首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. Kosteletzkya virginica (L.) Presl., a dicotyledonous halophyte native to brackish tidal marshes, was grown on nutrient solution containing 0. 85, 170 or 255 mol m-3 NaCl, and the effects of external salinity on shoot growth and ion content of individual leaves were studied in successive harvests. Growth was stimulated by 85 mol m-3 NaCl and was progressively reduced at the two higher salinities. Growth suppression at high salinity resulted principally from decreased leaf production and area, not from accelerated leaf death. As is characteristic of halophytic dicots. K. virginica accumulated inorganic ions in its leaves, particularly Na+ and K+. However, the Na+ concentration of individual leaves did not increase with time, but remained constant or even declined, seeming to be well-coordinated with changes in water content. A striking feature of the ion composition of salinized plants was the development of a dramatic gradient in sodium content, with Na+ partitioned away from the most actively growing leaves. Salt-treated plants exhibited a strong potassium affinity, with foliar K+ levels higher in salinized plants than unsalinized plants after an initial decrease. These results suggest that selective uptake and transport, foliar compartmentation of Na+ and K+ in opposite directions along the shoot axis, and the regulation of leaf salt loads over time to prevent build-up of toxic concentrations are whole-plant features which enable K. virginica to establish favourable K+-Na+ relations under saline conditions.  相似文献   

2.
The response of Suaeda aegyptiaca (Hasselq.) Zoh. to various salinity treatments was tested in sand culture. Growth was promoted by NaCl and by Na2SO4 at all tested concentrations, but not by KCl. The effect of NaCl on growth was stronger than that of Na2SO4 and it increased gradually up to a 125 eq. m−3 optimum. Ion uptake was also affected by the different salts. Cl was taken up in similar quantities from KCl and from NaCl solutions and the content of the respective cations was also similar to one another. The presence of Na+ in the medium lowered the content of K+ in the plants and at the same time increased growth by as much as 900%. Transpiration was reduced and water use efficiency increased by Na+-salts. Highest water use efficiency was exhibited by plants which were treated with 125 eq. m−3 NaCl. It is concluded that Na+ at the macronutrient level has a specific promotive effect on the physiological processes of S. aegyptiaca. This effect is not due to replacement of K+ by Na+; neither can it be achieved by increasing the K+ concentration. Cl has an additional positive effect on growth of S. aegyptiaca. This effect is only expressed in the presence of Na+.  相似文献   

3.
Salt tolerance of the reed plant Phragmites communis   总被引:6,自引:0,他引:6  
Reed plants ( Phragmites communis Trinius) were grown at NaCl concentrations up to 500 m M and their growth, mineral contents and leaf blade osmotic potential were determined. Addition of NaCl up to 300 m M did not affect growth significantly. Sucrose, Cl-and Na+ concentrations in the shoots increased with the salinity of the medium and the shoot water content decreased. K+ always contributed most to the leaf osmotic potential. Even in the presence of 250 m M NaCl in the rooting medium, the leaf blade contained only 50 mM Na+, suggesting that the plants have an efficient mechanism for Na+ exclusion. 22Na+ uptake experiments suggested that the retranslo-cation of absorbed Na+ from shoots to the rooting medium lowered the uptake of Na+.  相似文献   

4.
Abstract. Nitellopsis cells grown in fresh water have a relatively low cytoplasmic Na+ (11 mol m−3) and high cytoplasmic K+ (90 mol m−3) content. A 30-min treatment with 100 mol m−3 external NaCl resulted in a high [Na+]c (90 mol m−3) and a low [K+]c (33 mol m−3), Subsequent addition of external Ca2+ (10 mol m−3) prevented Na+ influx and then [Na+]c decreased slowly. Changes in [K+]c were opposite to [Na+]c. During the recovery time vacuolar Na+ increased, while vacuolar K+ decreased. Since all these processes proceeded also under ice-cold conditions, the restoration of original cytoplasmic ion compositions is suggested to be a passive nature. The notion that the passive movement of ions across the tonoplast can act as an effective and economic mechanism of salt tolerance under transient or under mild salt stress conditions is discussed.  相似文献   

