首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Uganda has a large population of goats, predominantly from indigenous breeds reared in diverse production systems, whose existence is threatened by crossbreeding with exotic Boer goats. Knowledge about the genetic characteristics and relationships among these Ugandan goat breeds and the potential admixture with Boer goats is still limited. Using a medium‐density single nucleotide polymorphism (SNP) panel, we assessed the genetic diversity, population structure and admixture in six goat breeds in Uganda: Boer, Karamojong, Kigezi, Mubende, Small East African and Sebei. All the animals had genotypes for about 46 105 SNPs after quality control. We found high proportions of polymorphic SNPs ranging from 0.885 (Kigezi) to 0.928 (Sebei). The overall mean observed (HO) and expected (HE) heterozygosity across breeds was 0.355 ± 0.147 and 0.384 ± 0.143 respectively. Principal components, genetic distances and admixture analyses revealed weak population sub‐structuring among the breeds. Principal components separated Kigezi and weakly Small East African from other indigenous goats. Sebei and Karamojong were tightly entangled together, whereas Mubende occupied a more central position with high admixture from all other local breeds. The Boer breed showed a unique cluster from the Ugandan indigenous goat breeds. The results reflect common ancestry but also some level of geographical differentiation. admixture and f4 statistics revealed gene flow from Boer and varying levels of genetic admixture among the breeds. Generally, moderate to high levels of genetic variability were observed. Our findings provide useful insights into maintaining genetic diversity and designing appropriate breeding programs to exploit within‐breed diversity and heterozygote advantage in crossbreeding schemes.  相似文献   

3.
In times of rapid global and unforeseeable environmental changes, there is an urgent need for a sustainable cattle breeding policy, based on a global view. Most of the indigenous breeds are specialized in a particular habitat or production system but are rapidly disappearing. Thus, they represent an important resource to meet present and future breeding objectives. Based on 105 microsatellites, we obtained thorough information on genetic diversity and population structure of 16 cattle breeds that cover a geographical area from the domestication centre near Anatolia, through the Balkan and alpine regions, to the North-West of Europe. Breeds under strict artificial selection and indigenous breeds under traditional breeding schemes were included. The overall results showed that the genetic diversity is widespread in Buša breeds in the Anatolian and Balkan areas, when compared with the alpine and north-western European breeds. Our results reflect long-term evolutionary and short-term breeding events very well. The regular pattern of allele frequency distribution in the entire cattle population studied clearly suggests conservation of rare alleles by conservation of preferably unselected traditional breeds with large effective population sizes. From a global and long-term conservation genetics point of view, the native and highly variable breeds closer to the domestication centre could serve as valuable sources of genes for future needs, not only for cattle but also for other farm animals.  相似文献   

4.
In the present study, a sample of 88 animals belonging to four local (Modicana, Sarda, Sardo‐Bruna and Sardo‐Modicana) and one cosmopolitan (Italian Brown Swiss) cattle breeds were genotyped with a medium density SNP beadchip and compared to investigate their genetic diversity and the existence of selection signatures. A total of 43 012 SNPs distributed across all 29 autosomal chromosomes were retained after data quality control. Basic population statistics, Wright fixation index and runs of homozygosity (ROH) analyses confirmed that the Italian Brown Swiss genome was shaped mainly by selection, as underlined by the low values of heterozygosity and minor allele frequency. As expected, local cattle exhibited a large within‐breed genetic heterogeneity. The FST comparison revealing the largest number of significant SNPs was Sardo‐Bruna vs. Sardo‐Modicana, whereas the smallest was observed for Italian Brown Swiss vs. Sardo‐Modicana. Modicana exhibited the largest number of detected ROHs, whereas the smallest was observed for Sardo‐Modicana. Signatures of selection were detected in genomic regions that harbor genes involved in milk production traits for Italian Brown Swiss and fitness traits for local breeds. According to the results of multi‐dimensional scaling and the admixture analysis the Sardo‐Bruna is more similar to the Sarda than to the Italian Brown Swiss breed. Moreover, the Sardo‐Modicana is genetically closer to the Modicana than to the Sarda breed. Results of the present work confirm the usefulness of single nucleotide polymorphisms in deciphering the genetic architecture of livestock breeds.  相似文献   

