首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The current studies were designed to investigate calcium uptake by intestinal jejunal sacs as well as in intestinal mitochondria of spontaneously hypertensive rats and their genetically matched WKY control rats. Kinetics of jejunal calcium uptake by jejunal sacs of adult SHR and WKY rats showed a significant decrease in Vmax of calcium uptake in SHR (227 +/- 24 versus 423 +/- 22 nmol.g tissue-1.3 min-1) compared to WKY rats P less than 0.001. To explore the intracellular handling of calcium by the intestinal mitochondria, calcium uptake was characterized by intestinal mitochondria before (suckling and weanling periods) and after (adult period) development of hypertension. Calcium uptake by intestinal mitochondria was driven by ATP in the presence of succinate as a respiratory substrate. Calcium uptake was stimulated several fold by the presence of ATP compared to no ATP conditions. Maximal calcium uptake occurred between 15-30 min and was significantly greater in adult SHR and WKY rats compared to corresponding values in weanling and suckling rats. Maximal ATP dependent calcium uptake in adult, weanling and suckling WKY rats was significantly greater compared to corresponding mean values in each age group in SHR (P less than 0.001). Oligomycin (10 micrograms/mg protein) inhibited calcium uptake partially. Ruthenium red (0.25 microM), 1 mM sodium azide and 0.5 mM dinitrophenol inhibited calcium uptake by more than 80% in both SHR and WKY rats. Kinetic parameters for ATP stimulated calcium uptake at 10 s revealed a Vmax of 0.56 +/- 0.6, 3.46 +/- 0.23 and 3.95 +/- 0.52 nmol/mg protein/10 s in suckling, weanling and adult WKY rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The ontogeny of glutamine uptake by jejunal basolateral membrane vesicles (BLMV) was studied in suckling and weanling rats and the results were compared with adult rats. Glutamine uptake was found to represent a transport into an osmotically active space and not mere binding to the membrane surface. Temperature dependency indicated a carrier-mediated process with optimal pH of 7.0. Transport of glutamine was Na+ (out greater than in) gradient dependent with a distinct "overshoot" phenomenon. The magnitude of the overshoot was higher in suckling compared with weanling rats. The uptake kinetics and inhibition profile indicated the existence of two major transport pathways. A Na(+)-dependent system correlated with System A showed tolerance to System N and System ASC substrates, and a Na(+)-independent system similar to the classical L system that favors leucine and BCH. The Vmax for the Na(+)-dependent system was higher in suckling compared with weanling and adult rats. The Vmax for the Na(+)-dependent system was 0.86 +/- 0.17, 0.64 +/- 0.8, and 0.41 +/- 0.9 nmol.mg protein-1.10 sec-1 for suckling, weanling, and adult rats, respectively. The Vmax for the Na(+)-independent system was 0.68 +/- 0.08, 0.50 +/- 0.03, and 0.24 +/- 0.03 nmol.mg protein-1.10 sec-1 for suckling, weanling, and adult rats, respectively. We conclude that glutamine uptake undergoes developmental changes consistent with more activity and/or number of glutamine transporters during periods of active cellular proliferation and differentiation.  相似文献   

3.
4.
Transport of the dipeptide glycine-L-proline (Gly-L-Pro) in the developing intestine of suckling rats and its subsequent maturation in adult rats was examined using the brush-border membrane vesicles (BBMV) technique. Uptake of Gly-L-Pro by BBMV was mainly the result of transport into the intravesicular space with little binding to membrane surfaces. Transport of Gly-L-Pro in BBMV of suckling rats was: (1) Na+ independent; (2) pH dependent with maximum uptake at an incubation buffer pH of 5.0; (3) saturable as a function of concentration (apparent Km = 21.5 +/- 7.9 mM, Vmax = 8.6 +/- 1.5 nmol/mg protein per 10 s); (4) inhibited by other di- and tripeptides; and (5) stimulated and inhibited by inducing a negative and positive intravesicular membrane electrical potential, respectively. Similarly, transport of Gly-L-Pro in intestinal BBMV of adult rats was saturable as a function of concentration (apparent Km = 17.4 +/- 8.6 mM, Vmax = 9.1 +/- 2.1 nmol/mg protein per 10 s) and was stimulated and inhibited by inducing a relatively negative and positive intravesicular membrane potential, respectively. No difference in the transport kinetic parameters of Gly-L-Pro was observed in suckling and adult rats, indicating a similar activity (and/or number) and affinity of the transport carrier in the two age groups. These results demonstrate that the transport of Gly-L-Pro is by a carrier-mediated process which is fully developed at the suckling period. Furthermore, the process is H+-dependent but not Na+-dependent, electrogenic and most probably occurs by a Gly-L-Pro/H+ cotransport mechanism.  相似文献   

