首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatty acid composition is an important phenotypic trait in pigs as it affects nutritional, technical and sensory quality of pork. Here, we reported a genome-wide association study (GWAS) for fatty acid composition in the longissimus muscle and abdominal fat tissues of 591 White Duroc×Erhualian F2 animals and in muscle samples of 282 Chinese Sutai pigs. A total of 46 loci surpassing the suggestive significance level were identified on 15 pig chromosomes (SSC) for 12 fatty acids, revealing the complex genetic architecture of fatty acid composition in pigs. Of the 46 loci, 15 on SSC5, 7, 14 and 16 reached the genome-wide significance level. The two most significant SNPs were ss131535508 (P = 2.48×10−25) at 41.39 Mb on SSC16 for C20∶0 in abdominal fat and ss478935891 (P = 3.29×10−13) at 121.31 Mb on SSC14 for muscle C18∶0. A meta-analysis of GWAS identified 4 novel loci and enhanced the association strength at 6 loci compared to those evidenced in a single population, suggesting the presence of common underlying variants. The longissimus muscle and abdominal fat showed consistent association profiles at most of the identified loci and distinct association signals at several loci. All loci have specific effects on fatty acid composition, except for two loci on SSC4 and SSC7 affecting multiple fatness traits. Several promising candidate genes were found in the neighboring regions of the lead SNPs at the genome-wide significant loci, such as SCD for C18∶0 and C16∶1 on SSC14 and ELOVL7 for C20∶0 on SSC16. The findings provide insights into the molecular basis of fatty acid composition in pigs, and would benefit the final identification of the underlying mutations.  相似文献   

2.
The genetic control of the synthesis of stearic acid (C18:0) and oleic acid (C18:1) in the seed oil of sunflower was studied through candidate-gene and QTL analysis. Two F2 mapping populations were developed using the high C18:0 mutant CAS-3 crossed to either HA-89 (standard, high linoleic fatty acid profile), or HAOL-9 (high C18:1 version of HA-89). A stearoyl-ACP desaturase locus (SAD17A), and an oleoyl-PC de-saturase locus (OLD7) were found to cosegregate with the previously described Es1 and Ol genes controlling the high C18:0 and the high C18:1 traits, respectively. Using linkage maps constructed from AFLP and RFLP markers, these loci mapped to LG1 (SAD17A) and to LG14 (OLD7) and were found to underlie the major QTLs affecting the concentrations of C18:0 and C18:1, explaining around 80% and 56% of the phenotypic variance of these fatty acids, respectively. These QTLs pleiotropically affected the levels of other primary fatty acids in the seed storage lipids. A minor QTL affecting both C18:0 and C18:1 levels was identified on LG8 in the HAOL-9×CAS-3 F2. This QTL showed a significant epistatic interaction for C18:1 with the QTL at the OLD7 locus, and was hypothesized to be a modifier of Ol. Two additional minor C18:0 QTLs were also detected on LG7 and LG3 in the HA-89×CAS-3 and the HAOL-9×CAS-3 F2 populations, respectively. No association between a mapped FatB thioesterase locus and fatty acid concentration was found. These results provide strong support about the role of fatty acid desaturase genes in determining fatty acid composition in the seed oil of sunflower. Received: 7 December 2000 / Accepted: 21 May 2001  相似文献   

3.
APOA2 is a protein implicated in triglyceride, fatty acid and glucose metabolism. In pigs, the APOA2 gene is located on pig chromosome 4 (SSC4) in a QTL region affecting fatty acid composition, fatness and growth traits. In this study, we evaluated APOA2 as a candidate gene for meat quality traits in an Iberian × Landrace backcross population. The APOA2:c.131T>A polymorphism, located in exon 3 of APOA2 and determining a missense mutation, was associated with the percentage of hexadecenoic acid [C16:1(n–9)], linoleic acid [C18:2(n–6)], α‐linolenic acid [C18:3(n–3)], dihomo‐gamma‐linolenic acid [C20:3(n–6)] and polyunsaturated fatty acids (PUFAs) in backfat. Furthermore, this SNP was associated with the global mRNA expression levels of APOA2 in liver and was used as a marker to determine allelic expression imbalance by pyrosequencing. We determined an overexpression of the T allele in heterozygous samples with a mean ratio of 2.8 (T/A), observing a high variability in the allelic expression among individuals. This result suggests that complex regulatory mechanisms, beyond a single polymorphism (e.g. epigenetic effects or multiple cis‐acting polymorphisms), may be regulating APOA2 gene expression.  相似文献   

