首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Uganda has a large population of goats, predominantly from indigenous breeds reared in diverse production systems, whose existence is threatened by crossbreeding with exotic Boer goats. Knowledge about the genetic characteristics and relationships among these Ugandan goat breeds and the potential admixture with Boer goats is still limited. Using a medium‐density single nucleotide polymorphism (SNP) panel, we assessed the genetic diversity, population structure and admixture in six goat breeds in Uganda: Boer, Karamojong, Kigezi, Mubende, Small East African and Sebei. All the animals had genotypes for about 46 105 SNPs after quality control. We found high proportions of polymorphic SNPs ranging from 0.885 (Kigezi) to 0.928 (Sebei). The overall mean observed (HO) and expected (HE) heterozygosity across breeds was 0.355 ± 0.147 and 0.384 ± 0.143 respectively. Principal components, genetic distances and admixture analyses revealed weak population sub‐structuring among the breeds. Principal components separated Kigezi and weakly Small East African from other indigenous goats. Sebei and Karamojong were tightly entangled together, whereas Mubende occupied a more central position with high admixture from all other local breeds. The Boer breed showed a unique cluster from the Ugandan indigenous goat breeds. The results reflect common ancestry but also some level of geographical differentiation. admixture and f4 statistics revealed gene flow from Boer and varying levels of genetic admixture among the breeds. Generally, moderate to high levels of genetic variability were observed. Our findings provide useful insights into maintaining genetic diversity and designing appropriate breeding programs to exploit within‐breed diversity and heterozygote advantage in crossbreeding schemes.  相似文献   

2.
3.
This study assessed the genetic diversity in the growth hormone 1 gene (GH1) within and between South African goat breeds. Polymerase chain reaction‐targeted gene amplification together with Illumina MiSeq next‐generation sequencing (NGS) was used to generate the full length (2.54 kb) of the growth hormone 1 gene and screen for SNPs in the South African Boer (SAB) (= 17), Tankwa (= 15) and South African village (= 35) goat populations. A range of 27–58 SNPs per population were observed. Mutations resulting in amino acid changes were observed at exons 2 and 5. Higher within‐breed diversity of 97.37% was observed within the population category consisting of SA village ecotypes and the Tankwa goats. Highest pairwise FST values ranging from 0.148 to 0.356 were observed between the SAB and both the South African village and Tankwa feral goat populations. Phylogenetic analysis indicated nine genetic clusters, which reflected close relationships between the South African populations and the other international breeds with the exception of the Italian Sarda breeds. Results imply greater potential for within‐population selection programs, particularly with SA village goats.  相似文献   

4.
The Lidia bovine breed is distinguished for its low genetic exchangeability given its selection on aggressive behavior, its management uniqueness and its subdivided structure. In this study, we present a comprehensive genome‐wide analysis of genetic diversity, population structure and admixture of 468 animals from Mexican and Spanish Lidia breed populations and 64 samples belonging to 10 Spanish native and American‐creole breeds using 37 148 single nucleotide polymorphisms. We found similar average inbreeding values in the Lidia breed, with different distributions within groups; variability of inbreeding values among Spanish lineages was significant and no differences were found among the Mexican sub‐populations. Together, the high FIS of the lineages and the behavior of the runs of homozygosity are consequences of the lineage's small effective population sizes, contributing to their inbreeding increase. Population admixture analysis discarded any influence on the genetic structure of the Lidia populations from the Spanish native and American‐creole breeds. In addition, both Lidia populations depicted different genetic origins, with the exception of some Mexican individuals whose origins traced back to recent Spanish importations.  相似文献   

