首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TLRs are important for the recognition of conserved motifs expressed by invading bacteria. TLR4 is the signaling receptor for LPS, the major proinflammatory component of the Gram-negative cell wall, whereas CD14 serves as the ligand-binding part of the LPS receptor complex. Triggering of TLR4 results in the activation of two distinct intracellular pathways, one that relies on the common TLR adaptor MyD88 and one that is mediated by Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF). Nontypeable Haemophilus influenzae (NTHi) is a common Gram-negative respiratory pathogen that expresses both TLR4 (LPS and lipooligosaccharide) and TLR2 (lipoproteins) ligands. To determine the roles of CD14, TLR4, and TLR2 during NTHi pneumonia, the following studies were performed: 1) Alveolar macrophages from CD14 and TLR4 knockout (KO) mice were virtually unresponsive to NTHi in vitro, whereas TLR2 KO macrophages displayed a reduced NTHi responsiveness. 2) After intranasal infection with NTHi, CD14 and TLR4 KO mice showed an attenuated early inflammatory response in their lungs, which was associated with a strongly reduced clearance of NTHi from the respiratory tract; in contrast, in TLR2 KO mice, lung inflammation was unchanged, and the number of NTHi CFU was only modestly increased at the end of the 10-day observation period. 3) MyD88 KO, but not TRIF mutant mice showed an increased bacterial load in their lungs upon infection with NTHi. These data suggest that the MyD88-dependent pathway of TLR4 is important for an effective innate immune response to respiratory tract infection caused by NTHi.  相似文献   

2.
Repeated exposure to low doses of endotoxin results in progressive hyporesponsiveness to subsequent endotoxin challenge, a phenomenon known as endotoxin tolerance. In spite of its clinical significance in sepsis and characterization of the TLR4 signaling pathway as the principal endotoxin detection mechanism, the molecular determinants that induce tolerance remain obscure. We investigated the role of the TRIF/IFN-beta pathway in TLR4-induced endotoxin tolerance. Lipid A-induced homotolerance was characterized by the down-regulation of MyD88-dependent proinflammatory cytokines TNF-alpha and CCL3, but up-regulation of TRIF-dependent cytokine IFN-beta. This correlated with a molecular phenotype of defective NF-kappaB activation but a functional TRIF-dependent STAT1 signaling. Tolerance-induced suppression of TNF-alpha and CCL3 expression was significantly relieved by TRIF and IFN regulatory factor 3 deficiency, suggesting the involvement of the TRIF pathway in tolerance. Alternatively, selective activation of TRIF by poly(I:C)-induced tolerance to lipid A. Furthermore, pretreatment with rIFN-beta also induced tolerance, whereas addition of IFN-beta-neutralizing Ab during the tolerization partially alleviated tolerance to lipid A but not TLR2-induced endotoxin homo- or heterotolerance. Furthermore, IFNAR1-/- murine embryonal fibroblast and bone-marrow derived macrophages failed to induce tolerance. Together, these observations constitute evidence for a role of the TRIF/IFN-beta pathway in the regulation of lipid A/TLR4-mediated endotoxin homotolerance.  相似文献   

3.
Endocrine disrupting chemicals (EDCs) may potentially worsen infectious diseases because EDCs disturb human immune function by interfering with endocrine balance. To evaluate the influence of EDCs on the innate immune function of macrophages, we investigated the effects of 37 possible EDCs on lipopolysaccharide-induced activation of the IFN-beta promoter. Alachlor, atrazine, benomyl, bisphenol A, carbaryl, diethyl phthalate, dipropyl phthalate, kelthane, kepone, malathion, methoxychlor, octachlorostyrene, pentachlorophenol, nonyl phenol, p-octylphenol, simazine and ziram all inhibited the activation. Kepone and ziram showed strong inhibitory effects. Aldicarb, amitrole, benzophenone, butyl benzyl phthalate, 2,4-dichlorophenoxy acetic acid, dibutyl phthalate, 2,4-dichlorophenol, dicyclohexyl phthalate, diethylhexyl adipate, diethylhexyl phthalate, dihexyl phthalate, di-n-pentyl phthalate, methomyl, metribuzin, nitrofen, 4-nitrotoluene, permethrin, trifluralin, 2,4,5-trichlorophenoxyacetic acid and vinclozolin had no significant effects at 100 muM. These results indicate that some agrochemicals and resin-related chemicals may potentially inhibit macrophage function, which suggests that endocrine disruptors may influence the development of infectious diseases.  相似文献   

