首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many Gram-negative pathogens translocate virulence proteins directly into host cells using a type III secretion system. This complex secretion machinery is composed of approximately 25 different proteins that assemble to span both bacterial membranes, and contact the host cell to form a direct channel between the bacterial and host cell cytoplasms. Assembly of the system and efficient secretion of virulence proteins through this apparatus require specific chaperones. Although the machinery is morphologically conserved among all bacteria, the secreted proteins vary widely and are responsible for the range of diseases caused by bacterial pathogens. Recent structures have given insights into important chaperone and effector proteins, as well as revealing the first atomic structures of portions of the secretion machinery itself.  相似文献   

2.
The T3SS (type III secretion system) is a multi-protein complex that plays a central role in the virulence of many gram-negative bacterial pathogens. This apparatus spans both bacterial membranes and transports virulence factors from the bacterial cytoplasm into eukaryotic host cells. The T3SS exports substrates in a hierarchical and temporal manner. The first secreted substrates are the rod/needle proteins which are incorporated into the T3SS apparatus and are required for the secretion of later substrates, the translocators and effectors. In the present study, we provide evidence that rOrf8/EscI, a poorly characterized locus of enterocyte effacement-encoded protein, functions as the inner rod protein of the T3SS of EPEC (enteropathogenic Escherichia coli). We demonstrate that EscI is essential for type III secretion and is also secreted as an early substrate of the T3SS. We found that EscI interacts with EscU, the integral membrane protein that is linked to substrate specificity switching, implicating EscI in the substrate-switching event. Furthermore, we showed that EscI self-associates and interacts with the outer membrane secretin EscC, further supporting its function as an inner rod protein. Overall, the results of the present study suggest that EscI is the YscI/PrgJ/MxiI homologue in the T3SS of attaching and effacing pathogens.  相似文献   

3.
The bacterial flagellum and the virulence-associated injectisome are complex, structurally related nanomachines that bacteria use for locomotion or the translocation of virulence factors into eukaryotic host cells. The assembly of both structures and the transfer of extracellular proteins is mediated by a unique, multicomponent transport apparatus, the type III secretion system. Here, we discuss the significant progress that has been made in recent years in the visualization and functional characterization of many components of the type III secretion system, the structure of the bacterial flagellum, and the injectisome complex.  相似文献   

4.
The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called ‘pathogen‐associated molecular patterns’ (PAMPs). Pathogens use virulence factors to counteract PAMP‐directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram‐negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP‐directed responses and are critical for infection. A plasmid‐encoded T3SS in the human‐pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences.  相似文献   

5.
Bacteria use a variety of secretion systems to transport proteins beyond their cell membrane to interact with their environment. For bacterial pathogens, these systems are key virulence determinants that transport bacterial proteins into host cells. Genetic screens to identify bacterial genes required for export have relied on enzymatic or fluorescent reporters fused to known substrates to monitor secretion. However, they cannot be used in analysis of all secretion systems, limiting the implementation across bacteria. Here, we introduce the first application of a modified form of whole colony MALDI-TOF MS to directly detect protein secretion from intact bacterial colonies. We show that this method is able to specifically monitor the ESX-1 system protein secretion system, a major virulence determinant in both mycobacterial and Gram-positive pathogens that is refractory to reporter analysis. We validate the use of this technology as a high throughput screening tool by identifying an ESAT-6 system 1-deficient mutant from a Mycobacterium marinum transposon insertion library. Furthermore, we also demonstrate detection of secreted proteins of the prevalent type III secretion system from the Gram-negative pathogen, Pseudomonas aeruginosa. This method will be broadly applicable to study other bacterial protein export systems and for the identification of compounds that inhibit bacterial protein secretion.  相似文献   