5.
Knowledge about genetic diversity and population structure is useful for designing effective strategies to improve the production, management and conservation of farm animal genetic resources. Here, we present a comprehensive genome-wide analysis of genetic diversity, population structure and admixture based on 244 animals sampled from 10 cattle populations in Asia and Africa and genotyped for 69 903 autosomal single-nucleotide polymorphisms (SNPs) mainly derived from the indicine breed. Principal component analysis, STRUCTURE and distance analysis from high-density SNP data clearly revealed that the largest genetic difference occurred between the two domestic lineages (taurine and indicine), whereas Ethiopian cattle populations represent a mosaic of the humped zebu and taurine. Estimation of the genetic influence of zebu and taurine revealed that Ethiopian cattle were characterized by considerable levels of introgression from South Asian zebu, whereas Bangladeshi populations shared very low taurine ancestry. The relationships among Ethiopian cattle populations reflect their history of origin and admixture rather than phenotype-based distinctions. The high within-individual genetic variability observed in Ethiopian cattle represents an untapped opportunity for adaptation to changing environments and for implementation of within-breed genetic improvement schemes. Our results provide a basis for future applications of genome-wide SNP data to exploit the unique genetic makeup of indigenous cattle breeds and to facilitate their improvement and conservation.  相似文献   

6.
7.
利用全基因组连锁不平衡估计中国荷斯坦牛有效群体大小   总被引:2,自引:0,他引:2  
Ni GY  Zhang Z  Jiang L  Ma PP  Zhang Q  Ding XD 《遗传》2012,34(1):50-58
有效群体大小是群体遗传学研究的一个重要内容,有助于我们更清楚地了解群体的遗传变异、进化和复杂性状的遗传机制等。随着高密度SNP标记的出现,越来越多的研究利用SNP标记间连锁不平衡估计有效群体大小。文章采集北京地区中国荷斯坦牛2 093个样本,并利用牛SNP芯片(Illumina BovineSNP50,含5 4001 SNPs)进行基因型测定,估计不同世代中国荷斯坦牛的有效群体大小。质量控制标准设定为SNP检出率0.95,最小等位基因频率>0.05,样本检出率0.95,哈代温伯格平衡检验显著性水平P<0.0001。经过质量控制,共1 968个样本和38 796个SNPs用于连锁不平衡分析。文章选取SNP间距0.1、0.2、0.5、1、2、5、10、15(Mb),估计中国荷斯坦牛在4世代之前有效群体大小。结果表明,中国荷斯坦牛的有效群体呈逐代下降趋势,至4世代前,中国荷斯坦牛平均有效群体为45头左右。  相似文献   

8.
Effective population size (N e) is a central concept in evolutionary biology and conservation genetics. It predicts rates of loss of neutral genetic variation, fixation of deleterious and favourable alleles, and the increase of inbreeding experienced by a population. A method exists for the estimation of N e from the observed linkage disequilibrium between unlinked loci in a population sample. While an increasing number of studies have applied this method in natural and managed populations, its reliability has not yet been evaluated. We developed a computer program to calculate this estimator of N e using the most widely used linkage disequilibrium algorithm and used simulations to show that this estimator is strongly biased when the sample size is small (<‰100) and below the true N e. This is probably due to the linkage disequilibrium generated by the sampling process itself and the inadequate correction for this phenomenon in the method. Results suggest that N e estimates derived using this method should be regarded with caution in many cases. To improve the method’s reliability and usefulness we propose a way to determine whether a given sample size exceeds the population N e and can therefore be used for the computation of an unbiased estimate.  相似文献   