5.
Abstract. Xylem sap was collected from individual leaves of intact transpiring lupin plants exposed to increasing concentrations of NaCl by applying pneumatic pressure to the roots. Concentrations of Na+ and Cl in the xylem sap increased linearly with increases in the external NaCl concentration, averaging about 10% of the external concentration. Concentrations of K+ and NO3, the other major inorganic ions in the sap, were constant at about 2.5 and 1.5 mol m−3, respectively. There was no preferential direction of Na + or Cl to either young or old leaves: leaves of all ages received xylem sap having similar concentrations of Na+ and Cl, and transpiration rates (per unit leaf area) were also similar for all leaves. Plants exposed to 120–160 mol m−3 NaCl rapidly developed injury of oldest leaves; when this occurred, the Na+ concentration in the leaflet midrib sap had increased to about 40 mol m−3 and the total solute concentration to 130 osmol m−3. This suggests that uptake of salts from the transpiration stream had fallen behind the rate of delivery to the leaf and that salts were building up in the apoplast.  相似文献   

6.
The effects of NaCl on endogenous free levels of the poluamines putrescine, spermi dine and spermine, and the relationships between polyamines, K+ levels and Na+ accumulation were determined in leaves of the cultivated tomato ( Lycopersicon esculentum Mill.) and its wild, salt-tolerant relative L. pennellii (Correll) D' Arcy at different exposure times during a 32-day period. Both stress treatments (100 and 200 m M NaCl) decreased the levels of putrescine and spermidine, although to a different degree for the cultivated and wild tomato species. The spermine levels did not decrease with salinity in L. pennellii over the salinization period, whereas they decreased in L. esculentum , except at the first application of the 100m M NaCl treatment. In both species, the changes induced by salinity in total polyamines and K+ were very similar, with the accumulation of Na+ in the leaf being concomitant with a decrease in both total polyamines and K+. This suggests that the main role of the polyamines in the leaf tissues. In this sense, a direct relationship between total polyamines and K+, and inverse relationship between polyamines and Na+ and between K+ and Na+ were found for both species. In the short term (up to 4 days) a peculiar physiological behavior was found in L. pennellii , as the total polyamine and K+ levels decreased at 100 m M but not at 200 m M NaCl, while after this time the latter plants had values lower than those of the 100 m M NaCl-treated plants at day 11.  相似文献   

7.
Abstract. Kosteletzkya virginica (L.) Presl., a dicot halophyte native to brackish tidal marshes, was grown on nutrient solution containing 0. 85, 170 or 255 mol m 3 NaCl, and the effects of external salinity on root growth, ion and water levels, and lipid content were examined in successive harvests. Root growth paralleled shoot growth trends, with some enhancement observed at 85 mol m 3 NaCl and a reduction noted at the higher salinities. Root Na+ content increased with increasing external NaCl, but remained constant with time for each treatment. K+ content, although lower in salt-grown plants after 14 d salinization, subsequently increased to levels comparable to unsalinized plants. A strong K+ affinity was reflected in the increased K+/Na+ selectivity of salt-grown plants and by their low Na+/K+ ratios. Cl levels rose in salinized plants and values were double or more those for Na+, indicating the possibility of a sodium-excluding mechanism in roots. Root phospholipids and sterols, principal membrane constituents, were maintained or elevated and the free sterol/phospholipids ratio increased in salinized K. virginica plants, suggesting retention of overall membrane structure and decreased permeability. This response, considered in light of root calcium maintenance and high potassium levels, suggests that salinity-induced changes in membrane lipid composition may be important in preventing K+ leakage from cells.  相似文献   

8.
Gas exchange parameters, water relations and Na+/Cl- content were measured on leaves of one-year-old sweet orange ( Citrus sinensis [L.] Osbeck cv. Hamlin) seedlings grown at increasing levels of salinity. Different salts (NaCl, KCl and NaNO3) were used to separate the effects of Cl and Na+ on the investigated parameters. The chloride salts reduced plant dry weight and increased defoliation. Accumulation of Cl in the leaf tissue caused a sharp reduction in photosynthesis and stomatal conductance. By contrast, these parameters were not affected by leaf Na+ concentrations of up to 478 m M in the tissue water. Leaf water potentials reached values near −1.8 MPa at high NaCl and KCl supplies. This reduction was offset by a decrease in the osmotic potential so that turgor was maintained at or above control values. The changes in osmotic potential were closely correlated with changes in leaf proline concentrations. Addition of Ca2+ (as calcium acetate) increased growth and halved defoliation of salt stressed plants. Furthermore, calcium acetate decreased the concentration of Cl and Na+ in the leaves, and increased photosynthesis and stomatal conductance. Calcium acetate also counteracted the reductions in leaf water and osmotic potentials induced by salinity. In addition, calcium acetate inhibited the accumulation of proline in the leaves which affected the reduction in osmotic potential. These results indicate that adverse effects of salinity in Citrus leaves are caused by accumulation of chloride.  相似文献   