4.
Angiotensin II (Ang II) can stimulate Toll-like receptor 4 (TLR4) expression in mesangial cells (MCs), but the role of TLR4 in the Ang II-induced apoptosis and the effect of candesartan on TLR4 expression remain unclear. Here, we report that Ang II-induced MC apoptosis in a time-dependent manner and up-regulated TLR4/MyD88 expression, and that the intracellular ROS was subsequently increased. We also show that candesartan attenuated the Ang II-induced MC apoptosis, and that this protective effect was dependent on decreased TLR4/MyD88 expression as well as reduced intracellular ROS formation. Furthermore, Ang II increased the apoptosis inducing factor protein level, while candesartan markedly reduced this increase. These results demonstrate that TLR4/MyD88 pathway was involved in the Ang II promoted MC apoptosis, which was related to TLR4/MyD88 mediated oxidative stress. These data also suggest that candesartan exerted anti-apoptotic effect as an antioxidant by modulating this pathway.  相似文献   

5.
Oral administration of Clostridium butyricum as probiotic is increasingly gaining importance in the treatment of diarrhea and the improvement of animal performance. However, the mechanisms of host cell receptor recognition of C. butyricum and the downstream immune signaling pathways leading to these benefits remain unclear. The objective of this study was to analyze the mechanisms involved in C. butyricum induction of the toll-like receptor (TLR) signaling. Knockdown of myeloid differentiation primary response protein 88 (MyD88) expression using small interfering RNA in this manner did not affect C. butyricum-induced elevated levels of nuclear factor κB (NF-κB), interleukin-8 (IL-8), IL-6, and tumor necrosis factor alpha (TNF-α), suggesting a MyD88-independent route to TLR signaling transduction. However, a significant reduction in the levels of NF-κB, IL-8, IL-6, and TNF-α was evident in the absence of TLR2 expression, implying the need for TLR2 in C. butyricum recognition. Hence, C. butyricum activates TLR2-mediated MyD88-independent signaling pathway in human epithelial cells, which adds to our understanding of the molecular mechanisms of this probiotic action on gut epithelium.  相似文献   

6.
The triggering molecular mechanism of ischemia-reperfusion injury (IRI), which in clinical settings results in excessive and detrimental inflammatory responses, remains unclear. This study analyzes the role of the TLR system in an established murine model of liver warm ischemia followed by reperfusion. By contrasting in parallel TLR knockout mice with their wild-type counterparts, we found that TLR4, but not TLR2, was specifically required in initiating the IRI cascade, as manifested by liver function (serum alanine aminotransferase levels), pathology, and local induction of proinflammatory cytokines/chemokines (TNF-alpha, IL-6, IFN-inducible protein 10). We then investigated the downstream signaling pathway of TLR4 activation. Our results show that IFN regulatory factor 3, but not MyD88, mediated IRI-induced TLR4 activation leading to liver inflammation and hepatocellular damage. This study documents the selective usage of TLR in a clinically relevant noninfectious disease model, and identifies a triggering molecular mechanism in the pathophysiology of liver IRI.  相似文献   

7.
TLRs sense components of microorganisms and are critical host mediators of inflammation during infection. Different TLR agonists can profoundly alter inflammatory effects of one another, and studies suggest that the sequence of exposure to TLR agonists may importantly impact on responses during infection. We tested the hypothesis that synergy, priming, and tolerance between TLR agonists follow a pattern that can be predicted based on differential engagement of the MyD88-dependent (D) and the MyD88-independent (I) intracellular signaling pathways. Inflammatory effects of combinations of D and I pathway agonists were quantified in vivo and in vitro. Experiments used several D-specific agonists, an I-specific agonist (poly(I:C)), and LPS, which acts through both the D and I pathways. D-specific agonists included: peptidoglycan-associated lipoprotein, Pam3Cys, flagellin, and CpG DNA, which act through TLR2 (peptidoglycan-associated lipoprotein and Pam3Cys), TLR5, and TLR9, respectively. D and I agonists were markedly synergistic in inducing cytokine production in vivo in mice. All of the D-specific agonists were synergistic with poly(I:C) in vitro in inducing TNF and IL-6 production by mouse bone marrow-derived macrophages. Pretreatment of bone marrow-derived macrophages with poly(I:C) led to a primed response to subsequent D-specific agonists and vice versa, as indicated by increased cytokine production, and increased NF-kappaB translocation. Pretreatment with a D-specific agonist augmented LPS-induced IFN-beta production. All D-specific agonists induced tolerance to one another. Thus, under the conditions studied here, simultaneous and sequential activation of both the D and I pathways causes synergy and priming, respectively, and tolerance is induced by agonists that act through the same pathway.  相似文献   