5.
Information about genetic diversity and population structure among goat breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of goat breeds. Here, we measured genetic diversity and population structure in multiple Chinese goat populations, namely, Nanjiang, Qinggeda, Arbas Cashmere, Jining Grey, Luoping Yellow and Guangfeng goats. A total of 193 individuals were genotyped for about 47 401 autosomal single nucleotide polymorphisms (SNPs). We found a high proportion of informative SNPs, ranging from 69.5% in the Luoping Yellow to 93.9% in the Jining Grey goat breeds with an average mean of 84.7%. Diversity, as measured by expected heterozygosity, ranged from 0.371 in Luoping Yellow to 0.405 in Jining Grey goat populations. The average estimated pair‐wise genetic differentiation (FST) among the populations was 8.6%, ranging from 0.2% to 16% and indicating low to moderate genetic differentiation. Principal component analysis, genetic structure and phylogenetic tree analysis revealed a clustering of six Chinese goat populations according to geographic distribution. The results from this study can contribute valuable genetic information and can properly assist with within‐breed diversity, which provides a good opportunity for sustainable utilization of and maintenance of genetic resource improvements in the Chinese goat populations.  相似文献   

6.
Most cashmere goats are found in northern China and Mongolia. They are regarded as precious resources for their production of high quality natural fibre for the textile industry. It was the first time that the genetic diversity and population structure of nine Chinese cashmere populations has been assessed using 14 ISAG/FAO microsatellite markers. In addition, two Iranian populations and one West African goat population were genotyped for comparison. Results indicated that the genetic diversity of Chinese cashmere goats was rich, but less than those of the Iranian goat populations. All pairwise FST values between the Chinese cashmere goat populations reached a highly significant level (P < 0.001), suggesting that they should all be considered as separate breeds. Finally, clustering analysis divided Chinese cashmere goats into at least two clusters, with the Tibetan Hegu goats alone in one cluster. An extensive admixture was detected among the Chinese goat breeds (except the Hegu), which have important implications for breeding management.  相似文献   

7.
After domestication 11 000 years ago in Asia Minor, the goat followed human migration to Europe and Asia. It was then introduced in Africa and is now raised all over the world. In this study, we exploited a dataset composed of 54 000 SNPs (Illumina goat DNA chip) to analyze the genetic diversity of 223 individuals belonging to eight French breeds (Alpine, Angora, Corse, Fossés, Poitevine, Provençale, Pyrénées and Saanen). Analyses carried out included individual‐based approaches (principal component analysis and population structure) and population‐based approaches (phylogenetic tree constructions). The results of the genetic diversity analyses revealed that French breeds are clearly differentiated, in particular, the Angora breed that originates from south west Asia. The Provençale breed shows a very original genetic pattern that could be the result of ancient admixture. Then, selection signatures were detected by identifying regions of outlying genetic differentiation between populations. Five genomic regions were detected under selection on chromosomes 5, 6, 11, 13 and 20, revealing mainly soft selective sweeps and a few hard selective sweeps and highlighting candidate genes that had been selected for during the evolutionary history of these breeds. Among them, two coat coloration genes (ADAMTS20 and ASIP) and one gene related to milk composition (CSN1S1) were involved.  相似文献   

8.
Genetic diversity in Swiss goat breeds based on microsatellite analysis   总被引:18,自引:0,他引:18  
Genetic diversity in eight Swiss goat breeds was estimated using PCR amplification of 20 bovine microsatellites on 20-40 unrelated animals per breed. In addition, the Creole breed from the Caribbean and samples of Ibex and Bezoar goat were included. A total of 352 animals were tested. The bovine microsatellites chosen amplified well in goat. The average heterozygosity within population was higher in domestic goat (0.51-0.58) than in Ibex (0.17) and Bezoar goat (0.19). Twenty-seven per cent of the genetic diversity in the total population could be attributed to differences between the populations. However, with the exclusion of Ibex from the total population, this proportion dropped to 17%. Principal component analysis showed that all Swiss goat breeds are closely related, whereas the Creole breed, Ibex and Bezoar goat are clearly distinct from all eight Swiss breeds.  相似文献   