9.
Identifying genomic regions involved in the differences between breeds can provide information on genes that are under the influence of both artificial and natural selection. The aim of this study was to assess the genetic diversity and differentiation among four different Brown cattle populations (two original vs. two modern populations) and to characterize the distribution of runs of homozygosity (ROH) islands using the Illumina Bovine SNP50 BeadChip genotyping data. After quality control, 34 735 SNPs and 106 animals were retained for the analyses. Larger heterogeneity was highlighted for the original populations. Patterns of genetic differentiation, multidimensional scaling, and the neighboring joining tree distinguished the modern from the original populations. The FST‐outlier identified several genes putatively involved in the genetic differentiation between the two groups, such as stature and growth, behavior, and adaptability to local environments. The ROH islands within both the original and the modern populations overlapped with QTL associated with relevant traits. In modern Brown (Brown Swiss and Italian Brown), ROH islands harbored candidate genes associated with milk production traits, in evident agreement with the artificial selection conducted to improve this trait in these populations. In original Brown (Original Braunvieh and Braunvieh), we identified candidate genes related with fat deposition, confirming that breeding strategies for the original Brown populations aimed to produce dual‐purpose animals. Our study highlighted the presence of several genomic regions that vary between Brown populations, in line with their different breeding histories.  相似文献   

10.
The Korean Hanwoo cattle have been intensively selected for production traits, especially high intramuscular fat content. It is believed that ancient crossings between different breeds contributed to forming the Hanwoo, but little is known about the genomic differences and similarities between other cattle breeds and the Hanwoo. In this work, cattle breeds were grouped by origin into four types and used for comparisons: the Europeans (represented by six breeds), zebu (Nelore), African taurine (N'Dama) and Hanwoo. All animals had genotypes for around 680 000 SNPs after quality control of genotypes. Average heterozygosity was lower in Nelore and N'Dama (0.22 and 0.21 respectively) than in Europeans (0.26–0.31, with Shorthorn as outlier at 0.24) and Hanwoo (0.29). Pairwise FST analyses demonstrated that Hanwoo are more related to European cattle than to Nelore, with N'Dama in an intermediate position. This finding was corroborated by principal components and unsupervised hierarchical clustering. Using genome‐wide smoothed FST, 55 genomic regions potentially under positive selection in Hanwoo were identified. Among these, 29 were regions also detected in previous studies. Twenty‐four regions were exclusive to Hanwoo, and a number of other regions were shared with one or two of the other groups. These regions overlap a number of genes that are related to immune, reproduction and fatty acid metabolism pathways. Further analyses are needed to better characterize the ancestry of the Hanwoo cattle and to define the genes responsible to the identified selection peaks.  相似文献   

11.

Background

Mitochondrial DNA (mtDNA) is widely used in population genetic and phylogenetic studies in animals. However, such studies can generate misleading results if the species concerned contain nuclear copies of mtDNA (Numts) as these may amplify in addition to, or even instead of, the authentic target mtDNA. The aim of this study was to determine if Numts are present in Aedes aegypti mosquitoes, to characterise any Numts detected, and to assess the utility of using mtDNA for population genetics studies in this species.

Results

BLAST searches revealed large numbers of Numts in the Ae. aegypti nuclear genome on 146 supercontigs. Although the majority are short (80% < 300 bp), some Numts are almost full length mtDNA copies. These long Numts are not due to misassembly of the nuclear genome sequence as the Numt-nuclear genome junctions could be recovered by amplification and sequencing. Numt evolution appears to be a complex process in Ae. aegypti with ongoing genomic integration, fragmentation and mutation and the secondary movement of Numts within the nuclear genome. The PCR amplification of the putative mtDNA nicotinamide adenine dinucleotide dehydrogenase subunit 4 (ND4) gene from 166 Southeast Asian Ae. aegypti mosquitoes generated a network with two highly divergent lineages (clade 1 and clade 2). Approximately 15% of the ND4 sequences were a composite of those from each clade indicating Numt amplification in addition to, or instead of, mtDNA. Clade 1 was shown to be composed at least partially of Numts by the removal of clade 1-specific bases from composite sequences following enrichment of the mtDNA. It is possible that all the clade 1 sequences in the network were Numts since the clade 2 sequences correspond to the known mitochondrial genome sequence and since all the individuals that produced clade 1 sequences were also found to contain clade 2 mtDNA-like sequences using clade 2-specific primers. However, either or both sets of clade sequences could have Numts since the BLAST searches revealed two long Numts that match clade 2 and one long Numt that matches clade 1. The substantial numbers of mutations in cloned ND4 PCR products also suggest there are both recently-derived clade 1 and clade 2 Numt sequences.