8.
The fungal pathogens Fusarium solani and Fusarium oxysporum cause severe corneal disease in the United States and worldwide and were the causative organisms in a recent outbreak of contact lens-associated keratitis. To characterize innate immunity in Fusarium keratitis, we developed a murine model in which conidia are injected into the corneal stroma. Immunocompetent C57BL/6 mice rapidly developed severe corneal opacification associated with neutrophil infiltration and clearance of Fusarium hyphae. In contrast, neutrophil infiltration was delayed in MyD88-/- mice, resulting in uncontrolled growth of Fusarium hyphae in the corneal stroma and anterior chamber, and eventually resulting in corneal perforation. Corneal opacification scores in TLR2-/-, TLR4-/-, and TLR2/4-/- mice were similar to those of C57BL/6 mice; however, TLR4-/- and TLR2/4-/- mice had impaired antifungal responses. The phenotype of infected IL-1R1-/- mice was similar to that of MyD88-/- mice, with uncontrolled fungal growth resulting in corneal perforation. IL-1R1-/- mice also produced significantly less CXCL1/KC in the corneal stroma compared with C57BL/6 mice consistent with delayed neutrophil recruitment to the corneal stroma. Together, these findings indicate that IL-1R1 and MyD88 regulate CXC chemokine production and neutrophil recruitment to the cornea, and that TLR4 has an important role in controlling growth and replication of these pathogenic fungi.  相似文献   

9.
Acute cigarette smoke exposure of the airways (two cigarettes twice daily for three days) induces acute inflammation in mice. In this study, we show that airway inflammation is dependent on Toll-like receptor 4 and IL-1R1 signaling. Cigarette smoke induced a significant recruitment of neutrophils in the bronchoalveolar space and pulmonary parenchyma, which was reduced in TLR4-, MyD88-, and IL-1R1-deficient mice. Diminished neutrophil influx was associated with reduced IL-1, IL-6, and keratinocyte-derived chemokine levels and matrix metalloproteinase-9 activity in the bronchoalveolar space. Further, cigarette smoke condensate (CSC) induced a macrophage proinflammatory response in vitro, which was dependent on MyD88, IL-1R1, and TLR4 signaling, but not attributable to LPS. Heat shock protein 70, a known TLR4 agonist, was induced in the airways upon smoke exposure, which probably activates the innate immune system via TLR4/MyD88, resulting in airway inflammation. CSC-activated macrophages released mature IL-1beta only in presence of ATP, whereas CSC alone promoted the TLR4/MyD88 signaling dependent production of IL-1alpha and pro-IL-1beta implicating cooperation between TLRs and the inflammasome. In conclusion, acute cigarette exposure results in LPS-independent TLR4 activation, leading to IL-1 production and IL-1R1 signaling, which is crucial for cigarette smoke induced inflammation leading to chronic obstructive pulmonary disease with emphysema.  相似文献   

10.
目的:研究大鼠海马神经元是否有Toll样受体4(TLR4)介导的的髓样分化因子88(MyD88)依赖途径及该途径的激活在神经炎症中的作用。方法:采用体外培养7 d的新生大鼠海马神经元,细胞免疫荧光双标法鉴定海马神经元纯度。用TLR4配体脂多糖(LPS)或TLR4抗体预处理海马神经元,以激活或阻断TLR4的作用。实时定量PCR(RT-qPCR)方法检测海马神经元中MyD88、肿瘤坏死因子受体相关因子6(TRAF6)mRNA的表达;Westernblot方法测定海马神经元MyD88和TRAF6蛋白水平;细胞免疫荧光双标法观察海马神经元中核因子κB/P65(NF-κB/P65)的表达定位及TLR4激活或阻断后NF-κB/P65核易位情况;ELISA检测培养上清液中肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)和一氧化氮(NO)的水平。结果:LPS能上调海马神经元MyD88和肿瘤坏死因子受体相关因子(TRAF6)mRNA水平;促使NF-κB/P65转位至核;增加MyD88和TRAF6蛋白的表达;增加海马神经元培养上清中TNF-α、IL-1β和NO含量;TLR4抗体预处理能减弱LPS对海马神经元NF-κB/P65核易位作用及降低培养上清中TNF-α、IL-1β和NO的水平。结论:大鼠海马神经元有TLR4介导的的MyD88依赖途径,该途径的激活能导致TNF-α、IL-lβ和NO含量的增加。海马神经元TLR4介导的MyD88依赖途径参与了神经炎症反应,神经元不是神经炎症反应中的被动者。  相似文献   