5.
Magnesium uptake by intestinal brush-border membranes (BBM) was studied in duodenal and jejunal vesicles of the spontaneously hypertensive rat (SHR) and normotensive control, the Wistar-Kyoto (WKY) rat. In the duodenum, no statistical difference was evidenced between the two types of rats. By contrast, initial rates of magnesium uptake in jejunal vesicles were lower in SHR (5.4 +/- 2.1 nmol/mg protein x 10 sec) in comparison to WKY rats (11.0 +/- 2.5 nmol/mg protein x 10 sec) at a magnesium concentration of 1 mM (P less than 0.01). In jejunal BBM, kinetic analysis of magnesium uptake showed three components in WKY rats, with one being diffusional. In SHR, only two components were seen, with the diffusional one being absent. The two saturable components showed Vmax of 6.5 +/- 1.3 and 26.2 +/- 6.0 nmol/mg protein x 10 sec and apparent Km of 0.22 +/- 0.12 mM and 1.9 +/- 0.4 mM in WKY rats, and Vmax of 10.9 +/- 3.5 and 14.8 +/- 5.9 nmol/mg protein x 10 sec and apparent Km of 0.43 +/- 0.23 mM and 1.3 +/- 0.2 mM in SHR. Only the component with the lowest apparent affinity appeared statistically different in SHR as compared with WKY rats for both Vmax and apparent Km (P less than 0.05). Time course evolution of magnesium uptake in jejunal BBM indicated, by extrapolation at zero time, that 2.5 and 5.1 nmol magnesium/mg protein in SHR and WKY rats, respectively, would be in the bound state. The study of the influence of medium osmolarity on 60-min magnesium uptakes was also indicative of a smaller binding compartment in jejunal BBM of SHR (3.70 and 8.26 nmol/mg protein in SHR and WKY rats, respectively); at the four osmolarities assayed, the 60-min uptakes were significantly lower in SHR as compared with WKY rats (P less than 0.01). From 60-min glucose uptakes, a smaller volume of jejunal BBM vesicles was determined for SHR as compared with WKY rats (0.34 +/- 0.06 and 0.63 +/- 0.17 microliter/mg of protein in SHR and WKY rats respectively, P less than 0.05), this volume being significantly augmented by the presence of 1 mM MgCl2 (0.48 +/- 0.05 and 1.27 +/- 0.02 microliter/mg of protein in SHR and WKY rats respectively, P less than 0.01). These results suggest that magnesium uptake and binding by jejunal BBM are altered in SHR in comparison to WKY rats, implying a possible role of the small intestine in the abnormalities of magnesium metabolism in genetic hypertension.  相似文献   