Conclusion

We conclude that Numts are prevalent in Ae. aegypti and that it is difficult to distinguish mtDNA sequences due to the presence of recently formed Numts. Given this, future population genetic or phylogenetic studies in Ae. aegypti should use nuclear, rather than mtDNA, markers.  相似文献   

12.
Italy counts several sheep breeds, arisen over centuries as a consequence of ancient and recent genetic and demographic events. To finely reconstruct genetic structure and relationships between Italian sheep, 496 subjects from 19 breeds were typed at 50K single nucleotide polymorphism loci. A subset of foreign breeds from the Sheep HapMap dataset was also included in the analyses. Genetic distances (as visualized either in a network or in a multidimensional scaling analysis of identical by state distances) closely reflected geographic proximity between breeds, with a clear north–south gradient, likely because of high levels of past gene flow and admixture all along the peninsula. Sardinian breeds diverged more from other breeds, a probable consequence of the combined effect of ancient sporadic introgression of feral mouflon and long‐lasting genetic isolation from continental sheep populations. The study allowed the detection of previously undocumented episodes of recent introgression (Delle Langhe into the endangered Altamurana breed) as well as signatures of known, or claimed, historical introgression (Merino into Sopravissana and Gentile di Puglia; Bergamasca into Fabrianese, Appenninica and, to a lesser extent, Leccese). Arguments that would question, from a genomic point of view, the current breed classification of Bergamasca and Biellese into two separate breeds are presented. Finally, a role for traditional transhumance practices in shaping the genetic makeup of Alpine sheep breeds is proposed. The study represents the first exhaustive analysis of Italian sheep diversity in an European context, and it bridges the gap in the previous HapMap panel between Western Mediterranean and Swiss breeds.  相似文献   

13.
Genome-wide linkage disequilibrium in two Japanese beef cattle breeds   总被引:4,自引:0,他引:4  
There is little knowledge about the degree of linkage disequilibrium (LD) in beef cattle. This study aims to perform a genome-wide search for LD in Japanese Black and Japanese Brown beef cattle and to compare the level of LD between these two breeds. Parameter D' (the LD coefficient) was used as a measure of LD, and LD was tested for significance of allelic associations between syntenic and between non-syntenic marker pairs. Effects of breed, chromosome, genetic map distance and their interactions with D' were tested based on least squares analyses. Both breeds showed high levels of LD, which ranged over several tens of cM and declined as the marker distance increased for syntenic marker pairs. A rapid decline of the D' value was observed between markers that were spaced 5 and 20 cM apart. LD was significant in most cases for marker pairs <40 cM apart but was not significant between non-syntenic loci. The pattern of LD found in these two breeds was similar to that previously published for dairy cattle. The D' value between breeds was not significantly different (P > 0.05), but the interaction between breed and chromosome was highly significant (P < 0.001). Genetic selection seems to have caused the heterogeneity of the D' values among chromosomes within breed. These results indicate that LD mapping is a useful tool for fine-mapping quantitative trait loci of economically important traits in Japanese beef cattle.  相似文献   