11.
12.
13.
The potential roles of TLRs in the cause and pathogenesis of autoimmune CNS inflammation remain contentious. In this study, we examined the effects of targeted deletions of TLR1, TLR2, TLR4, TLR6, TLR9, and MyD88 on the induction of myelin oligodendrocyte glycoprotein 35-55 (MOG(35-55)) peptide/CFA/pertussis toxin-induced autoimmune encephalomyelitis. Although C57BL/6.Tlr1(-/-), C57BL/6.Tlr4(-/-) and C57BL/6.Tlr6(-/-) mice showed normal susceptibility to disease, signs were alleviated in female C57BL/6.Tlr2(-/-) and C57BL/6.Tlr9(-/-) mice and C57BL/6.Tlr2/9(-/-) mice of both sexes. C57BL/6.Myd88(-/-) mice were completely protected. Lower clinical scores were associated with reduced leukocyte infiltrates. These results were confirmed by passive adoptive transfer of disease into female C57BL/6.Tlr2(-/-) and C57BL/6.Tlr9(-/-) mice, where protection in the absence of TLR2 was associated with fewer infiltrating CD4(+) cells in the CNS, reduced prevalence of detectable circulating IL-6, and increased proportions of central (CD62L(+)) CD4(+)CD25(+)Foxp3(+) regulatory T cells. These results provide a potential molecular mechanism for the observed effects of TLR signaling on the severity of autoimmune CNS inflammation.  相似文献   

14.
15.
Chemokine responses critical for inflammation and promotion of effective innate control of murine CMV (MCMV) in liver have been shown to be dependent on immunoregulatory functions elicited by IFN-alphabeta. However, it remains to be determined whether upstream factors that promote viral sensing resulting in the rapid secretion of IFN-alphabeta in liver differ from those described in other tissues. Because plasmacytoid dendritic cells (pDCs) are known producers of high levels of systemic IFN-alpha in response to MCMV, this study examines the in vivo contribution of pDCs to IFN-alpha production in the liver, and whether production of the cytokine and ensuing inflammatory events are dependent on TLR9, MyD88, or both. We demonstrate that whereas MyD88 deficiency markedly impaired secretion of IFN-alpha, production of the cytokine was largely independent of TLR9 signaling, in the liver. MyD88 and TLR9 were needed for IFN-alpha production in the spleen. Moreover, hepatic but not splenic pDCs produced significant amounts of intracellular IFN-alpha in the absence of TLR9 function during infection. Furthermore, production of CCL2, CCL3, and IFN-gamma, as well as the accumulation of macrophages and NK cells, was not affected in the absence of functional TLR9 in the liver. In contrast, these responses were dramatically reduced in MyD88(-/-) mice. Additionally, MyD88(-/-) but not TLR9(-/-) mice exhibited increased sensitivity to virus infection in liver. Collectively, our results define contrasting compartmental functions for TLR9 and MyD88, and suggest that the infected tissue site uniquely contributes to the process of virus sensing and regulation of localized antiviral responses.  相似文献   

16.
Although lactic acid bacteria (LAB) affect the immune system, for example, having an anti-allergic effect, little is known about the actual mechanisms of immune modulation. Toll-like receptors (TLRs) recognize conserved microbial molecular patterns, and are presumed to be involved in the recognition of LAB. However, there are few detailed reports examining the relationships between TLR and LAB. We measured here production of IL-12, a cytokine considered to play an important role in anti-allergic effects, induced by Lactobacillus paracasei strain KW3110 and other typical LAB by cells from TLR2-, TLR4-, TLR9- and myeloid differentiation factor 88 (MyD88)-deficient mice. Unexpectedly, similar cytokine production from wild-type and TLR2-, 4- and 9-deficient mice was observed. In contrast, cells from MyD88-deficient mice failed to respond to stimulation with LAB. It is therefore concluded that although LAB, including strain KW3110, are not likely to be recognized by TLR2, 4 or 9, MyD88 is essential for the response to these bacteria.  相似文献   