4.
Genes involved in muscle lipid composition in 15 European Bos taurus breeds   总被引:1,自引:0,他引:1  
Consumers demand healthy and palatable meat, both factors being affected by fat composition. However, red meat has relatively high concentration of saturated fatty acids and low concentration of the beneficial polyunsaturated fatty acids. To select animals prone to produce particular fat types, it is necessary to identify the genes influencing muscle lipid composition. This paper describes an association study in which a large panel of candidate genes involved in adipogenesis, lipid metabolism and energy homoeostasis was tested for effects on fat composition in 15 European cattle breeds. Sixteen genes were found to have significant effects on different lipid traits, and among these, CFL1 and MYOZ1 were found to have large effects on the ratio of 18:2/18:3, CRI1 on the amount of neutral adrenic acid (22:4 n‐6), MMP1 on docosahexaenoic acid (22:6 n‐3) and conjugated linoleic acid, PLTP on the ratio of n‐6:n‐3 and IGF2R on flavour. Several genes – ALDH2, CHRNE, CRHR2, DGAT1, IGFBP3, NEB, SOCS2, SUSP1, TCF12 and FOXO1 – also were found to be associated with both lipid and organoleptic traits although with smaller effect. The results presented here help in understanding the genetic and biochemical background underlying variations in fatty acid composition and flavour in beef.  相似文献   

5.
Mapping minor QTL for increased stearic acid content in sunflower seed oil   总被引:1,自引:0,他引:1  
Increased stearic acid (C18:0) content in the seed oil of sunflower would improve the oil quality for some edible uses. The sunflower line CAS-20 (C18:0 genotype Es1Es1es2es2), developed from the high C18:0 mutant line CAS-3 (C18:0 genotype es1es1es2es2; 25% C18:0), shows increased C18:0 levels in its seed oil (8.6%). The objective of this research was to map quantitative trait loci (QTL) conferring increased C18:0 content in CAS-20 in an F2 mapping population developed from crosses between HA-89 (wild type Es1Es1Es2Es2; low C18:0) and CAS-20, which segregates independently of the macromutation Es1 controlling high C18:0 content in CAS-3. Seed oil fatty acid composition was measured in the F2 population by gas-liquid chromatography. A genetic linkage map of 17 linkage groups (LGs) comprising 80 RFLP and 19 SSR marker loci from this population was used to identify QTL controlling fatty acid composition. Three QTL affecting C18:0 content were identified on LG3, LG11, and LG13, with all alleles for increased C18:0 content inherited from CAS-20. In total, these QTL explained 43.6% of the C18:0 phenotypic variation. Additionally, four candidate genes (two stearate desaturase genes, SAD6 and SAD17, and a FatA and a FatB thioesterase gene) were placed on the QTL map. On the basis of positional information, QTL on LG11 was suggested to be a SAD6 locus. The results presented show that increased C18:0 content in sunflower seed oil is not a simple trait, and the markers flanking these QTL constitute a powerful tool for plant breeding programs.  相似文献   