9.
We used genotype data from the caprine 50k Illumina BeadChip for the assessment of genetic diversity within and between 10 local Swiss goat breeds. Three different cluster methods allowed the goat samples to be assigned to the respective breed groups, whilst the samples of Nera Verzasca and Tessin Grey goats could not be differentiated from each other. The results of the different genetic diversity measures show that Appenzell, Toggenburg, Valais and Booted goats should be prioritized in future conservation activities. Furthermore, we examined runs of homozygosity (ROH) and compared genomic inbreeding coefficients based on ROH (FROH) with pedigree‐based inbreeding coefficients (FPED). The linear relationship between FROH and FPED was confirmed for goats by including samples from the three main breeds (Saanen, Chamois and Toggenburg goats). FROH appears to be a suitable measure for describing levels of inbreeding in goat breeds with missing pedigree information. Finally, we derived selection signatures between the breeds. We report a total of 384 putative selection signals. The 25 most significant windows contained genes known for traits such as: coat color variation (MITF, KIT, ASIP), growth (IGF2, IGF2R, HRAS, FGFR3) and milk composition (PITX2). Several other putative genes involved in the formation of populations, which might have been selected for adaptation to the alpine environment, are highlighted. The results provide a contemporary background for the management of genetic diversity in local Swiss goat breeds.  相似文献   

10.
The Chato Murciano (CM), a pig breed from the Murcia region in the southeastern region of Spain, is a good model for endangered livestock populations. The remaining populations are bred on approximately 15 small farms, and no herdbook exists. To assess the genetic threats to the integrity and survival of the CM breed, and to aid in designing a conservation program, three genetic marker systems – microsatellites, SNPs and mtDNA – were applied across the majority of the total breeding stock. In addition, mtDNA and SNPs were genotyped in breeds that likely contributed genetically to the current CM gene pool. The analyses revealed the levels of genetic diversity within the range of other European local breeds (He = 0.53). However, when the eight farms that rear at least 10 CM pigs were independently analyzed, high levels of inbreeding were found in some. Despite the evidence for recent crossbreeding with commercial breeds on a few farms, the entire breeding stock remains readily identifiable as CM, facilitating the design of traceability assays. The genetic management of the breed is consistent with farm size, farm owner and presence of other pig breeds on the farm, demonstrating the highly ad hoc nature of current CM breeding. The results of genetic diversity and substructure of the entire breed, as well as admixture and crossbreeding obtained in the present study, provide a benchmark to develop future conservation strategies. Furthermore, this study demonstrates that identifying farm‐based practices and farm‐based breeding stocks can aid in the design of a sustainable breeding program for minority breeds.  相似文献   

11.
The knowledge of the genetic relationship and admixture among neighbouring populations is crucial for conservation efforts. The aim of this study was to analyse the genetic diversity of five Italian sheep breeds (Appenninica, Garfagnina Bianca, Massese, Pomarancina and Zerasca) using a panel of 24 microsatellite markers. Blood samples from 226 individuals belonging to the aforementioned populations were obtained and genotyped. All the investigated breeds showed a significant heterozygote deficiency caused by the high level of inbreeding indicated also by the high level of FIS (0.146). Genetic differentiation between breeds was moderate (FST = 0.05) but significant and the individuals could be assigned to their breeds with an high success rate even if the inter-individual distances showed that few animals clustered separately from the other individuals of the same breed, especially for Pomarancina breed. The genetic distances reflect the historical knowledge of these breeds and some patterns of ancestral and recent gene flow between neighbour populations arise. The clustering analysis detects the presence of six clusters. Massese and Zerasca breeds were grouped together as well as Appenninica and Pomarancina with the latter forming two distinct clusters equally represented. The formation of this last breed is occurred with the absorption of individuals of the Appenninica breed and the gene flow probably continued in these recent years allowing the presence of a population substructure for Pomarancina breed. Such substructure supports the high level of heterozygote deficiency found for this breed despite the relatively high population size. The five populations analysed presented some genetic similarities but a clear uniqueness of the populations has been showed for almost all of them. Special attention to monitor genetic variability and to organize mating plans should be given especially for the three endangered breeds.  相似文献   