14.
In 1971, John Sved derived an approximate relationship between linkage disequilibrium (LD) and effective population size for an ideal finite population. This seminal work was extended by Sved and Feldman (Theor Pop Biol 4, 129, 1973) and Weir and Hill (Genetics 95, 477, 1980) who derived additional equations with the same purpose. These equations yield useful estimates of effective population size, as they require a single sample in time. As these estimates of effective population size are now commonly used on a variety of genomic data, from arrays of single nucleotide polymorphisms to whole genome data, some authors have investigated their bias through simulation studies and proposed corrections for different mating systems. However, the cause of the bias remains elusive. Here, we show the problems of using LD as a statistical measure and, analogously, the problems in estimating effective population size from such measure. For that purpose, we compare three commonly used approaches with a transition probability‐based method that we develop here. It provides an exact computation of LD. We show here that the bias in the estimates of LD and effective population size are partly due to low‐frequency markers, tightly linked markers or to a small total number of crossovers per generation. These biases, however, do not decrease when increasing sample size or using unlinked markers. Our results show the issues of such measures of effective population based on LD and suggest which of the method here studied should be used in empirical studies as well as the optimal distance between markers for such estimates.  相似文献   

15.
The genetic effective population size, Ne, can be estimated from the average gametic disequilibrium () between pairs of loci, but such estimates require evaluation of assumptions and currently have few methods to estimate confidence intervals. speed‐ne is a suite of matlab computer code functions to estimate from with a graphical user interface and a rich set of outputs that aid in understanding data patterns and comparing multiple estimators. speed‐ne includes functions to either generate or input simulated genotype data to facilitate comparative studies of estimators under various population genetic scenarios. speed‐ne was validated with data simulated under both time‐forward and time‐backward coalescent models of genetic drift. Three classes of estimators were compared with simulated data to examine several general questions: what are the impacts of microsatellite null alleles on , how should missing data be treated, and does disequilibrium contributed by reduced recombination among some loci in a sample impact . Estimators differed greatly in precision in the scenarios examined, and a widely employed estimator exhibited the largest variances among replicate data sets. speed‐ne implements several jackknife approaches to estimate confidence intervals, and simulated data showed that jackknifing over loci and jackknifing over individuals provided ~95% confidence interval coverage for some estimators and should be useful for empirical studies. speed‐ne provides an open‐source extensible tool for estimation of from empirical genotype data and to conduct simulations of both microsatellite and single nucleotide polymorphism (SNP) data types to develop expectations and to compare estimators.  相似文献   

16.
G. Yi  L. Qu  S. Chen  G. Xu  N. Yang 《Animal genetics》2015,46(2):148-157
Phenotypic diversity is a direct consequence resulting mainly from the impact of underlying genetic variation, and recent studies have shown that copy number variation (CNV) is emerging as an important contributor to both phenotypic variability and disease susceptibility. Herein, we performed a genome‐wide CNV scan in 96 chickens from 12 diversified breeds, benefiting from the high‐density Affymetrix 600 K SNP arrays. We identified a total of 231 autosomal CNV regions (CNVRs) encompassing 5.41 Mb of the chicken genome and corresponding to 0.59% of the autosomal sequence. The length of these CNVRs ranged from 2.6 to 586.2 kb with an average of 23.4 kb, including 130 gain, 93 loss and eight both gain and loss events. These CNVRs, especially deletions, had lower GC content and were located particularly in gene deserts. In particular, 102 CNVRs harbored 128 chicken genes, most of which were enriched in immune responses. We obtained 221 autosomal CNVRs after converting probe coordinates to Galgal3, and comparative analysis with previous studies illustrated that 153 of these CNVRs were regarded as novel events. Furthermore, qPCR assays were designed for 11 novel CNVRs, and eight (72.73%) were validated successfully. In this study, we demonstrated that the high‐density 600 K SNP array can capture CNVs with higher efficiency and accuracy and highlighted the necessity of integrating multiple technologies and algorithms. Our findings provide a pioneering exploration of chicken CNVs based on a high‐density SNP array, which contributes to a more comprehensive understanding of genetic variation in the chicken genome and is beneficial to unearthing potential CNVs underlying important traits of chickens.  相似文献   

