis of the stimulator molecules is not a necessary prerequisite of enzyme activation. A total EcoRII digest of pBR322 DNA or oligonucleotide duplexes with simulated EcoRII ends (containing the 5' phosphate group), as well as oligonucleotide duplexes containing modified bases within the EcoRII site, making them resistant to cleavage, are all capable of enzyme activation. For activation EcoRII requires the interaction with at least two recognition sites. The two sites may be on the same DNA molecule, on different oligonucleotide duplexes, or on one DNA molecule and one oligonucleotide duplex. The efficiency of functional intramolecular cooperation decreases with increasing distance between the sites. Intermolecular site interaction is inversely related to the size of the stimulator oligonucleotide duplex. The data are in agreement with a model whereby EcoRII simultaneously interacts with two recognition sites in the active complex, but cleavage of the site serving as an allosteric activator is not necessary.  相似文献   

15.
As shown by a nitrocellulose filter binding assay, in the absence of Mg2+ EcoRII restriction endonuclease binds specifically to a set of synthetic concatemer DNA duplexes of varying chain length, containing natural and modified recognition sites of this enzyme. The binding of the substrates with the central AT, TT or AA-pair in the recognition site decreases at AT greater than TT much greater than AA. Substitution of the pyrophosphate bond at the cleavage site for the phosphodiester or phosphoramide bond produces little influence on the stability of the complexes. The affinity of the enzyme for nonspecific sites is two orders of magnitude less than that for the specific EcoRII sequences. Equilibrium association constant for a substrate with one recognition site is 3.9 X 10(8) M-1. Addition of Mg2+ leads to the destabilization of the EcoRII endonuclease complex with DNA duplex, containing pyrophosphate bonds. The dissociation rate constants and the lifetime of the EcoRII endonuclease--synthetic substrates complexes have been determined.  相似文献   

16.
The interaction of enzymes SsoII (decreases CCNGG) and MvaI (CC decreases A/TGG) with concatemeric DNA duplexes used earlier to study EcoRII (decreases CCA/TGG) TGG was investigated with a view of elucidating the general principles of the restriction endonuclease function. A pattern common for all the three enzymes was observed with DNA duplexes containing AA or TT pairs in the central position of the recognition site. The AA pair blocks or substantially hinders the endonuclease action, whereas the TT pair is either less inhibitory or altogether inert. SsoII, similar to EcoRII was able to processively cleave the concatemeric substrates and to interact with (or to be close to) the hydrogen in the 5th position of the outer dC residue of the recognition site. MvaI was found to differ from EcoRII in the way they recognize and cleave the same nucleotide sequence. The substrate-bound MvaI molecule is incapable of linear diffusion along the DNA. Effective hydrolysis of dU- and m5dC-containing polymers rules out the participation of hydrophobic contacts of the enzyme with the methyl group of the dT residue and with the 5th hydrogen of the outer dC residue of the recognition site in DNA-protein interactions.  相似文献   

17.
DNA methylation is an important cellular mechanism for controlling gene expression. Whereas the mutagenic properties of many DNA adducts, e.g., those arising from polycyclic aromatic hydrocarbons, have been widely studied, little is known about their influence on DNA methylation. We have constructed site-specifically modified 18-mer oligodeoxynucleotide duplexes containing a pair of stereoisomeric adducts derived from a benzo[a]pyrene-derived diol epoxide [(+)- and (-)-r7,t8-dihydroxy-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, or B[a]PDE] bound to the exocyclic amino group of guanine. The adducts, either (+)- or (-)-trans-anti-B[a]P-N(2)-dG (G*), positioned either at the 5'-side or the 3'-side deoxyguanosine residue in the recognition sequence of EcoRII restriction-modification enzymes (5'-...CCA/TGG...) were incorporated into 18-mer oligodeoxynucleotide duplexes. The effects of these lesions on complex formation and the catalytic activity of the EcoRII DNA methyltransferase (M.EcoRII) and EcoRII restriction endonuclease (R.EcoRII) were investigated. The M.EcoRII catalyzes the transfer of a methyl group to the C5 position of the 3'-side cytosine of each strand of the recognition sequence, whereas R.EcoRII catalyzes cleavage of both strands. The binding of R.EcoRII to the oligodeoxynucleotide duplexes and the catalytic cleavage were completely abolished when G was positioned at the 3'-side dG position (5'-...CCTGG*...). When G* was at the 5'-side dG position, binding was moderately diminished, but cleavage was completely blocked. In the case of M.EcoRII, binding is diminished by factors of 5-30 but the catalytic activity was either abolished or reduced 4-80-fold when the adducts were located at either position. Somewhat smaller effects were observed with hemimethylated oligodeoxynucleotide duplexes. These findings suggest that epigenetic effects, in addition to genotoxic effects, need to be considered in chemical carcinogenesis initiated by B[a]PDE, since the inhibition of methylation may allow the expression of genes that promote tumor development.  相似文献   