9.
Seedlings of two tree species from the Atlantic lowlands of Costa Rica, Ochroma la-gopus Swartz, a fast-growing pioneer species, and Pentaclethra macroloba (Willd.) Kuntze, a slower-growing climax species, were grown under enriched atmospheric CO2 in controlled environment chambers. Carbon dioxide concentrations were maintained at 350 and 675 μl 1−1 under photosynthetic photon flux densities of 500 μol m−2 s−1 and temperatures of 26°C day and 20°C night. Total biomass of both species increased significantly in the elevated CO2 treatment; the increase in biomass was greatest for the pioneer species, O. lagopus . Both species had greater leaf areas and specific leaf weights with increased atmospheric CO2. However, the ratio of non-pho-tosynthetic tissue to leaf area also increased in both species leading to decreased leaf area ratios. Plants of both species grown at 675 μl 1−1 CO2 had lower chlorophyll contents and photosynthesis on a leaf area basis than those grown at 350 μl 1−1. Reductions in net photosynthesis occurred despite increased internal CO2 concentrations in the CO2-enriched treatment. Stomatal conductances of both species decreased with CO2-enrichment resulting in significant increases in water use efficiency.  相似文献   

10.
Development of salt-tolerant genotypes is central both to remediation of salinity-affected land and to meet increasing global food demand, which has been driving expansion of cropping into marginal areas. The bottleneck of any breeding programme is the lack of a reliable screening technique. This study tested the hypothesis that the ability of plants to retain K+ under saline conditions is central to their salt tolerance. Using seven barley cultivars contrasting in salt tolerance (CM72, Numar, ZUG293, ZUG95, Franklin, Gairdner, ZUG403), a comprehensive study was undertaken of whole-plant (growth rate, biomass, net CO2 assimilation, chlorophyll fluorescence, root and leaf elemental and water content) and cellular (net fluxes of H+, K+, Na+ and Ca2+) responses to various concentrations of NaCl (20–320 m m ). Na+ selective microelectrodes were found to be unsuitable for screening purposes because of non-ideal selectivity of the commercially available Na+ LIX. At the same time, our results show very strong negative correlation between the magnitude of K+ efflux from the root and salt tolerance of a particular cultivar. K+ efflux from the mature root zone of intact 3-day-old seedlings following 40 min pretreatment with 80 m m NaCl was found to be a reliable screening indicator for salinity tolerance in barley. As a faster and more cost-effective alternative to microelectrode measurements, a procedure was developed enabling rapid screening of large numbers of seedlings, based on amount of K+ leaked from plant roots after exposure to NaCl.  相似文献   

11.
Abstract. Phloem sap was collected from petioles of growing and fully expanded leaves of lupins exposed to 0–150 mol m−3 [NaCl]ext, for various periods of time. Sap bled from growing leaves only after the turgor of the shoot was raised by applying pneumatic pressure to the root. Increased pressure was also needed to obtain sap from fully expanded leaves of plants at high [NaCl]ext. Exposure to NaCl caused a rapid rise in the Na+ concentration in phloem sap to high levels. The Na+ concentration reached 20 mol m−3 within a day of exposure and reached a plateau of about 60 mol m−3 in plants at 50–150 mol m−3 [NaCl]ext, after a week. There was a slower, smaller increase in the Cl concentration. K+ concentrations in phloem sap were not affected by [NaCl]ext. Cl concentrations in phloem sap collected from growing leaves were similar to those from old leaves while Na+ concentrations were somewhat increased, suggesting that there was no reduction in the salt content of the phloem sap while it flowed within the shoot to the apex. Calculations of ion fluxes in xylem and phloem sap indicated that Na+ and Cl fluxes in the phloem from leaves of plants at high NaCl could be equal to those in the xylem. This prediction was borne out by observations that Na+ and Cl concentrations in recently expanded leaves remained constant.  相似文献   