6.
The ability to translocate virulence proteins into host cells through a type III secretion apparatus (TTSS) is a hallmark of several Gram-negative pathogens including Shigella, Salmonella, Yersinia, Pseudomonas, and enteropathogenic Escherichia coli. In common with other types of bacterial secretion apparatus, the assembly of the TTSS complex requires the preceding formation of its integral outer membrane secretin ring component. We have determined at 1.5 A the structure of MxiM28-142, the Shigella pilot protein that is essential for the assembly and membrane association of the Shigella secretin, MxiD. This represents the first atomic structure of a secretin pilot protein from the several bacterial secretion systems containing an orthologous secretin component. A deep hydrophobic cavity is observed in the novel 'cracked barrel' structure of MxiM, providing a specific binding domain for the acyl chains of bacterial lipids, a proposal that is supported by our various lipid/MxiM complex structures. Isothermal titration analysis shows that the C-terminal domain of the secretin, MxiD525-570, hinders lipid binding to MxiM.  相似文献   

7.
Salmonella species translocate virulence effector proteins from the bacterial cytoplasm into mammalian host cells by means of a type III secretion apparatus, encoded by the pathogenicity island-1 (SPI-1). Little is known about the assembly and structure of this secretion apparatus, but the InvG protein is essential and could be an outer membrane secretion channel for the effector proteins. We observed that in recombinant Escherichia coli , the yield of InvG was enhanced by co-expression of InvH, and showed that mutation of invH decreased the level of InvG in wild-type Salmonella typhimurium . In E. coli , InvG alone was able to form an SDS-resistant multimer, but InvG localization to the outer membrane was dependent upon InvH, a lipoprotein itself located in the outer membrane, and no other SPI-1 specific protein. InvG targeted to the outer membrane by InvH became accessible to extracellular protease. InvG and InvH did not, however, appear to form a stable complex. Electron microscopy of InvG membrane protein purified from E. coli revealed that it forms an oligomeric ring-like structure with inner and outer diameters, 7 nm and 15 nm respectively.  相似文献   

8.
Process of protein transport by the type III secretion system.   总被引:9,自引:0,他引:9  
The type III secretion system (TTSS) of gram-negative bacteria is responsible for delivering bacterial proteins, termed effectors, from the bacterial cytosol directly into the interior of host cells. The TTSS is expressed predominantly by pathogenic bacteria and is usually used to introduce deleterious effectors into host cells. While biochemical activities of effectors vary widely, the TTSS apparatus used to deliver these effectors is conserved and shows functional complementarity for secretion and translocation. This review focuses on proteins that constitute the TTSS apparatus and on mechanisms that guide effectors to the TTSS apparatus for transport. The TTSS apparatus includes predicted integral inner membrane proteins that are conserved widely across TTSSs and in the basal body of the bacterial flagellum. It also includes proteins that are specific to the TTSS and contribute to ring-like structures in the inner membrane and includes secretin family members that form ring-like structures in the outer membrane. Most prominently situated on these coaxial, membrane-embedded rings is a needle-like or pilus-like structure that is implicated as a conduit for effector translocation into host cells. A short region of mRNA sequence or protein sequence in effectors acts as a signal sequence, directing proteins for transport through the TTSS. Additionally, a number of effectors require the action of specific TTSS chaperones for efficient and physiologically meaningful translocation into host cells. Numerous models explaining how effectors are transported into host cells have been proposed, but understanding of this process is incomplete and this topic remains an active area of inquiry.  相似文献   