6.
7.
8.
Erythrocyte membranes of patients with liver disease are characteristically enriched in cholesterol, a change known to impair several carrier-mediated membrane transport functions. In the present study we have assessed whether experimental liver disease can affect the membrane lipid composition and transport function of kidney epithelial cells. Small (about 5%) but significant (P less than 0.01) increases were found in the cholesterol-to-phospholipid molar ratio (C/PL) of rat renal cortical brush-border membrane (BBM) vesicles 3, 8, and 15 days after bile duct ligation which correlated closely with increased fluorescence polarization, i.e., decreased membrane fluidity (r = 0.75, P less than 0.001; n = 27). A lipoprotein-mediated pathogenesis was suggested by the close relationship between BBM C/PL and plasma C/PL (r = 0.69, P less than 0.001). The mean high-affinity Na(+)-coupled D-glucose uptake by BBM vesicles was higher 1, 3, 8, and 15 days after ligation than in non-operated rats, significantly so at 3 and 8 days (611 +/- 37 and 593 +/- 22 vs. 507 +/- 21 pmol/mg protein per 4 sec; P less than 0.05), and was positively correlated with BBM C/PL (r = 0.58, P less than 0.01) and fluorescence polarization (r = 0.41, P less than 0.05). Brief incubation of BBM vesicles from normal rats with cholesterol-rich phospholipid liposomes simultaneously increased BBM C/PL and Na(+)-dependent D-glucose uptake. Stimulation of BBM Na(+)-glucose cotransport in ligated rats was not due to delayed dissipation of the Na+ gradient or to a more rapid development of membrane potential. High-affinity Na(+)-dependent D-glucose uptake kinetics in 3-day bile duct-ligated rats showed a lower Kt, without an alteration in maximum velocity, Vmax, compared to sham-operated animals (0.298 +/- 0.015 vs. 0.382 +/- 0.029 mM; P less than 0.05), whilst the binding dissociation constant, Kd of high-affinity phlorizin binding sites was reduced by ligation (0.453 +/- 0.013 vs. 0.560 +/- 0.015 microM; P less than 0.001). We conclude that an early effect of bile duct ligation is to enrich renal cortical brush-border membranes in cholesterol, thereby decreasing membrane fluidity and stimulating Na(+)-dependent D-glucose uptake by increasing the affinity of the carrier.  相似文献   

9.
Glutamine metabolism in the liver is essential for gluconeogenesis and ureagenesis. During the suckling period there is high hepatic protein accretion and the portal vein glutamine concentration is twice that in the adult, whereas hepatic vein glutamine concentration is similar between adult and suckling rats. Therefore, we hypothesized that glutamine uptake by the liver could be greater in the suckling period compared to the adult period. The present studies were, therefore, designed to investigate the transport of glutamine by plasma membranes of rat liver during maturation (suckling--2-week old, weanling--3-week old and adult--12-week old). Glutamine uptake by the plasma membranes of the liver represented transport into an osmotically sensitive space in all age groups. Inwardly directed Na+ gradient resulted in an "overshoot" phenomenon compared to K+ gradient. The magnitude of the overshoot was greater in suckling rats plasma membranes compared to adult membranes. Glutamine uptake under Na+ gradient was electrogenic and maximal at pH 7.5, whereas uptake under K+ gradient was electroneutral. Glutamine uptake with various concentrations of glutamine under Na+ gradient was saturable in all age groups with a Vmax of 1.5 +/- 0.1, 0.7 +/- 0.1 and 0.5 +/- 0.06 nmoles/mg protein/10 seconds in suckling, weanling and adult rats, respectively (P < 0.01). Km values were 0.6 +/- 0.1, 0.5 +/- 0.1 and 0.5 +/- 0.1 mM respectively. Vmax for Na(+)-independent glutamine uptake were 0.6 +/- 0.1, 0.55 +/- 0.07 and 0.54 +/- 0.06 nmoles/mg protein with Km values of 0.54 +/- 0.2, 0. +/- 0.1 and 0.5 +/- 0.2 mM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The aim of this study was to investigate expression and relative contribution of human thiamin transporter (hTHTR)-2 toward overall carrier-mediated thiamin uptake by human intestinal epithelial cells. Northern blot analysis showed that the message of the hTHTR-2 is expressed along the native human gastrointestinal tract with highest expression being in the proximal part of small intestine. hTHTR-2 protein was found, by Western blot analysis, to be expressed at the brush-border membrane (BBM), but not at the basolateral membrane, of native human enterocytes. This pattern of expression was confirmed in studies using a fusion protein of hTHTR-2 with the enhanced green fluorescent protein (hTHTR2-EGFP) expressed in living Caco-2 cells grown on filter. Pretreating Caco-2 cells (which also express the hTHTR-2 at RNA and protein levels) with hTHTR-2 gene-specific small interfering RNA (siRNA) led to a significant (P < 0.01) and specific inhibition (48%) in carrier-mediated thiamin uptake. Similarly, pretreating Caco-2 cells with siRNA that specifically target hTHTR-1 (which is expressed in Caco-2 cells) also significantly (P < 0.01) and specifically inhibited (by 56%) carrier-mediated thiamin uptake. When Caco-2 cells were pretreated with siRNAs against both hTHTR-2 and hTHTR-1 genes, an almost complete inhibition in carrier-mediated thiamin uptake was observed. These results show that the message of hTHTR-2 is expressed along the human gastrointestinal tract and that expression of its protein in intestinal epithelia is mainly localized to the apical BBM domain. In addition, results show that this transporter plays a significant role in carrier-mediated thiamin uptake in human intestine.  相似文献   