18.
Oligonucleotides containing 1-(beta-D-2'-deoxy-threo-pentofuranosyl)cytosine (dCx) and/or 1-(beta-D-2'-deoxy-threo-pentofuranosyl)thymine (dTx) in place of dC and dT residues in the EcoRII and MvaI recognition site CC(A/T)GG were synthesized in order to investigate specific recognition of the DNA sugar-phosphate backbone by EcoRII and MvaI restriction endonucleases. In 2'-deoxyxylosyl moieties of dCx and dTx, 3'-hydroxyl groups were inverted, which perturbs the related individual phosphates. Introduction of a single 2'-deoxyxylosyl moiety into a dC x dG pair resulted in a minor destabilization of double-stranded DNA structure. In the case of a dA x dT pair the effect of a 2'-deoxyxylose incorporation was much more pronounced. Multiple dCx modifications and their combination with dTx did not enhance the destabilization effect. Hydrolysis of dCx-containing DNA duplexes by EcoRII endonuclease was blocked and binding affinity was strongly depended on the location of an altered sugar. A DNA duplex containing a dTx residue was cleaved by the enzyme, but kcat/K(M) was slightly reduced. In contrast, MvaI endonuclease efficiently cleaved both types of sugar-altered substrate analogs. However it did not cleave conformationally perturbed scissile bonds, when the corresponding unmodified bonds were perfectly hydrolyzed in the same DNA duplexes. Based on these data the possible contributions of individual phosphates in the recognition site to substrate recognition and catalysis by EcoRII were proposed. We observed strikingly non-equivalent inputs for different phosphates with respect to their effect on EcoRII-DNA complex formation.  相似文献   

19.
The SalGI restriction endonuclease. Mechanism of DNA cleavage.   总被引:6,自引:2,他引:4       下载免费PDF全文
The cleavage of supercoiled DNA of plasmid pMB9 by restriction endonuclease SalGI has been studied. Under the optimal conditions for this reaction, the only product is the linear form of the DNA, in which both strands of the duplex have been cleaved at the SalGI recognition site. DNA molecules cleaved in one strand at this site were found to be poor substrates for the SalGI enzyme. Thus, both strands of the DNA appear to be cleaved in a concerted reaction. However, under other conditions, the enzyme cleaves either one or both strands of the DNA; the supercoiled substrate is then converted to either open-circle or linear forms, the two being produced simultaneously rather than consecutively. We propose a mechanism for the SalGI restriction endonuclease which accounts for the reactions of this enzyme under both optimal and other conditions. These reactions were unaffected by the tertiary structure of the DNA.  相似文献   

20.
J S Vyle  B A Connolly  D Kemp  R Cosstick 《Biochemistry》1992,31(11):3012-3018
Oligonucleotides containing a 3'-thiothymidine residue (T3's) at the cleavage site for the EcoRV restriction endonuclease (between the central T and A residues of the sequence GATATC) have been prepared on an automated DNA synthesizer using 5'-O-monomethoxytritylthymidine 3'-S-(2-cyanoethyl N,N-diisopropylphosphorothioamidite). The self-complementary sequence GACGAT3'sATCGTC was completely resistant to cleavage by EcoRV, while the heteroduplex composed of 5'-TCTGAT3'sATCCTC and 5'-GAGGATATCAGA (duplex 4) was cleaved only in the unmodified strand (5'-GAGGATATCAGA). In contrast, strands containing a 3'-S-phosphorothiolate linkage could be chemically cleaved specifically at this site with Ag+. A T3's residue has also been incorporated in the (-) strand of double-stranded closed circular (RF IV) M13mp18 DNA at the cleavage site of a unique EcoRV recognition sequence by using 5'-pCGAGCTCGAT3'sATCGTAAT as a primer for polymerization on the template (+) strand of M13mp18 DNA. On treatment of this substrate with EcoRV, only one strand was cleaved to produce the RF II or nicked DNA. Taken in conjunction with the cleavage studies on the oligonucleotides, this result demonstrates that the 3'-S-phosphorothiolate linkage is resistant to scission by EcoRV. Additionally, the phosphorothiolate-containing strand of the M13mp18 DNA could be cleaved specifically at the point of modification using iodine in aqueous pyridine. The combination of enzymatic and chemical techniques provides, for the first time, a demonstrated method for the sequence-specific cleavage of either the (+) or (-) strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号