12.
The objectives of the present experiment were to evaluate a low-density SNP array designed for the molecular characterisation of gene banks and to assess the genetic diversity and population structure of beef cattle herds from an Argentinean research station. Forty-nine animals from three breeds (Angus, Hereford, and Argentinean Creole) were genotyped using the multi-species IMAGE001 60-K SNP array (10 K for cattle). Genotypes of other 19 cattle populations from Argentina, other American countries, and Europe were included in the study. Of special interest was the characterization of the Argentinean Creole, the only autochthonous cattle breed in the country. Due to the merging of different datasets, approximately 5 K SNPs were effectively used. Genetic differentiation (FST), principal component analysis, neighbour-joining tree of Reynolds distances and ancestry analysis showed that autochthonous American breeds are clearly differentiated, but all have genetic influences of Iberian cattle. The analysed herds of Argentinean Creole showed no evidence of recent admixture and represent a unique genetic pool within local American breeds. An experimental herd and the local commercial Hereford population have also diverged, probably due to the influence of current selection objectives in the breed. Our results illustrate the utility of using low-cost, low density SNP arrays in the evaluation of animal genetic resources. This type of panels could become a very useful resource in developing countries, where most endangered cattle breeds are located. The results also reinforce the importance of experimental herds as reservoir of genetic diversity, particularly in the case of local breeds under-represented in traditional production systems.  相似文献   

13.
Iranian livestock diversity is still largely unexplored, in spite of the interest in the populations historically reared in this country located near the Fertile Crescent, a major livestock domestication centre. In this investigation, the genetic diversity and differentiation of 10 Iranian indigenous fat‐tailed sheep breeds were investigated using 18 microsatellite markers. Iranian breeds were found to host a high level of diversity. This conclusion is substantiated by the large number of alleles observed across loci (average 13.83, range 7–22) and by the high within‐breed expected heterozygosity (average 0.75, range 0.72–0.76). Iranian sheep have a low level of genetic differentiation, as indicated by the analysis of molecular variance, which allocated a very small proportion (1.67%) of total variation to the between‐population component, and by the small fixation index (FST = 0.02). Both Bayesian clustering and principal coordinates analysis revealed the absence of a detectable genetic structure. Also, no isolation by distance was observed through comparison of genetic and geographical distances. In spite of high within‐breed variation, signatures of inbreeding were detected by the FIS indices, which were positive in all and statistically significant in three breeds. Possible factors explaining the patterns observed, such as considerable gene flow and inbreeding probably due to anthropogenic activities in the light of population management and conservation programmes, are discussed.  相似文献   

14.
15.
Goats have played a key role as source of nourishment for humans in their expansion all over the world in long land and sea trips. This has guaranteed a place for this species in the important and rapid episode of livestock expansion triggered by Columbus’ arrival in the Americas in the late 1400s. The aims of this study are to provide a comprehensive perspective on genetic diversity in American goat populations and to assess their origins and evolutionary trajectories. This was achieved by combining data from autosomal neutral genetic markers obtained in more than two thousand samples that encompass a wide range of Iberian, African and Creole goat breeds. In general, even though Creole populations differ clearly from each other, they lack a strong geographical pattern of differentiation, such that populations of different admixed ancestry share relatively close locations throughout the large geographical range included in this study. Important Iberian signatures were detected in most Creole populations studied, and many of them, particularly the Cuban Creole, also revealed an important contribution of African breeds. On the other hand, the Brazilian breeds showed a particular genetic structure and were clearly separated from the other Creole populations, with some influence from Cape Verde goats. These results provide a comprehensive characterisation of the present structure of goat genetic diversity, and a dissection of the Iberian and African influences that gave origin to different Creole caprine breeds, disentangling an important part of their evolutionary history. Creole breeds constitute an important reservoir of genetic diversity that justifies the development of appropriate management systems aimed at improving performance without loss of genomic diversity.  相似文献   