11.
In the present study, we documented the promising role of thyroid hormones status in animals in modulation of Na+–Pi transport activity in intestinal brush border membrane vesicles (BBMV) which was accompanied with alterations in BBM lipid composition and fluidity. Augmentation of net Pi balance in hyperthyroid (Hyper-T) rats was fraternized with accretion of Pi transport across BBMV isolated from intestine of Hyper-T rats as compared to hypothyroid (Hypo-T) and euthyroid (Eu-T) rats while Na+–Pi transport across BBMV was decreased in Hypo-T rats relative to Eu-T rats. Increment in Na+–Pi transport in intestinal BBMV isolated from Hyper-T rats was manifested as an increase in the maximal velocity (Vmax) of Na+–Pi transport system. Furthermore, BBMV lipid composition profile in intestinal BBM from Hyper-T was altered to that of Hypo-T rats and Eu-T rats. The molar ratio of cholesterol/phospholipids was higher in intestinal BBM from Hypo-T rats. Fluorescence anistropy of diphenyl hexatriene (rDPH) and microviscosity were significantly decreased in the intestinal BBM of Hyper-T rats and decreased in Hypo-T rats as compared to Eu-T rats which corroborated with the alteration in membrane fluidity in response to thyroid hormone status of animals. Therefore, thyroid hormone mediated change in membrane fluidity might play an important role in modulating Na+–Pi transport activity of intestinal BBM. (Mol Cell Biochem 278: 195–202, 2005)  相似文献   

12.
The role of N-linked oligosaccharide side chains in the biogenesis and function of Na+-coupled transporters in renal luminal brush-border membrane (BBM) is not known. We examined the question of how in vivo inhibition by alkaloid swainsonine of alpha-mannosidase, a key enzyme in processing of glycoproteins in the Golgi apparatus, affects Na+/H+ antiport and Na+/Pi symport as well as activities of other transporters and enzymes in rat renal BBM. Administration of swainsonine to thyroparathyroidectomized rats, control or treated with 3,5,3'-triiodothyronine, markedly decreased the rate of Na+/H+ antiport, but had no effect on the rate of Na+/Pi symport across renal BBM vesicles (BBMV). Moreover, administration of swainsonine did not change activities of Na+ gradient, ([extravesicular Na+] greater than [intravesicular Na+])-dependent transport of D-glucose, L-proline, or the amiloride-insensitive 22Na+ uptake by BBMV; the activities of the BBM enzymes alkaline phosphatase, gamma-glutamyltransferase, or leucine aminopeptidase in BBMV were also not changed. The in vitro enzymatic deglycosylation of BBM by incubating freshly isolated BBMV with bacterial endoglycosidase F also resulted in a decreased rate of Na+/H+ antiport, but not Na+-coupled symports of Pi, L-proline, and D-glucose, or the activities of the BBM enzymes were not significantly affected. Similar incubation with endoglycosidase H was without effect on any of these parameters. Both the modification of BBMV glycoproteins by administration fo swainsonine in vivo as well as the in vitro incubation of BBMV with endoglycosidase F resulted in a decrease of the apparent Vmax of Na+/H+ antiport, but did not change the apparent Km of this antiporter for extravesicular Na+ and did not increase H+ conductance of BBM. Taken together, our findings suggest that intact N-linked oligosaccharide chains of the biantennary complex type in renal BBM glycoproteins are required, directly or indirectly, for the transport function of the Na+/H+ antiporter inserted into BBM of renal proximal tubules.  相似文献   