9.
Process of Protein Transport by the Type III Secretion System   总被引:21,自引:0,他引:21       下载免费PDF全文
The type III secretion system (TTSS) of gram-negative bacteria is responsible for delivering bacterial proteins, termed effectors, from the bacterial cytosol directly into the interior of host cells. The TTSS is expressed predominantly by pathogenic bacteria and is usually used to introduce deleterious effectors into host cells. While biochemical activities of effectors vary widely, the TTSS apparatus used to deliver these effectors is conserved and shows functional complementarity for secretion and translocation. This review focuses on proteins that constitute the TTSS apparatus and on mechanisms that guide effectors to the TTSS apparatus for transport. The TTSS apparatus includes predicted integral inner membrane proteins that are conserved widely across TTSSs and in the basal body of the bacterial flagellum. It also includes proteins that are specific to the TTSS and contribute to ring-like structures in the inner membrane and includes secretin family members that form ring-like structures in the outer membrane. Most prominently situated on these coaxial, membrane-embedded rings is a needle-like or pilus-like structure that is implicated as a conduit for effector translocation into host cells. A short region of mRNA sequence or protein sequence in effectors acts as a signal sequence, directing proteins for transport through the TTSS. Additionally, a number of effectors require the action of specific TTSS chaperones for efficient and physiologically meaningful translocation into host cells. Numerous models explaining how effectors are transported into host cells have been proposed, but understanding of this process is incomplete and this topic remains an active area of inquiry.  相似文献   

10.
Maturation and maintenance of the intracellular vacuole in which Salmonella replicates is controlled by virulence proteins including the type III secretion system encoded by Salmonella pathogenicity island 2 (SPI-2). Here, we show that, several hours after bacterial uptake into different host cell types, Salmonella induces the formation of an F-actin meshwork around bacterial vacuoles. This structure is assembled de novo from the cellular G-actin pool in close proximity to the Salmonella vacuolar membrane. We demonstrate that the phenomenon does not require the Inv/Spa type III secretion system or cognate effector proteins, which induce actin polymerization during bacterial invasion, but does require a functional SPI-2 type III secretion system, which plays an important role in intracellular replication and systemic infection in mice. Treatment with actin-depolymerizing agents significantly inhibited intramacrophage replication of wild-type Salmonella typhimurium . Furthermore, after this treatment, wild-type bacteria were released into the host cell cytoplasm, whereas SPI-2 mutant bacteria remained within vacuoles. We conclude that actin assembly plays an important role in the establishment of an intracellular niche that sustains bacterial growth.  相似文献   

11.
Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 uses a specialized protein translocation apparatus, the type III secretion system (TTSS), to deliver bacterial effector proteins into host cells. These effectors interfere with host cytoskeletal pathways and signalling cascades to facilitate bacterial survival and replication and promote disease. The genes encoding the TTSS and all known type III secreted effectors in EHEC are localized in a single pathogenicity island on the bacterial chromosome known as the locus for enterocyte effacement (LEE). In this study, we performed a proteomic analysis of proteins secreted by the LEE-encoded TTSS of EHEC. In addition to known LEE-encoded type III secreted proteins, such as EspA, EspB and Tir, a novel protein, NleA (non-LEE-encoded effector A), was identified. NleA is encoded in a prophage-associated pathogenicity island within the EHEC genome, distinct from the LEE. The LEE-encoded TTSS directs translocation of NleA into host cells, where it localizes to the Golgi apparatus. In a panel of strains examined by Southern blot and database analyses, nleA was found to be present in all other LEE-containing pathogens examined, including enteropathogenic E. coli and Citrobacter rodentium, and was absent from non-pathogenic strains of E. coli and non-LEE-containing pathogens. NleA was determined to play a key role in virulence of C. rodentium in a mouse infection model.  相似文献   

12.
Many bacterial pathogens cause disease by injecting virulence proteins (effectors) into host cells via the specialized type III secretion system. Recently, exceptional progress in identifying effectors was made in the phytopathogen Pseudomonas syringae using a novel genetic screen and bioinformatic approach. These studies, along with localization experiments, suggest that most P. syringae effectors function by targeting the plasma membrane, chloroplasts or mitochondria of host cells. The type III secretome of P. syringae is highly variable and dynamic, a lesson gleaned from a comparative genomic analysis. Variation in the effector repertoire is likely to facilitate the adaptation of P. syringae to different hosts.  相似文献   