12.
Abstract. Three parameters influencing the capacity for carbon accumulation, i.e. photosynthesis, respiration, and leaf extension growth, were studied in Beta vulgaris L. (sugar beet) cultured in nutrient solution containing 0.5 to 500 mol m−3 NaCl. Leaf extension growth was the parameter most sensitive to salinity: the initial rate of leaf extension and final leaf length each declined linearly with increase in external NaCl concentration. Photosynthetic O2 evolution of thin leaf slices did not decline until salinity levels reached 350 to 500 mol m−3 NaCl, while respiratory O2 consumption was not affected by salinity throughout the range. The results suggest that the influence of salinity on the capacity for carbon accumulation in B. vulgaris occurs primarily through reduction in the area of photosynthetic surface.  相似文献   

13.
Long‐term salt effects on plant growth have often been related to direct ion toxicity due to the accumulation of high ion concentrations in plant tissue. This work examines the relative importance of endogenous ABA, as well as Na+ and Cl toxicity, in the inhibition of leaf growth and photosynthesis, in bean plants grown at 1, 25, 50 and 75 m M NaCl until the fruit‐bearing stage. All salt‐treated plants showed very high leaf Cl concentrations, with little difference between plants exposed to 50 or 75 m M NaCl. The 25 and 50 mM salt‐treated plants were able to successfully exclude Na+ from their leaves, and only suffered an initial decline in the rate of leaf growth. Plants exposed to 75 m M NaCl showed an increase in Na+ leaf concentrations with an accompanying decrease in growth and photosynthesis as salt exposure progressed. A high correlation was found between leaf Na+ and leaf growth. Leaf ABA significantly increased with salt supply, and was highly correlated with both leaf Na+ and leaf growth. Our results suggest that in bean plants under long‐term salt stress, leaf ABA may participate in the regulation of leaf growth, and leaf Na+ would be at least partly responsible for increased ABA levels.  相似文献   

14.
15.
Abstract. Growth rates and levels of minerals, Na+, K+, Mg++, Ca++, and water were measured in dicotyledonous halophytes grown along a salinity gradient from fresh water to 720 mol m−3 NaCl in a controlled environment greenhouse. Ten test species from the families Chenopodiaceae, Aizoaceae, and Batidaceae exhibited growth stimulation by 180 mol m−3 NaCl and were classified as euhalophytes. Ten others from the families Chenopodiaceae, Aizoaceae, Asteraceae, Brassicaceae, Polygonaceae, Boraginaceae, Malvaceae, and Plumbaginaceae showed their best growth on fresh water and were classified miohalophytes. Salt, and particularly sodium, accumulated in all halophytes but to a significantly greater extent among euhalophytes than miohalophytes. The water content of most species increased when grown on 180 mol m−3 NaCl compared to fresh water; but at higher salinities some of the species underwent dehydration. Dehydration of the succulent S. europaca was not coupled to a proportional decrease in growth. Water content and cation accumulation in euhalophytes appeared to be coordinated to produce a constant osmotic potential gradient within the shoot tissues relative to the external salinity. In contrast, miohalophytes did not appear to regulate osmotic potential as closely as euhalophytes.  相似文献   

16.
The effects of NaCl and replacement of K+ by Na+ on the lipid composition of the two sugar beet inbred lines FIA and ADA were studied (a) with increasing additions of NaCl to the basal medium, and (b) with increasing replacement of K+ by Na+ at the same total concentration as in the basal medium. Direct relations were noted between NaCl concentration of the nutrient solution and the phospholipid concentration in the roots of FIA, the genotype characterized by a low K+/Na+ ratio, as well as between NaCl in the medium and the phospholipid concentration in the shoots of ADA, the genotype with a high K +/Na + ratio. The sulfolipid level in the roots of FIA was maintained at higher NaCl concentrations, while it was decreased in ADA. The glycolipid concentration in the shoots of ADA and the degree of unsaturation of the fatty acids of the total lipid fraction were decreased by salinity, indicating reduced biosynthesis of chloroplast glycolipids and/or accelerated oxidation of these lipids in the presence of NaCl.
In the Na+ for K+ replacement experiment a low content of K+ in the medium resulted in decreased levels of total lipids, phospholipids and sulfolipid in the roots of both genotypes, which did not relate to root growth. K+-leakage from the roots at low K+-level in the medium may be reduced by the increase in saturation of the lipids. In the shoots of ADA increased levels of total lipids, phospholipids and Sulfolipid were noted at a low K+-concentration of the nutrient solution.  相似文献   