13.
Knöpfel M  Zhao L  Garrick MD 《Biochemistry》2005,44(9):3454-3465
Belgrade rats exhibit microcytic, hypochromic anemia and systemic iron deficiency due to a glycine-to-arginine mutation at residue 185 in a metal ion transporter of a divalent metal transporter/divalent cation transporter/solute carrier 11 group A member 2 or 3 (DMT1/DCT1/SLC11A2), a member of the natural-resistance-associated macrophage protein (Nramp) family. By use of rabbit duodenal tissue, a calcein fluorescence assay has previously been developed to assess transport of divalent metal ions across the small-intestinal brush border membrane (BBM). The assay was readily applied here to rat BBM to learn if it detects DMT1 activity. The results demonstrate protein-mediated transport across the BBM of all tested ions: Mn(2+), Fe(2+), and Ni(2+). Transport into BBM vesicles (BBMV) from (b/b) Belgrade rats was below the detection limit. BBMV of +/b origin had substantial activity. The kinetic rate constant for Ni(2+) membrane transport for +/b BBMV was within the range for normal rabbit tissue. Vesicles from +/b basolateral membranes (BLM) showed similar activity to BBMV while b/b BLM vesicles (BLMV) lacked transport activity. Immunoblots using isoform-specific antibodies demonstrated that intestinal levels of b/b DMT1 were increased compared to +/b DMT1, reflecting iron deficiency. Immunoblots on BBMV indicated that lack of activity in b/b vesicles was not due to a failure of DMT1 to localize to the BBMV; an excess of specific isoforms was present compared to +/b BBMV or duodenal extracts. Immunoblots from BLMV also exhibited enrichment in DMT1 isoforms, despite their distinct origin. Immunofluorescent staining of thin sections of b/b and +/b proximal intestines confirmed that DMT1 localized similarly in mutant and control enterocytes and showed that DMT1 isoforms have distinct distributions within intestinal tissue.  相似文献   

14.
Selenate and selenite uptakes by isolated intestinal brush border membrane vesicles (BBMV) from pig, sheep, and rat were investigated. Selenate uptake into jejunal and ileal, but not duodenal, BBMV from pig was stimulated by an inwardly directed transmembrane Na+ gradient (Na out + >Na in + ). Selenate transport into rat ileal and sheep jejunal BBMV was also enhanced in the presence of a Na+ gradient. Unlike selenate uptake, selenite uptake was not Na+ dependent, neither in pig small intestine nor in sheep jejunum and rat ileum. Uptake of selenate represented real uptake into the vesicular lumen, whereas selenite uptake was a result of an extensive binding of75Se to the membranes. Thiosulfate at a 250-fold concentration of selenate completely inhibited Na+-dependent selenate uptake into pig jejunal BBMV. Furthermore, Na+-dependent sulfate uptake was totally inhibited in the presence of a 250-fold selenate concentration. The results clearly show that selenate transport across the BBM of pig jejunum and ileum, sheep jejunum, and rat ileum is partially energized by a transmembrane Na+ gradient. Moreover, it is concluded from the results that there exists a common transport mechanism for sulfate and selenate in the BBM. The extensive binding of75Se from75Se-labeled selenite to the membranes could be from a spontaneous reaction of selenite with membrane-associated SH groups.  相似文献   

15.
The current studies were designed to characterize calcium transport by intestinal brush border membrane in the spontaneously hypertensive rat (SHR) and normotensive control, the Wistar-Kyoto (WKY) rat. The biochemical and functional purity of the intestinal brush border membranes in SHR and WKY rats was validated by marker enzymes and the ability to transiently transport D-glucose in the presence of Na+ gradient. Calcium transport into duodenal and jejunal vesicles represented a minor binding component and transmembrane movement as evident by initial rate studies, A23187 studies, and lanthanum displacement experiments. Initial rate and time course of calcium uptake was lower in SHR compared with WKY rats. Kinetic analysis of calcium uptake by the jejunum (total uptake minus binding component) showed a Vmax of 6.98 +/- 0.2 and 1.8 +/- 0.2 nmol/mg protein/7 sec in WKY rats and SHR, respectively (P less than 0.001), whereas Km values were 0.76 +/- 0.04 and 0.87 +/- 0.1 mM for WKY rats and SHR, respectively. Similar kinetic analysis of calcium uptake by the duodenal segments showed a Vmax of 10.3 +/- 0.8 and 2.8 +/- 0.2 nmol/mg protein/7 sec in WKY rats and SHR, respectively (P less than 0.01). Km values were 0.7 +/- 0.2 and 0.3 +/- 0.06 mM (P greater than 0.05). Vmax of calcium uptake in the 2-week-old rats (prehypertensive period) was 6.0 +/- 0.3 and 3.53 +/- 0.3 nmol/mg protein/7 sec in WKY rats and SHR, respectively (P less than 0.001), whereas Km values were 0.60 +/- 0.07 and 0.5 +/- 0.01 mM, respectively. These results suggest that calcium binding and uptake by duodenal and jejunal intestinal brush border membranes of SHR is significantly decreased compared with WKY rats. The decrease in transmembrane calcium uptake is secondary to decrease in Vmax and is present before the appearance of hypertension, implying a genetically determined defect in calcium uptake in intestinal brush border membranes of the SHR.  相似文献   

