首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
TP53 is the most commonly mutated gene in head and neck cancer (HNSCC), with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis), a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1) inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC.  相似文献   

5.
p53 binds to cisplatin-damaged DNA   总被引:1,自引:0,他引:1  
We have previously shown that bacterially expressed p53 protein or p53 protein isolated from cis-diamminedichloroplatinum II (cisplatin)-damaged cells is capable of binding to double-stranded platinated DNA molecules lacking any p53 DNA binding sites. Here we report using various p53 mutants that two separate domains of p53 protein affect p53 binding to platinated DNA. Mutations within the central core of p53, the domain responsible for sequence-specific DNA binding activity, completely eliminated p53 binding to platinated DNA. Based on competition experiments p53 preferred binding to sequence-specific DNA molecules over platinated DNA molecules. However, p53 binding to platinated DNA molecules was significantly stronger than p53 interactions with DNA molecules lacking damage and a p53 consensus site. Finally, an antibody specific to the C-terminal domain of p53 (pAb421) which activates sequence-specific DNA binding activity inhibited p53 binding to platinated DNA. Taken together, these results suggest that in addition to binding to p53 DNA binding sites, p53 also interacts with cisplatin-damaged DNA molecules.  相似文献   

6.
7.
8.
9.
The p53 tumor suppressor protein plays key roles in protecting cells from tumorigenesis. Phosphorylation of p53 at Ser46 (p53Ser46) is considered to be a crucial modification regulating p53-mediated apoptosis. Because the activity of p53 is impaired in most human cancers, restoration of wild-type p53 (wt-p53) function by its gene transfer or by p53-reactivating small molecules has been extensively investigated. The p53-reactivating compounds Nutlin-3 and RITA activate p53 in the absence of genotoxic stress by antagonizing the action of its negative regulator Mdm2. Although controversial, Nutlin-3 was shown to induce p53-mediated apoptosis in a manner independent of p53 phosphorylation. Recently, RITA was shown to induce apoptosis by promoting p53Ser46 phosphorylation. Here we examined whether Nutlin-3 or RITA can overcome resistance to p53-mediated apoptosis in p53-resistant tumor cell lines lacking the ability to phosphorylate p53Ser46. We show that Nutlin-3 did not rescue the apoptotic defect of a Ser46 phosphorylation-defective p53 mutant in p53-sensitive tumor cells, and that RITA neither restored p53Ser46 phosphorylation nor induced apoptosis in p53Ser46 phosphorylation-deficient cells retaining wt-p53. Furthermore, treatment with Nutlin-3 or RITA together with adenoviral p53 gene transfer also failed to induce apoptosis in p53Ser46 phosphorylation-deficient cells either expressing or lacking wt-p53. These results indicate that neither Nutlin-3 nor RITA in able to induce p53-mediated apoptosis in the absence of p53Ser46 phosphorylation. Thus, the dysregulation of this phosphorylation in tumor cells may be a critical factor that limits the efficacy of these p53-based cancer therapies.  相似文献   

10.
11.
The Ink4/Arf locus encodes two tumour-suppressor proteins, p16Ink4a and p19Arf, that govern the antiproliferative functions of the retinoblastoma and p53 proteins, respectively. Here we show that Arf binds to the product of the Mdm2 gene and sequesters it into the nucleolus, thereby preventing negative-feedback regulation of p53 by Mdm2 and leading to the activation of p53 in the nucleoplasm. Arf and Mdm2 co-localize in the nucleolus in response to activation of the oncoprotein Myc and as mouse fibroblasts undergo replicative senescence. These topological interactions of Arf and Mdm2 point towards a new mechanism for p53 activation.  相似文献   

12.
Bcl-2 blocks p53-dependent apoptosis.   总被引:31,自引:5,他引:31       下载免费PDF全文
Adenovirus E1A expression recruits primary rodent cells into proliferation but fails to transform them because of the induction of programmed cell death (apoptosis). The adenovirus E1B 19,000-molecular-weight protein (19K protein), the E1B 55K protein, and the human Bcl-2 protein each cause high-frequency transformation when coexpressed with E1A by inhibiting apoptosis. Thus, transformation of primary rodent cells by E1A requires deregulation of cell growth to be coupled to suppression of apoptosis. The product of the p53 tumor suppressor gene induces apoptosis in transformed cells and is required for induction of apoptosis by E1A. The ability of Bcl-2 to suppress apoptosis induced by E1A suggested that Bcl-2 may function by inhibition of p53. Rodent cells transformed with E1A plus the p53(Val-135) temperature-sensitive mutant are transformed at the restrictive temperature and undergo rapid and complete apoptosis at the permissive temperature when p53 adopts the wild-type conformation. Human Bcl-2 expression completely prevented p53-mediated apoptosis at the permissive temperature and caused cells to remain in a predominantly growth-arrested state. Growth arrest was leaky, occurred at multiple points in the cell cycle, and was reversible. Bcl-2 did not affect the ability of p53 to localize to the nucleus, nor were the levels of the p53 protein altered. Thus, Bcl-2 diverts the activity of p53 from induction of apoptosis to induction of growth arrest, and it is thereby identified as a modifier of p53 function. The ability of Bcl-2 to bypass induction of apoptosis by p53 may contribute to its oncogenic and antiapoptotic activity.  相似文献   

13.
14.
15.
The cell-cycle effects of mTORC1 are not fully understood. We provide evidence that mTOR-raptor phosphorylates SGK1 to modulate p27 function. Cellular mTOR activation, by refeeding of amino acid-deprived cells or by TSC2 shRNA, activated SGK1 and p27 phosphorylation at T157, and both were inhibited by short-term rapamycin treatment and by SGK1 shRNA. mTOR overexpression activated both Akt and SGK1, causing TGF-beta resistance through impaired nuclear import and cytoplasmic accumulation of p27. Rapamycin or raptor shRNA impaired mTOR-driven p70 and SGK1 activation, but not that of Akt, and decreased cytoplasmic p27. mTOR/raptor/SGK1 complexes were detected in cells. mTOR phosphorylated SGK1, but not SGK1-S422A, in vitro. SGK1 phosphorylated p27 in vitro. These data implicate SGK1 as an mTORC1 (mTOR-raptor) substrate. mTOR may promote G1 progression in part through SGK1 activation and deregulate the cell cycle in cancers through both Akt- and SGK-mediated p27 T157 phosphorylation and cytoplasmic p27 mislocalization.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号