17.
Fulminant hepatic failure (FHF) is a lethal clinical syndrome characterized by the activation of macrophages and the increased production of inflammatory mediators. The purpose of this study was to investigate the effects of neohesperidin dihydrochalcone (NHDC), a widely-used low caloric artificial sweetener against FHF. An FHF experimental model was established in mice by intraperitoneal injection of D-galactosamine (d-GalN) (400 mg/kg)/lipopolysaccharides (LPS) (10 μg/kg). Mice were orally administered NHDC for 6 continuous days and at 1 h before d-GalN/LPS administration. RAW264.7 macrophages were used as an in vitro model. Cells were pre-treated with NHDC for 1 h before stimulation with LPS (10 μg/ml) for 6 h. d-GalN/LPS markedly increased the serum transaminase activities and levels of oxidative and inflammatory markers, which were significantly attenuated by NHDC. Mechanistic analysis indicated that NHDC inhibited LPS-induced myeloid differentiation factor 88 (MyD88) and TIR-containing adapter molecule (TRIF)-dependent signaling. Transient transfection of TLR4 or MyD88 siRNA inhibited the downstream inflammatory signaling. This effect could also be achieved by the pretreatment with NHDC. The fluorescence microscopy and flow cytometry results suggested that NHDC potently inhibited the binding of LPS to TLR4 in RAW264.7 macrophages. In addition, the inhibitory effect of NHDC on LPS-induced translocation of TLR4 into lipid raft domains played an important role in the amelioration of production of downstream pro-inflammatory molecules. Furthermore, the activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) by NHDC inhibited TLR4 signaling. In conclusion, our results suggest that NHDC attenuates d-GalN/LPS-induced FHF by inhibiting the TLR4-mediated inflammatory pathway, demonstrating a new application of NHDC as a hepatoprotective agent.  相似文献   

18.
Modulation of macrophage survival is a critical factor in the resolution of inflammatory responses. Exposure to LPS protects innate immune cells against apoptosis, although the precise pathways responsible for prolongation of macrophage survival remain to be fully established. The goal of this study was to characterize the mechanism of TLR4-mediated survival of murine bone marrow-derived macrophages upon M-CSF withdrawal in more detail. Using a combination of knockout mice and pharmacological inhibitors allowed us to show that TLR4 and TLR2 stimulation promotes long-term survival of macrophages in a MyD88-, PI3K-, ERK-, and NF-kappaB-dependent manner. LPS-induced long-term, but not short-term, survival requires autocrine signaling via TNF-alpha and is facilitated by a general cytoprotective program, similar to that mediated by M-CSF. TLR4-mediated macrophage survival is accompanied by a remarkable up-regulation of specific cell surface markers, suggesting that LPS stimulation leads to the differentiation of macrophages toward a mixed macrophage/dendritic cell-like phenotype.  相似文献   

19.
20.
Enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium are classified as attaching and effacing pathogens based on their ability to adhere to intestinal epithelium via actin-filled membranous protrusions (pedestals). Infection of mice with C. rodentium causes breach of the colonic epithelial barrier, a vigorous Th1 inflammatory response, and colitis. Ultimately, an adaptive immune response leads to clearance of the bacteria. Whereas much is known about the adaptive response to C. rodentium, the role of the innate immune response remains unclear. In this study, we demonstrate for the first time that the TLR adaptor MyD88 is essential for survival and optimal immunity following infection. MyD88(-/-) mice suffer from bacteremia, gangrenous mucosal necrosis, severe colitis, and death following infection. Although an adaptive response occurs, MyD88-dependent signaling is necessary for efficient clearance of the pathogen. Based on reciprocal bone marrow transplants in conjunction with assessment of intestinal mucosal pathology, repair, and cytokine production, our findings suggest a model in which TLR signaling in hemopoietic and nonhemopoietic cells mediate three distinct processes: 1) induction of an epithelial repair response that maintains the protective barrier and limits access of bacteria to the lamina propria; 2) production of KC or other chemokines that attract neutrophils and thus facilitate killing of bacteria; and 3) efficient activation of an adaptive response that facilitates Ab-mediated clearance of the infection. Taken together, these experiments provide evidence for a protective role of innate immune signaling in infections caused by attaching and effacing pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号