首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The onset and regulation of puberty is determined by functional development of the brain-pituitary-gonad (BPG) axis. Sex steroids produced in the gonads play an important role in the onset of puberty. Stress interferes with reproduction and the functioning of the BPG axis, and cortisol has frequently been indicated as a major factor mediating the suppressive effect of stress on reproduction. Prolonged elevated cortisol levels, implicated in stress adaptation, inhibited pubertal development in male common carp (Cyprinus carpio). Cortisol treatment caused a retardation of pubertal testis development and reduced the LH pituitary content and the salmon GnRHa-stimulated LH secretion in vitro. A reduced synthesis of androgens also was observed. These findings suggest that the cortisol-induced inhibition of testicular development and the maturation of pituitary gonadotrophs are mediated by an effect on testicular androgen secretion. In this study, we combined cortisol treatment with a replacement of the testicular steroid hormones (testosterone and 11-oxygenated androgens) to investigate the role of these steroids in the cortisol-induced suppression of pubertal development. The effect of cortisol on spermatogenesis was independent of 11-ketotestosterone, whereas the effect on the pituitary was an indirect one, involving the testicular secretion of testosterone.  相似文献   

2.
We investigated the molecular regulation of pubertal development in the grey mullet, Mugil cephalus, a relatively late-maturing teleost fish. We have isolated and characterized the cDNAs of key reproductive genes along the brain-pituitary-gonadal (BPG) axis as well as the promoters of genes that modulate the axis at multiple levels. Together with relevant findings from other model species, we propose a conceptual model of the neuroendocrine regulation of puberty in the female grey mullet. Research areas that warrant further investigation are identified in the model.  相似文献   

3.
Previous work showed that prolonged elevated cortisol levels, implicated in the stress adaptation, inhibits testicular pubertal development in male common carp, as well as an impairment of the synthesis of the 11-oxygenated androgens. This may be a direct effect of cortisol on the testis or via the gonadotropin secretion by the pituitary. The aim of the present study was to investigate whether cortisol has an effect on pituitary LH secretion. Juvenile common carp were fed with cortisol containing food pellets. Elevated cortisol levels blocked the increase in testosterone levels and pituitary LH content, but induced higher plasma LH levels at the end of puberty. The in vitro LH release capacity was correlated to the pituitary LH content. At the final stage of pubertal development, when a significant difference in pituitary LH content was observed, sGnRHa-induced LH release was also decreased. Testosterone has been shown to induce development of pituitary gonadotrophs, leading to an increase in LH content and GnRH-inducible LH release, but a decrease in plasma LH levels. We observed decreased plasma testosterone levels as a consequence of prolonged cortisol treatment. It is hypothesised that cortisol inhibits the testicular testosterone secretion and thereby, prevents LH storage. In vitro, this leads to a reduced GnRH-inducible LH release, but in vivo to increased LH plasma levels. It is very unlikely that the impaired testicular development is due to an effect of cortisol on LH secretion.  相似文献   

4.
Our previous experiments to study the effect of stress adaptation on pubertal development in carp showed that repeated temperature stress and prolonged feeding with cortisol-containing food pellets, which mimics the endocrine stress effects, retarded the first waves of spermatogenesis and decreased 11-ketotestosterone (11KT) plasma levels. The objective of the present study was to investigate whether the decrease in plasma 11KT is caused by a direct effect of cortisol on the steroid-producing capacity of the testis or by an indirect effect, such as a decrease in plasma LH. Pubertal and adolescent isogenic male common carp (Cyprinus carpio L.) were fed with either cortisol-containing food pellets or control food pellets over a prolonged period. Our results indicate that cortisol has a direct inhibitory effect on the testicular androgen secretion independent of the LH secretion. Furthermore, the pubertal period is critical to the influence of cortisol regarding testicular androgen secretion, because the effect is no longer observed at adolescence.  相似文献   