17.
Effects of salinity and phosphate on ion distribution in lupin leaflets   总被引:1,自引:0,他引:1  
Lupin ( Lupinus luteus L. cv. Weiko III) were grown in nutrient solution over a range of inorganic phosphate (Pi) concentrations, with or without 50 m M NaCl. Plants with high Pi (2 m M ) and salt showed progressive leaf necrosis and had higher concentrations of total phosphate than plants grown with high Pi alone. Most of the extra total phosphate in salt treated plants was in the Pi form. Pi supply did not influence Na+, K+ or Cl concentrations in epidermal vacuoles or mesophyll cells. However, epidermal vacuoles accumulated more monovalent cations (Na+ and K+) than Cl, and in vacuoles of plants grown with 0.1 m M Pi additional Pi was accumulated, possibly to maintain charge balance. Plants grown with 2 m M Pi did not accumulate additional Pi in epidermal vacuoles, but showed higher phosphorus levels in cell walls. It is suggested that at moderate phosphorus concentrations Pi plays a role in epidermal osmotic adjustment, possibly explaining the beneficial role of additional phosphorus on salt stressed plants. At high Pi supply with salt, Pi does not contribute to osmotic adjustment and instead accumulates in cell walls. However, the cause of leaf damage under conditions of high phosphorus supply and salinity is still not entirely clear.  相似文献   

18.
Bean ( Phaseolus vulgaris L. cv. Golden Saxa) plants were grown under low artificial light or under natural daylight. The rate of net photosynthesis (PN) was measured at: CO2 partial pressure, p(CO2), of 0.03, 0.09 or 0.15 kPa; O2 partial pressure, p(O2), of 2, 21 or 31 kPa and at light intensities of 350 or 1000 μmol m−2 s−1 (photosynthetically active radiation). In plants which had been grown under natural light, stimulation of PN at 21 kPa p(O2) was found only at elevated p(CO2) and high light. It is proposed that this phenomenon is dependent on a high capacity of the photosynthetic apparatus to regenerate ribulose 1.5-bisphosphate.  相似文献   

19.
Salinity response of a freshwater charophyte, Chara vulgaris   总被引:2,自引:2,他引:0  
Abstract. Chara vulgaris L. growing in an oligohaline lake was adapted to laboratory conditions and subjected to long-term salinity treatments ranging from 0 to 350 mol m 3 NaCl added to the lake water (40–680 mosmol kg 1). Osmotic potential and concentration of the main osmotically active solutes (K+, Na+, Mg2+, Cl and sucrose) in the vacuolar sap of the central internodal cells were estimated. C. vulgaris did regulate turgor but incompletely. Turgor decreased from 335 mosmol kg 1 under control conditions to 52–111 mosmol kg 1 at 350 mol m 3 NaCl. The enhancement of πi was achieved by increase in both ions and sucrose. Sterile and fertile plants differed in their response to osmotic stress. In sterile plants, the ions accounted for about 87% of the vacuolar osmotic potential. The increase of πi under osmotic stress was exclusively due to an accumulation of Na+ and Cl-. In fertile plants, sucrose accounted for about 35% of πi and ions for about 51% Under osmotic stress, sucrose content increased together with the ionic content of Na+ and Cl-.  相似文献   

20.
Abstract. The objective of the present work was to study the effect of nitrogen deficiency on drought sensitivity of tall fescue plants. The authors compared photosynthetic and stomatal behaviour of plants grown at either high (8 mol m−3) or low (0.5 mol m−3) nitrogen levels during a drought cycle followed by rehydration. Other processes investigated were stomatal and non-stomatal inhibition of leaf photosynthesis, water use efficiency and leaf rolling. Plants were grown in pots in controlled conditions on expanded clay. A Wescor in situ hygrometer placed on the leaf base outside the assimilation chamber permitted, simultaneously to leaf gas exchange measurements, monitoring of leaf water potential. Drought was imposed by withholding water from the pot. CO2 uptake and stomatal conductance decreased and leaves started to roll at a lower leaf water potential in the high-N than in the low-N grown plants. Stomatal inhibition of leaf photosynthesis seemed larger in the low-N than in the high-N plants. Water-use efficiency increased more in the high-N than in the low-N grown plants during the drought. The decrease of photosynthesis was largely reversible after rehydration in low-N but not in high-N leaves. The authors suggest that low-N plants avoid water deficit rather than tolerate it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号