16.
The genetic relationships of three Indian horse breeds—Marwari, Spiti, and Kathiawari were studied by genotyping 96 individuals with 20 polymorphic microsatellite markers. A total of 157 alleles were detected across 20 polymorphic loci. The Marwari population showed the highest allelic diversity (A = 5.7 and Ar = 5.14), followed by Spiti (A = 4.9 and Ar = 4.74) and Kathiawari (A = 4.1 and Ar = 3.82). The gene diversity was highest in the Spiti population (He = 0.67), followed by Marwari (He = 0.66) and Kathiawari (He = 0.59). Within population inbreeding estimates (f) in Marwari, Spiti and Kathiawari breeds were 0.18, 0.08, and 0.07, respectively, suggesting high level of inbreeding in these breeds. Analysis of bottleneck revealed evidence of recent bottleneck in Spiti and Kathiawari populations. Pair-wise Fst analysis, AMOVA and assignment tests demonstrated high genetic differentiation and low gene flow between populations. The information about genetic diversity and population structure will be useful for the future development of effective breeding management in order to preserve these Indian horse breeds.  相似文献   

17.
The heterogeneity of climate and different agro-ecological conditions in Iran have resulted in development of 27 indigenous sheep breeds. Wild Asiatic mouflon (Ovis orientalis) is believed to be the ancestor of Iranian sheep. Evaluation of genetic diversity and population structure within and among domestic breeds has important implications for animal breeding programs and genetic resources management. Based on 50K SNP genotype data, we studied the genetic diversity of five indigenous Iranian sheep breeds: Afshari (n = 37), Moghani (n = 34), Qezel (n = 35), Zel (n = 46) and Lori-Bakhtiari (n = 46), and Asiatic mouflon (n = 8) sampled from Iran. Furthermore, genetic diversity and the breed admixture of Iranian sheep were assessed on a larger geographic scale using a reference panel comprising: three indigenous Afghan breeds – Arabi (n = 15), Balouchi (n = 15) and Gadik (n = 15); three indigenous breeds from Turkey and Cyprus – Cyprus Fat Tail (n = 30), Karakas (n = 18) and Norduz (n = 20); and three commercial European breeds – Suffolk (n = 19), Comisana (n = 24) and Engadine Red Sheep (n = 24). The results revealed that the investigated breeds are divided into five genetically distinct clusters according to their geographic origin. Afshari was closest to the local mouflon population and showed signs of mouflon admixture. Qezel was identified as a hybrid sheep breed. Much evidence supported the Afghan breeds being identical. Inbreeding values, which were estimated based on ROHs, were highest for Suffolk (FROH = 0.0544) and lowest for Balouchi (FROH = 0.0078). In conclusion, analysis of selected breeds from neighboring countries along with Asiatic mouflon gave a deeper insight into the evolutionary history and origin of Iranian sheep with important implications for future breed management.  相似文献   

18.
Genetic diversity and variability in Alpine sheep breeds   总被引:1,自引:1,他引:0  
The aim of this study was to analyze, through the use of microsatellite molecular markers, the genetic diversity and variability of nine Alpine sheep breeds reared in Italy (Bergamasca, Biellese, Schwarzbraunes Bergschaf, Tiroler Bergschaf, and Schnalserschaf), Germany (Brillenschaf and Weisses Bergschaf) and Slovenia (Bovška and Jezerzkǒ-Solčavska), and one Italian crossbreed population. Allelic richness was rather high in each breed highlighting a considerable genetic diversity. However, the study evidenced a significant departure from Hardy–Weinberg equilibrium in all analyzed breeds caused by a heterozygote deficiency. Such lack seems to be caused both to the presence of population substructure within breed and to a rather high level of inbreeding. The genetic differentiation among breed was rather low (FST = 0.057) but significant. The clustering analysis performed with STRUCTURE detected the presence of eight clusters; Schwarzbraunes Bergschaf and Tiroler Bergschaf were grouped together and Biellese and Bergamasca as well, evidencing a high similarity of their genetic make up. Reynolds’ genetic distance estimates confirmed the close relationship between these pairs of breeds. Moreover, Bovška, Jezerzkǒ-Solčavska and Brillenschaf resulted rather similar as expected according to their region of origin and to their common ancestors. Molecular coancestry confirmed as well such findings, suggesting that the studied breeds had origin from different ancestral populations. Concluding, microsatellite resulted a useful tool to investigate breed variability and to characterize Alpine sheep breeds. Obtained findings suggest the need to set up a conservation plan aiming to safeguard and increase the genetic variability of the studied breeds compromised by the high level of inbreeding. Microsatellites genotyping could help to monitor breed variability and to organize matings.  相似文献   