5.
Plasma B-Endorphin (B-EP), Growth Hormone (GH) and cortisol response to 100 mcg/m2 b.s., i.v. clonidine (an alpha 2-adrenergic agonist) were evaluated in 17 normal weight children (8 prepubertal and 9 pubertal) and in 15 children with simple exogenous obesity (7 prepubertal and 8 pubertal, weight excess ranging from 29% to 97%). All the hormones were measured by radioimmunoassay either directly in the plasma (GH and cortisol) or after extraction and chromatography (B-EP). Obese prepubertal and pubertal children showed basal B-EP levels significantly higher than in controls and no differences were found in GH and cortisol levels. While in controls clonidine stimulated a significant release of plasma GH and B-EP in obese patients, irrespective of pubertal development, no changes were found. Cortisol levels decreased in both groups. These data suggest an impaired adrenergic control of GH and B-EP secretion in children with simple exogenous obesity.  相似文献   

6.
Recent studies have shown that cortisol levels rapidly increase within the first 30 minutes after awakening. This response is rather robust over weeks or months and is altered by chronic stress and burnout. The present study investigated to what extent the cortisol response to awakening relates to responses following hCRH, ACTH(1-24), or psychosocial stress challenges in 22 healthy subjects. Furthermore, a 12-hour circadian cortisol profile was obtained to compare the morning response with cortisol levels obtained throughout the day. Results show that the morning cortisol response was of similar magnitude to that following injection of 1 microg/kg h-CRH or exposure to a brief psychosocial stressor (TSST). All of these were significantly smaller compared to maximal stimulation of the adrenal cortex by ACTH(1-24). Correlation analyses revealed that the morning cortisol response was closely related only to the cortisol response following 0.25 mg ACTH(1-24) (r=0.63, p=0.002). We conclude that the morning cortisol response to awakening can provide important information on the (re)activity of the HPA axis in addition to more 'traditional' methods like hCRH or Synacthen challenge tests. The sensitivity/capacity of the adrenal cortex appears to play a crucial role for the magnitude of cortisol responses observed after awakening.  相似文献   

7.
Adolescence is a dynamic and important period of brain development however, little is known about the long-term neurobiological consequences of alcohol consumption during puberty. Our previous studies showed that binge-pattern ethanol (EtOH) treatment during pubertal development negatively dysregulated the responsiveness of the hypothalamo-pituitary-adrenal (HPA) axis, as manifested by alterations in corticotrophin-releasing hormone (CRH), arginine vasopressin (AVP), and corticosterone (CORT) during this time period. Thus, the primary goal of this study was to determine whether these observed changes in important central regulators of the stress response were permanent or transient. In this study, juvenile male Wistar rats were treated with a binge-pattern EtOH treatment paradigm or saline alone for 8 days. The animals were left undisturbed until adulthood when they received a second round of treatments consisting of saline alone, a single dose of EtOH, or a second binge-pattern treatment paradigm. The results showed that pubertal binge-pattern EtOH exposure induced striking long-lasting alterations of many HPA axis parameters. Overall, our data provide strong evidence that binge-pattern EtOH exposure during pubertal maturation has long-term detrimental effects for the healthy development of the HPA axis.  相似文献   

8.
Parasites often impair the reproduction of their hosts, one well known case being the cestode Schistocephalus solidus which is a common parasite in three-spined sticklebacks, Gasterosteus aculeatus. One of the possible ways that this could be exerted is by suppression on the brain-pituitary-gonadal (BPG) axis. In this study, mRNA levels of FSH-β and LH-β and of GnRH2 (cGnRH II) and GnRH3 (sGnRH) were measured via Q-PCR in infected and uninfected fish sampled from the field a few weeks before the onset of breeding. The pituitary mRNA levels of both FSH-β and LH-β were higher in infected males than in uninfected males. Also in females, FSH-β mRNA levels were higher in infected individuals than in others, whereas there was no significant difference found in LH-β expression. Brain mRNA levels of GnRH3 were higher in infected fish than in uninfected fish in both sexes, but no difference was found in GnRH2 mRNA levels. Thus, infection by S. solidus was able to alter the expressions not only of gonadotropins (GtHs), but also of GnRH which has not been observed previously. However, the effects are opposite to what should be expected if the parasite suppressed reproduction via actions on the brain-pituitary level. The gonads are perhaps more likely to be impaired by the parasites in other ways, and changed feedbacks on the BPG axis could then lead to the increases in GtHs and GnRH.  相似文献   