13.
Many gram-negative bacteria that are important human pathogens possess type III secretion systems as part of their required virulence factor repertoire. During the establishment of infection, these pathogens coordinately assemble greater than 20 different proteins into a macromolecular structure that spans the bacterial inner and outer membranes and, in many respects, resembles and functions like a syringe. This type III secretion apparatus (TTSA) is used to inject proteins into a host cell's membrane and cytoplasm to subvert normal cellular processes. The external portion of the TTSA is a needle that is composed of a single type of protein that is polymerized in a helical fashion to form an elongated tube with a central channel of 2-3 nm in diameter. TTSA needle proteins from a variety of bacterial pathogens share sequence conservation; however, no atomic structure for any TTSA needle protein is yet available. Here, we report the structure of a TTSA needle protein called BsaL from Burkholderia pseudomallei determined by nuclear magnetic resonance (NMR) spectroscopy. The central part of the protein assumes a helix-turn-helix core domain with two well-defined alpha-helices that are joined by an ordered, four-residue linker. This forms a two-helix bundle that is stabilized by interhelix hydrophobic contacts. Residues that flank this presumably exposed core region are not completely disordered, but adopt a partial helical conformation. The atomic structure of BsaL and its sequence homology with other TTSA needle proteins suggest potentially unique structural dynamics that could be linked with a universal mechanism for control of type III secretion in diverse gram-negative bacterial pathogens.  相似文献   

14.
Type III secretion systems (T3SSs) are essential virulence determinants of many Gram-negative bacterial pathogens. The Shigella T3SS consists of a cytoplasmic bulb, a transmembrane region and a hollow 'needle' protruding from the bacterial surface. Physical contact with host cells initiates secretion and leads to assembly of a pore, formed by IpaB and IpaC, in the host cell membrane, through which proteins that facilitate host cell invasion are translocated. As the needle is implicated in host cell sensing and secretion regulation, its tip should contain components that initiate host cell contact. Through biochemical and immunological studies of wild-type and mutant Shigella T3SS needles, we reveal tip complexes of differing compositions and functional states, which appear to represent the molecular events surrounding host cell sensing and pore formation. Our studies indicate that the interaction between IpaB and IpaD at needle tips is key to host cell sensing, orchestration of IpaC secretion and its subsequent assembly at needle tips. This allows insertion into the host cell membrane of a translocation pore that is continuous with the needle.  相似文献   

15.
Bacterial pathogens of plants and animals utilize conserved type III delivery systems to traffic effector proteins into host cells. Plant innate immune systems evolved disease resistance (R) genes to recognize some type III effectors, termed avirulence (Avr) proteins. On disease-susceptible (r) plants, Avr proteins can contribute to pathogen virulence. We demonstrate that several type III effectors from Pseudomonas syringae are targeted to the host plasma membrane and that efficient membrane association enhances function. Efficient localization of three Avr proteins requires consensus myristoylation sites, and Avr proteins can be myristoylated inside the host cell. These prokaryotic type III effectors thus utilize a eukaryote-specific posttranslational modification to access the subcellular compartment where they function.  相似文献   

16.
Type III protein secretion in Pseudomonas syringae   总被引:1,自引:0,他引:1  
The type III secretion system is an essential virulence system used by many Gram-negative bacterial pathogens to deliver effector proteins into host cells. This review summarizes recent advancements in the understanding of the type III secretion system of Pseudomonas syringae, including regulation of the type III secretion genes, assembly of the Hrp pilus, secretion signals, the putative type III effectors identified to date, and their virulence action after translocation into plant cells.  相似文献   

17.
The pathogenic bacterium Shigella flexneri uses a type III secretion system to inject virulence factors from the bacterial cytosol directly into host cells. The machinery that identifies secretion substrates and controls the export of extracellular components and effector proteins consists of several inner-membrane and cytoplasmic proteins. One of the inner membrane components, Spa40, belongs to a family of proteins proposed to regulate the switching of substrate specificity of the export apparatus. We show that Spa40 is cleaved within the strictly conserved amino acid sequence NPTH and substitution of the proposed autocatalytic residue abolishes cleavage. Here we also report the crystal structure of the cytoplasmic complex Spa40C and compare it with the recent structures of the homologues from Escherichia coli and Salmonella typhimurium . These structures reveal the tight association of the cleaved fragments and show that the conserved NPTH sequence lies on a loop which, when cleaved, swings away from the catalytic N257 residue, resulting in different surface features in this region. This structural rearrangement suggests a mechanism by which non-cleaving forms of these proteins interfere with correct substrate switching of the apparatus.  相似文献   