19.
Selection for performance in diverse production settings has resulted in variation across sheep breeds worldwide. Although sheep are an important species to the United States, the current genetic relationship among many terminal sire breeds is not well characterized. Suffolk, Hampshire, Shropshire and Oxford (terminal) and Rambouillet (dual purpose) sheep (n = 248) sampled from different flocks were genotyped using the Applied Biosystems Axiom Ovine Genotyping Array (50K), and additional Shropshire sheep (n = 26) using the Illumina Ovine SNP50 BeadChip. Relationships were investigated by calculating observed heterozygosity, inbreeding coefficients, eigenvalues, pairwise Wright’s FST estimates and an identity by state matrix. The mean observed heterozygosity for each breed ranged from 0.30 to 0.35 and was consistent with data reported in other US and Australian sheep. Suffolk from two different regions of the United States (Midwest and West) clustered separately in eigenvalue plots and the rectangular cladogram. Further, divergence was detected between Suffolk from different regions with Wright’s FST estimate. Shropshire animals showed the greatest divergence from other terminal breeds in this study. Admixture between breeds was examined using admixture , and based on cross-validation estimates, the best fit number of populations (clusters) was K = 6. The greatest admixture was observed within Hampshire, Suffolk, and Shropshire breeds. When plotting eigenvalues, US terminal breeds clustered separately in comparison with sheep from other locations of the world. Understanding the genetic relationships between terminal sire breeds in sheep will inform us about the potential applicability of markers derived in one breed to other breeds based on relatedness.  相似文献   

20.
《Small Ruminant Research》2010,94(2-3):79-87
Twenty microsatellite markers were used to investigate genetic diversity and relationships in the Portuguese Serpentina (SERP) and the Brazilian Moxotó (MOX) goat breeds, which present a striking resemblance and are believed to have a common origin. A total of 46 animals of the SERP breed were sampled in southern Portugal, and 233 MOX goats were sampled in five different regions of Northeast Brazil. Genetic diversity was high, with a mean number of alleles of nearly 8.7 in both breeds, but expected heterozygosity and allelic richness were higher in SERP. The genetic distance between the two breeds resulted in a global FST of 0.16, and a strong deficit in within-breed heterozygosity was observed in MOX, mostly because of population substructuring. The estimated inbreeding was about 0.05 in SERP and ranged from 0.02 to 0.08 in the different MOX subpopulations. These subpopulations showed considerable genetic differentiation from each other, and those sampled in Paraíba and Rio Grande do Norte are the ones with a closer relationship with SERP. The analysis with STRUCTURE confirmed that some MOX subpopulations may share a common, but distant, ancestry with SERP, both having contributions from the same potential ancestral population. Other MOX subpopulations, however, are identified with ancestral populations distinct from SERP. These analyses further confirmed that, with the exception of goats from Rio Grande do Norte, the other MOX subpopulations show very little evidence of admixture among them, which may reflect the typical goat raising system in Northeast Brazil, where herds are usually kept closed and isolated, with little opportunity for gene flow among subpopulations. Our results indicate that SERP is likely a distant ancestor of MOX, but founder effects, genetic drift, selection for different environmental constraints and the possible influence of other breeds in the more recent past, probably lead to a differentiation of MOX subpopulations from their distant ancestor, as well as from each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号