9.
We tested the adaptive stress hypothesis that male arctic ground squirrels (Urocitellus parryii) exhibit a stress response over the course of the breeding season that is characterized by increasing free cortisol concentrations, increasing mobilization of stored energy, and decreasing physical condition. We assessed the functioning of the hypothalamic-pituitary-adrenal axis by measuring cortisol levels in response to the stress of capture and in response to a hormone challenge protocol (dexamethasone suppression and adrenocorticotropic hormone stimulation). We measured blood glucose levels, free fatty acids, white blood cells, and hematocrit to assess the downstream physiological responses to cortisol. Immediately after spring emergence, male arctic ground squirrels had ample free abdominal fat and few signs of wounding. By the end of the breeding season 3 wk later, visible fat reserves were almost entirely gone, and most males had extensive wounds. Total plasma cortisol concentrations increased over this period, but so did corticosteroid-binding capacity, resulting in no change in the free cortisol response to capture. We found no significant changes in how the animals responded to our hormone challenges, contrary to our prediction that the stress axis should increase free cortisol production. Even though we found no change in the functioning of the stress axis, all of the downstream measures suggested that male arctic ground squirrels are chronically exposed to high cortisol concentrations. Over the breeding season, blood glucose increased, fat stores and circulating free fatty acids were depleted, and both hematocrit levels and white blood cell counts decreased significantly. Our data suggest that a more complex relationship between the stress axis and downstream measures of stress exists than that proposed by the adaptive stress hypothesis. We propose several nonexclusive, testable mechanisms that could explain our observations.  相似文献   

10.
Stress, when extreme or chronic, can have a negative impact on health and survival of mammals. This is especially true for females during reproduction when self-maintenance and investment in offspring simultaneously challenge energy turnover. Therefore, we investigated the effects of repeated stress during early- and mid-gestation on the maternal stress axis, body weight gain and reproductive output. Female guinea pigs (Cavia aperea f. porcellus, n = 14) were either stressed (treatment: exposure to strobe light in an unfamiliar environment on gestational day -7, 0, 7, 14, 21, 28, 35, 42) or left completely undisturbed (control) throughout pregnancy. Females of both groups received the same respective diets, and reproductive parameters were evaluated upon parturition. Additionally, hormonal data were obtained from blood and feces. The stress exposure induced a significant increase in plasma cortisol concentrations during the afternoon. In contrast to this short-term response in plasma cortisol concentrations, we found no significant differences in the levels of cortisol metabolites in feces collected after stress exposure between groups and even significantly decreased levels of fecal cortisol metabolites on non-stress days over time in treatment females. Among treatment females, gain in body weight was attenuated over gestation and body weight was lower compared to control females during lactation, especially in cases of large litter sizes. No differences could be seen in the reproductive parameters. We conclude that repeated stress exposure with strobe light during early- and mid-gestation results in a down-regulation of the hypothalamic–pituitary–adrenal axis and lower weight gain in treatment females, but has no effect on reproductive output.  相似文献   

11.
In male golden hamsters, agonistic behavior undergoes a pubertal transition from play fighting to adult aggression. Previous studies have shown that this aspect of behavioral development is associated with pubertal increases in glucocorticoids and that daily social stress or injections of a synthetic glucocorticoid accelerate the transition. The goals of this study were to confirm the effects of cortisol on the development of agonistic behavior and to investigate the role of type II corticosteroid receptors in this process. First, animals treated with cortisol during early puberty [from postnatal days 31 (P-31) to P-36] showed an accelerated transition from play fighting to adult aggression. In a second experiment, the behavioral effects of cortisol were blocked by a co-treatment with a type II corticosteroid receptor antagonist. These findings are the first to show a facilitating role for type II corticosteroid receptors in the pubertal development of a social behavior. As such, these findings provide new insights into the neuroendocrine mechanisms controlling behavioral development during puberty.  相似文献   

12.
We previously reported that glucose intake amplifies cortisol response to psychosocial stress and smoking in healthy young men, while low blood glucose levels prevented the stress-induced activation of the hypothalamus pituitary adrenal (HPA) axis. However, it remains unknown whether this modulation is specific for glucose load or a more common effect of energy availability. To elucidate this question, 37 healthy men, who fasted for at least 8 h before the experiment, were randomly assigned to four experimental groups, who received glucose (n = 8), protein (n = 10), fat (n = 10), and water (n = 9), one h before their exposure to the Trier Social Stress Test (TSST). Blood glucose levels were measured at baseline and following stress, while salivary cortisol was assessed repeatedly measured before after the TSST. The results show that both absolute cortisol levels and net cortisol increase were greater in the glucose group in comparison to the other groups (F(3,33) = 3.00, P < 0.05 and F(3,33) = 3.08, P < 0.05, respectively. No group differences were observed with respect to perceived stress and mood. Furthermore, the cortisol response was positively correlated with blood glucose changes (r = 0.49, P < 0.002). In conclusion, the results suggest a central mechanism responsible for regulation of energy balance and HPA axis activation, rather than peripheral mechanisms. We thus recommend controlling for blood glucose levels when studying HPA axis responsiveness.  相似文献   