18.
Piecing together the type III injectisome of bacterial pathogens   总被引:2,自引:0,他引:2  
The Type III secretion system is a bacterial 'injectisome' which allows Gram-negative bacteria to shuttle virulence proteins directly into the host cells they infect. This macromolecular assembly consists of more than 20 different proteins put together to collectively span three biological membranes. The recent T3SS crystal structures of the major oligomeric inner membrane ring, the helical needle filament, needle tip protein, the associated ATPase, and outer membrane pilotin together with electron microscopy reconstructions have dramatically furthered our understanding of how this protein translocator functions. The crucial details that describe how these proteins assemble into this oligomeric complex will need a hybrid of structural methodologies including EM, crystallography, and NMR to clarify the intra- and inter-molecular interactions between different structural components of the apparatus.  相似文献   

19.
Pseudomonas syringae strains deliver diverse type III effector proteins into host cells, where they can act as virulence factors. Although the functions of the majority of type III effectors are unknown, several have been shown to interfere with plant basal defense mechanisms. Type III effectors also could contribute to bacterial virulence by enhancing nutrient uptake and pathogen adaptation to the environment of the host plant. We demonstrate that the type III effector HopAM1 (formerly known as AvrPpiB) enhances the virulence of a weak pathogen in plants that are grown under drought stress. This is the first report of a type III effector that aids pathogen adaptation to water availability in the host plant. Expression of HopAM1 makes transgenic Ws-0 Arabidopsis hypersensitive to abscisic acid (ABA) for stomatal closure and germination arrest. Conditional expression of HopAM1 in Arabidopsis also suppresses basal defenses. ABA responses overlap with defense responses and ABA has been shown to suppress defense against P. syringae pathogens. We propose that HopAM1 aids P. syringae virulence by manipulation of ABA responses that suppress defense responses. In addition, host ABA responses enhanced by type III delivery of HopAM1 protect developing bacterial colonies inside leaves from osmotic stress.  相似文献   

20.
EspA filament-mediated protein translocation into red blood cells   总被引:12,自引:2,他引:10  
Type III secretion allows bacteria to inject effector proteins into host cells. In enteropathogenic Escherichia coli (EPEC), three type III secreted proteins, EspA, EspB and EspD, have been shown to be required for translocation of the Tir effector protein into host cells. EspB and EspD have been proposed to form a pore in the host cell membrane, whereas EspA, which forms a large filamentous structure bridging bacterial and host cell surfaces, is thought to provide a conduit for translocation of effector proteins between pores in the bacterial and host cell membranes. Type III secretion has been correlated with an ability to cause contact-dependent haemolysis of red blood cells (RBCs) in vitro . As EspA filaments link bacteria and the host cell, we predicted that intimate bacteria–RBC contact would not be required for EPEC-induced haemolysis and, therefore, in this study we investigated the interaction of EPEC with monolayers of RBCs attached to polylysine-coated cell culture dishes. EPEC caused total RBC haemolysis in the absence of centrifugation and osmoprotection studies were consistent with the insertion of a hydrophilic pore into the RBC membrane. Cell attachment and haemolysis involved interaction between EspA filaments and the RBC membrane and was dependent upon a functional type III secretion system and on EspD, whereas EPEC lacking EspB still caused some haemolysis. Following haemolysis, only EspD was consistently detected in the RBC membrane. This study shows that intimate bacteria–RBC membrane contact is not a requirement for EPEC-induced haemolysis; it also provides further evidence that EspA filaments are a conduit for protein translocation and that EspD may be the major component of a translocation pore in the host cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号