16.
This study was designed to examine the activity of the Na(+)-H+ exchanger across the basolateral membranes of the ileal enterocyte and its developmental pattern. The function of the Na(+)-H+ exchanger was studied using a well validated basolateral membrane vesicle technique. Na+ uptake represented transport into the vesicle rather than binding as validated by initial rate studies. Na+ uptake represented an electroneutral process as shown by studies in which negative membrane potential was induced by the ionophore valinomycin. Various outwardly directed pH gradients significantly stimulated Na+ uptake compared with no pH gradient conditions at all age groups. However, the magnitude of stimulation was significantly different between the age groups with more marked stimulation of amiloride-sensitive Na+ uptake occurring in adolescent rats as compared to weanling or suckling rats. The amiloride sensitivity of the pH stimulated Na+ uptake was investigated using [Amiloride] = 10(-2)-10(-5) M at pHi/pHo = 5.2/7.5. At 10(-2) M amiloride concentration, Na+ uptake was inhibited by 80%, 70%, 77%, in the basolateral membranes of adolescent, weanling and suckling rats, respectively. Dixon plot analysis in both adolescent and weanling rats was consistent with two amiloride binding sites, a low affinity system and a high affinity system. In the suckling rat, on the other hand, the data supported a single high affinity binding site. Kinetic studies revealed a Km for amiloride-sensitive Na+ uptake of 12.6 +/- 6.6, 10.2 +/- 1.77, 9.46 and Vmax of 4.83 +/- 1.22, 4.47 +/- 0.36 and 8.08 +/- 1.92 n.mol.mg.protein-1.7 s-1 in suckling, weanling and adolescent rats, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. Taurine accumulation in intestinal cells of adult and suckling rats reached steady-state after 60 min with an In/Out ratio of 1.46 and 4.66 in the adult and suckling rats respectively. 2. The accumulative capacity of the intestinal strips isolated from suckling rats is almost four times higher than that of adult rats. 3. The steady-state uptake of taurine by the adult and suckling rats intestinal cells is saturable, sodium-dependent and inhibited by ouabain. 4. The calculated Vmax of the mediated component of the steady-state uptake in the suckling rats is three times greater than that of the adult rats, and the affinity is seven fold greater in the suckling as compared to the adult. 5. Taurine influx across the mucosal membrane in the suckling rat is significantly greater than that of the control adult.  相似文献   