13.
The ability to mount a successful response to threats is critical for an organism's survival. A key element of the stress response is its nonspecificity toward the stress source, with similar endocrine and behavioral changes expected under a variety of stressors. In this project we utilized an experimental design that accounts for multiple sources of variation to further understand the nature of stress responsivity and its relationship to the early rearing environment. A sample of baboons (n=73) was observed during the early phase of life in their social group, and then tested as juveniles in a challenging situation. Maternal cortisol levels were measured during the peripartum period. The challenging situation (individuals were isolated for a few minutes in a single cage) was designed to be a moderate source of psychological stress. Patterns in individual differences during the stress test were "mapped" by means of multidimensional scaling (MDS). After the observation was made, the subject was sedated and a blood sample was taken to measure cortisol levels. Our results indicate that when juvenile baboons are confronted with a source of psychological stress, they show a multidimensional behavioral response, probably mediated by the activation and synergic interaction among different neurohormonal systems that, ultimately, act on the hypothalamus-pituitary-adrenal (HPA) axis. Different components of the multidimensional, or nonspecific, behavioral response are associated with the quality and quantity of interactions with their mothers during early life. Juveniles whose mothers displayed higher levels of positive interaction were characterized by vigilant but less active reactions to the stress test, whereas juveniles of mothers that displayed high levels of stress-related behaviors had higher cortisol and locomotion levels.  相似文献   

14.
Reproductive function is exquisitely sensitive to adequacy of nutrition and fuel reserves, through mechanisms that are yet to be completely elucidated. Galanin-like peptide (GALP) has recently emerged as another neuropeptide link that couples reproduction and metabolism. However, although the effects of GALP on luteinizing hormone (LH) secretion have been studied, no systematic investigation on how these responses might differ along sexual maturation and between sexes has been reported. Moreover, the influence of metabolic status and potential interplay with other relevant neurotransmitters controlling LH secretion remain ill defined. These facets of GALP physiology were addressed herein. Intracerebral injection of GALP to male rats induced a dose-dependent increase in serum LH levels, the magnitude of which was significantly greater in pubertal than in adult males. In contrast, negligible LH responses to GALP were detected in pubertal or adult female rats at diestrus. Neonatal androgen treatment to females failed to "masculinize" the pattern of LH response to GALP. In addition, metabolic stress by short-term fasting did not prevent but rather amplified LH responses to GALP in pubertal males, whereas these responses were abrogated by pharmacological inhibition of nitric oxide synthesis. We conclude that the ability of GALP to evoke LH secretion is sexually differentiated, with maximal responses at male puberty, a phenomenon which was not reverted by manipulation of sex steroid milieu during the critical neonatal period and was sensitive to metabolic stress. This state of LH hyperresponsiveness may prove relevant for the mechanisms relaying metabolic status to the reproductive axis in male puberty.  相似文献   