17.
Zhang GX  Wang ZG  Chen WS  Wu CX  Han X  Chang H  Zan LS  Li RL  Wang JH  Song WT  Xu GF  Yang HJ  Luo YF 《Animal genetics》2007,38(6):550-559
Twenty-seven domesticated yellow cattle breeds of China and three introduced cattle breeds were analysed by means of 30 microsatellite markers to determine the level of genetic variation within and among populations as well as the population structure. In all, 480 microsatellite alleles were observed across the 30 breeds with the mean number of alleles per locus of 9.093 for native breeds and 6.885 for the three introduced breeds. Mean F -statistics (0.08) for Chinese native cattle breeds implied that 92% of the total genetic variation was from genetic differentiation within each breed and 8% of the genetic variation existed among breeds. A phylogenetic tree was constructed based on Nei's genetic distances, and three clusters were obtained. According to the tree, the three introduced breeds were distinct from the 27 native breeds. The indigenous cattle breeds were divided into two clusters, one cluster including five humpless breeds and the other cluster containing 22 humped breeds. This study identifies multiple origins of yellow cattle of China from Bos taurus and Bos indicus . Furthermore, population structure analysis implies that there are possibly five independent original domestications for yellow cattle in China. Four of five origins were four different Bos indicus types, mainly in areas of the Chang Jiang, the Zhu Jiang River basin, the Yellow River and the Huai River basin. The other origin was for Bos taurus type of Mongolian descent, mainly located in Northwestern China, the Mongolian plateau and Northeastern China or north of the Great Wall.  相似文献   

18.
Li MH  Merilä J 《Molecular ecology》2011,20(14):2916-2928
Information about the levels of linkage disequilibrium (LD) in wild animal populations is still limited, and this is true particularly with respect to possible interpopulation variation in the levels of LD. We compared the levels and extent of LD at the genome‐wide scale in three Siberian jay (Perisoreus infaustus) populations, two of which (Kuusamo and Ylläs) represented outbred populations within the main distribution area of the species, whereas the third (Suupohja) was a semi‐isolated, partially inbred population at the margin of the species’ distribution area. Although extensive long‐range LD (>20 cM) was observed in all three populations, LD generally decayed to background levels at a distance of 1–5 cM or c. 200–600 kb. The degree and extent of LD differed markedly between populations but aligned closely with both observed levels of within‐population genetic variation and expectations based on population history. The levels of LD were highest in the most inbred population with strong population substructure (Suupohja), compared with the two outbred populations. Furthermore, the decay of LD with increasing distance was slower in Suupohja, compared with the other two populations. By demonstrating that levels of LD can vary greatly over relatively short geographical distances within a species, these results suggest that prospects for association mapping differ from population to population. In this example, the prospects are best in the Suupohja population, given that minimized marker genotyping and a minimum marker spacing of 1–5 cM (c. 200–600 kb) would be sufficient for a whole genome scan for detecting QTL.  相似文献   

19.
Population viability has often been assessed by census of reproducing adults. Recently this method has been called into question and estimation of the effective population size (Ne) proposed as a complementary method to determine population health. We examined genetic diversity in five populations of chinook salmon (Oncorhynchus tshawytscha) from the upper Fraser River watershed (British Columbia, Canada) at 11 microsatellite loci over 20 years using DNA extracted from archived scale samples. We tested for changes in genetic diversity, calculated the ratio of the number of alleles to the range in allele size to give the statistic M, calculated Ne from the temporal change in allele frequency, used the maximum likelihood method to calculate effective population size (NeM), calculated the harmonic mean of population size, and compared these statistics to annual census estimates. Over the last two decades population size has increased in all five populations of chinook examined; however, Ne calculated for each population was low (81-691) and decreasing over the time interval measured. Values of NeM were low, but substantially higher than Ne calculated using the temporal method. The calculated values for M were generally low (M < 0.70), indicating recent population reductions for all five populations. Large-scale historic barriers to migration and development activities do not appear to account for the low values of Ne; however, available spawning area is positively correlated with Ne. Both Ne and M estimates indicate that these populations are potentially susceptible to inbreeding effects and may lack the ability to respond adaptively to stochastic events. Our findings question the practice of relying exclusively on census estimates for interpreting population health and show the importance of determining genetic diversity within populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号