18.
Thyroid hormone status influences calcium metabolism. To elucidate the mechanism of action of thyroid hormones on transcellular transport of calcium in rat intestine, Ca(2+) influx and efflux studies were carried out in brush border membrane vesicles (BBMV) and across the basolateral membrane (BLM) of enterocytes, respectively. Steady-state uptake of Ca(2+) into BBMV as well as Ca(2+) efflux from the BLM enterocytes was significantly increased in hyperthyroid (Hyper-T) rats and decreased in hypothyroid (Hypo-T) rats as compared to euthyroid (Eu-T) rats. Kinetic studies revealed that increase in steady state Ca(2+) uptake into BBMV from hyper-T rats was fraternized with decrease in Michaelis Menten Constant (K(m)), indicating a conformational change in Ca(2+) transporter. Further, this finding was supported by significant changes in transition temperature and membrane fluidity. Increased Ca(2+) efflux across enterocytes was attributed to sodium-dependent Ca(2+) exchange activity which was significantly higher in Hyper-T rats and lower in Hypo-T rats as compared to Eu-T rats. However, there was no change in Ca(2+)-ATPase activity of BLMs of all groups. Kinetic studies of Na(+)/Ca(2+) exchanger revealed that alteration in Na(+)-dependent Ca(2+) efflux was directly associated with maximal velocity (V(max)) of exchanger among all the groups. cAMP, a potent activator of Na(+)/Ca(2+) exchanger, was found to be significantly higher in intestinal mucosa of Hyper-T rats as compared to Eu-T rats. Therefore, the results of this study suggest that Ca(2+) influx across BBM is possibly modulated by thyroid hormones by mediating changes in membrane fluidity. Thyroid hormones activated the Na(+)/Ca(2+) exchange in enterocytes possibly via cAMP-mediated pathway.  相似文献   

19.
We investigated the effect of thyroid hormone status on renal handing of Ca2+. Further, like kinetics of Ca2+ transport across brush-border membrane (BBM) and basolateral membrane (BLM) of renal epithelial cells was carried out. FE(Ca) was decreased in hyperthyroid (Hyper-T) rats and increased in hypothyroid (Hypo-T) rats as compared to euthyroid (Eu-T) rats. Ca2+ uptake into renal brush-border membrane vesicles (BBMV) was increased in Hyper-T rats and decreased in Hypo-T rats as compared to Eu-T rats. K(m) was lower in Hyper-T rats and higher in Hypo-T rats as compared to Eu-T rats whereas, V(max) remained unaltered. The transition temperature for calcium uptake varied inversely with the thyroid hormone status. Renal BBM of Hyper-T rats showed decreased anisotropy and polarisation of DPH as compared to EU-T rats whereas these values were increased in Hypo-T rats. Thus, the altered BBM fluidity appears to modulate Ca2+ transport across BBM. Na+/Ca2+ exchange activity of renal cells was increased in Hyper-T and decreased in Hypo-T rats as compared to Eu-T rats. V(max) for Na+/Ca2+ exchange was increased in Hyper-T rats and deceased in Hypo-T rats as compared to Eu-T rats, whereas, [Na+](0.5) was similar in all three groups. The c-AMP levels of renal cortex of Hyper-T rats was increased and that of Hypo-T rats decreased as compared to Eu-T rats. Thus, thyroid hormones increased Ca2+ reabsorption in the kidney of rat. Thyroid hormone-mediated modulation of BBM fluidity appears to stimulate Ca2+ uptake into renal BBMV. Thyroid hormones possibly activated the Na+/Ca2+ exchanger through cAMP-dependent pathway.  相似文献   

20.
Diabetes mellitus is associated with enhanced passive intestinal uptake of cholesterol and fatty acids. In order to determine the basis for these changes in intestinal permeability, the jejunal morphology and the lipid content of purified brush border membranes (BBM) were measured in fasted and fed control (C) and streptozotocin diabetic (DM) rats. There was no difference between C and DM in BBM sucrase or alkaline phosphatase; fasting had no effect on BBM enzymes in C, but in DM fasting was associated with increased sucrase activity per length of jejunum. In C fasting was associated with higher levels of BBM total phospholipid, lecithin, choline and amine phospholipids, whereas fasting in DM was associated with higher BBM cholesterol and lower free fatty acids. In the fasting DM, there was a greater villus and mucosal surface area than in the fasting C. A previous study demonstrated that with fasting in DM versus C, cholesterol uptake was unchanged, but when animals were fed, cholesterol and fatty acid uptake were greater into the jejunum of fed DM as compared with fed C. In the BBM of fed DM as compared with C, there was a significant increase in total phospholipid, lecithin, phosphatidyl ethanolamine, choline and amine phospholipids, and phospholipid/cholesterol ratio. Thus, (1) fasting is associated with changes in intestinal morphology, BBM lipids; (2) the effect of fasting is different in DM and C; (3) the enhanced uptake of lipids into the jejunum of fed diabetic rats is not due to changes in villus morphology, but may be due to alterations in the BBM phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号