15.
Subordinate female cercopithecine primates often experience decreased reproductive success in comparison with high-ranking females, with a later age at sexual maturity and first reproduction and/or longer interbirth intervals. One explanation that has traditionally been advanced to explain this is high levels of chronic social stress in subordinates, resulting from agonistic and aggressive interactions and leading to higher basal levels of glucocorticoids. We assessed the relationships among fecal cortisol levels and reproductive condition, dominance rank, degree of social support, and fertility in female mandrills (Mandrillus sphinx) living in a semi-free-ranging colony in Franceville, Gabon. Lower-ranking females in this colony have a reproductive disadvantage relative to higher-ranking females, and we were interested in determining whether this relationship between dominance rank and reproductive success is mediated through stress hormones. We analyzed 340 fecal samples from 19 females, collected over a 14-month period. We found that pregnant females experienced higher fecal cortisol levels than cycling or lactating females. This is similar to results for other primate species and is likely owing to increased metabolic demands and interactions between the hypothalamus-pituitary-adrenal axis, estrogen, and placental production of corticotrophin releasing hormones during pregnancy. There was no influence of dominance rank on fecal cortisol levels, suggesting that subordinate females do not suffer chronic stress. This may be because female mandrills have a stable social hierarchy, with low levels of aggression and high social support. However, we found no relationship between matriline size, as a measure of social support, and fecal cortisol levels. Subordinates may be able to avoid aggression from dominants in the large enclosure or may react only transiently to specific aggressive events, rather than continuously expecting them. Finally, we found no relationship between fecal cortisol levels and fertility. There was no difference in fecal cortisol levels between conceptive and nonconceptive cycles, and no significant relationship between fecal cortisol level and either the length of postpartum amenorrhea or the number of cycles before conception. This suggests that the influence of dominance rank on female reproductive success in this population is not mediated through chronic stress in subordinate females, and that alternative explanations of the relationship between social rank and reproduction should be sought.  相似文献   

16.
The aim of this study was to determine the effects of chronic waterborne copper (Cu) exposure on the acute stress-induced cortisol response and associated physiological consequences in rainbow trout (Oncorhynchus mykiss). Trout were exposed to 30 μg Cu/L in moderately hard water (120 mg/L as CaCO(3)) for 40 days, following which time the acute cortisol response was examined with a series of stressors. At 40 days, a 65% increase in Cu was observed in the gill, but no accumulation was observed in the liver, brain or head kidney. Stressors such as air exposure or confinement did not elicit an increase in circulating cortisol levels for Cu-exposed fish, in contrast to controls. However, this inhibitory effect on the acute cortisol response appeared to have few implications on the ability of Cu-exposed fish to maintain ion and carbohydrate homeostasis. For example, plasma Na(+), Ca(2+) and glucose levels as well as hepatic glycogen levels were the same post-stress in control and Cu-exposed fish. Trout were also challenged with exposure to 50% seawater for 48 h, where Cu-exposed trout maintained plasma Na(+), glucose and hepatic glycogen levels. However, Cu-exposed fish experienced decreased plasma K(+) levels throughout the Cu exposure and stress tests. In conclusion, chronic Cu exposure resulted in the abolition of an acute cortisol response post-stress. There was no Cu accumulation in the hypothalamus-pituitary-interrenal axis (HPI axis) suggesting this was not a direct toxic effect of Cu on the cortisol regulatory pathway. However, the lack of an acute cortisol response in Cu-exposed fish did not impair the ability of the fish to maintain ion and carbohydrate homeostasis. This effect on cortisol may be a strategy to reduce costs during the chronic stress of Cu exposure, and not endocrine disruption as a result of toxic injury.  相似文献   

17.
It is widely expected that physiological and behavioral stress responses will be integrated within divergent stress‐coping styles (SCS) and that these may represent opposite ends of a continuously varying reactive–proactive axis. If such a model is valid, then stress response traits should be repeatable and physiological and behavioral responses should also change in an integrated manner along a major axis of among‐individual variation. While there is some evidence of association between endocrine and behavioral stress response traits, few studies incorporate repeated observations of both. To test this model, we use a multivariate, repeated measures approach in a captive‐bred population of Xiphophorus birchmanni. We quantify among‐individual variation in behavioral stress response to an open field trial (OFT) with simulated predator attack (SPA) and measure waterborne steroid hormone levels (cortisol, 11‐ketotestosterone) before and after exposure. Under the mild stress stimulus (OFT), (multivariate) behavioral variation among individuals was consistent with a strong axis of personality (shy–bold) or coping style (reactive–proactive) variation. However, behavioral responses to a moderate stressor (SPA) were less repeatable, and robust statistical support for repeatable endocrine state over the full sampling period was limited to 11‐ketotestosterone. Although post hoc analysis suggested cortisol expression was repeatable over short time periods, qualitative relationships between behavior and glucocorticoid levels were counter to our a priori expectations. Thus, while our results clearly show among‐individual differences in behavioral and endocrine traits associated with stress response, the correlation structure between these is not consistent with a simple proactive–reactive axis of integrated stress‐coping style. Additionally, the low repeatability of cortisol suggests caution is warranted if single observations (or indeed repeat measures over short sampling periods) of glucocorticoid traits are used in ecological or evolutionary studies focussed at the individual level.  相似文献   

18.
Sheriff MJ  Krebs CJ  Boonstra R 《Oecologia》2011,166(3):593-605
Predation is a central organizing process affecting populations and communities. Traditionally, ecologists have focused on the direct effects of predation—the killing of prey. However, predators also have significant sublethal effects on prey populations. We investigated how fluctuating predation risk affected the stress physiology of a cyclic population of snowshoe hares (Lepus americanus) in the Yukon, finding that they are extremely sensitive to the fluctuating risk of predation. In years of high predator numbers, hares had greater plasma cortisol levels at capture, greater fecal cortisol metabolite levels, a greater plasma cortisol response to a hormone challenge, a greater ability to mobilize energy and poorer body condition. These indices of stress had the same pattern within years, during the winter and over the breeding season when the hare:lynx ratio was lowest and the food availability the worst. Previously we have shown that predator-induced maternal stress lowers reproduction and compromises offspring’s stress axis. We propose that predator-induced changes in hare stress physiology affect their demography through negative impacts on reproduction and that the low phase of cyclic populations may be the result of predator-induced maternal stress reducing the fitness of progeny. The hare population cycle has far reaching ramifications on predators, alternate prey, and vegetation. Thus, predation is the predominant organizing process for much of the North American boreal forest community, with its indirect signature—stress in hares—producing a pattern of hormonal changes that provides a sensitive reflection of fluctuating predator pressure that may have long-term demographic consequences.  相似文献   

19.
4-Nonylphenol (4-NP) is a breakdown product of alkylphenolpolyethoxylates and can be found in almost all environmental water matrices. 4-NP can act as environmental stressor on fish, typically causing modulation of hypothalamic-pituitary-interrenal axis (HPI). To examine the effects of the xenoestrogen 4-NP or 17β-estradiol (E2) on induction of stress response mechanisms by evaluating the levels of proopiomelanocortin (POMC) mRNA, heat shock protein 70 (HSP70) mRNA and plasma cortisol, we exposed juvenile sole (Solea solea), under static condition for 7day, to either 10(-6) or 10(-8)M 4-NP, or 10(-8)M E2. In addition, plasma cortisol titers were correlated to the total antioxidant capacity (TAC), one of the oxidative stress parameters. 4-NP treatments resulted in high levels of POMC mRNA, HSP70 mRNA and plasma cortisol. On the contrary, E2 basically down-regulated POMC expression. Moreover, elevated cortisol levels in fish exposed to the highest dose of 4-NP were accompanied by low TAC. These results suggest that 4-NP modulates the sole HPI axis inducing a cortisol-mediated stress response. Specifically, we suggest that 4-NP affects brain POMC mRNA levels via non-estrogen receptor (ER)-mediated mechanism further supporting the ability of 4-NP to target multiple receptor systems.  相似文献   

20.
In cooperatively breeding groups of mammals, reproduction is usually restricted to a small number of individuals within the social group. Sexual development of mammals can be affected by social environment, but we know little regarding effects of the cooperative-breeding system on males. Cotton-top tamarin (Saguinus oedipus oedipus) offspring typically do not reproduce in their natal group, even though they may be physically mature. We examined neonatal and pubertal development in captive male cotton-top tamarins as an example of reproductive development within a cooperative-breeding system and to compare cotton-top tamarins with the general primate model. Puberty was characterized using both hormonal and physical measures. Data were collected on urinary levels of LH, testosterone (T), dihydrotestosterone (DHT), cortisol, and the ratio of DHT to T; testicular development; body weight; and breeding age. We determined that 1) pubertal LH secretion began at Week 37, 2) a surge of T secretion followed at Weeks 41-44, and 3) an increase in the metabolism of T to DHT may have occurred at an average age of 48.6 wk. Most of the rapid weight gain was completed by Week 24, before hormonal increases and rapid scrotal growth. We concluded that rapid pubertal testicular growth in captive cotton-top males was completed by an average 76 wk, but that completion of the individual pubertal spurt can occur between 56 and 122 wk. In a cooperative-breeding system, the opportunity for successful reproduction is dictated by the social environment, but we found no evidence that male offspring were developmentally suppressed in their natal social groups. Our findings suggest that puberty in male New World callitrichid primates occurs more quickly than puberty in Old World primates, even though both have similar patterns of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号