6.
Fatty acid composition, especially oleic acid (C18:1), plays an important role in the eating quality of meat in Japanese Black cattle. Therefore, the objective of this study was to identify loci associated with C18:1 in the intramuscular fat of the trapezius muscles in Japanese Black cattle using the Illumina BovineSNP50 BeadChip whole genome single nucleotide polymorphism (SNP) assay. We also evaluated the relationship between C18:1 and three fatty acid synthesis genes, fatty acid synthase (FASN), stearoyl‐CoA desaturase and sterol regulatory element‐binding protein‐1. In this experiment, we applied a mixed model and Genomic Control approach using selective genotyping to perform a genome‐wide association study. A total of 160 animals (80 animals with higher values and 80 animals with lower values), selected from 3356 animals based on corrected phenotype, were genotyped using the Illumina BovineSNP50 BeadChip and three fatty acid synthesis genes, and the quality of these SNPs was assessed. In this study, a total of 38 955 SNPs, which included SNPs in the three fatty acid synthesis genes, were used, and the estimated inflation factor was 1.06. In the studied population, a total of 32 SNPs, including the FASN gene, had significant effects, and in particular 30 SNPs of all significant SNPs were located between 49 and 55 Mbp on chromosome 19. This study is one of the first genome‐wide association studies for fatty acid composition in a cattle population using the recently released Illumina BovineSNP50 BeadChip.  相似文献   

7.
Changes affecting the status of health and robustness can bring about physiological alterations including hematological parameters in swine. To identify quantitative trait loci (QTL) associated with eight hematological traits (one leukocyte trait, six erythrocyte traits and one platelet trait), we conducted a genome‐wide association study using the PorcineSNP60K BeadChip in a resource population derived from an intercross between Landrace and Korean native pigs. A total of 36 740 SNPs from 816 F2 progeny were analyzed for each blood‐related trait after filtering for quality control. Data were analyzed by the genome‐wide rapid association using mixed model and regression (GRAMMAR) approach. A total of 257 significant SNPs (P < 1.36 × 10?6) on SSC3, 6, 8, 13 and 17 were identified for blood‐related traits in this study. Interestingly, the genomic region between 17.9 and 130 Mb on SSC8 was found to be significantly associated with red blood cell, mean corpuscular volume and mean corpuscular hemoglobin. Our results include the identification of five significant SNPs within five candidate genes (KIT, IL15, TXK, ARAP2 and ERG) for hematopoiesis. Further validation of these identified SNPs could give valuable information for understanding the variation of hematological traits in pigs.  相似文献   

8.
In this work, we analysed 11 genetic markers localized on OAR11 in a commercial population of Spanish Churra sheep to detect QTL that underlie milk fatty acid (FA) composition traits. Following a daughter design, we analysed 799 ewes distributed in 15 half‐sib families. Eight microsatellite markers and three novel SNPs identified in two genes related to fatty acid metabolism, acetyl‐CoA carboxylase α (ACACA) and fatty acid synthase (FASN), were genotyped in the whole population under study. The phenotypic traits considered in the study included 22 measurements related to the FA composition of the milk and three other milk production traits (milk protein percentage, milk fat percentage and milk yield). Across‐family regression analysis revealed four significant QTL at the 5% chromosome‐wise level influencing contents of capric acid (C10:0), lauric acid (C12:0), linoleic conjugated acid (CLA) and polyunsaturated fatty acids (PUFA) respectively. The peaks of the QTL affecting C10:0 and PUFA contents in milk map close to the FASN gene, which has been evaluated as a putative positional candidate for these QTL. The QTL influencing C12:0 content reaches its maximum significance at 58 cM, close to the gene coding for the glucose‐dependent insulinotropic polypeptide. We were not able to find any candidate genes related to fat metabolism at the QTL influencing CLA content, which is located at the proximal end of the chromosome. Further research efforts will be needed to confirm and refine the QTL locations reported here.  相似文献   

9.
L. Zhou  W. Zhao  Y. Fu  X. Fang  S. Ren  J. Ren 《Animal genetics》2019,50(6):753-756
Body conformation at birth and teat number are economically important traits in the pig industry, as these traits are usually explored to evaluate the growth and reproductive potential of piglets. To detect genetic loci and candidate genes for these traits, we performed a GWAS on 269 pigs from a recently developed Chinese breed (Sushan) using 38  128 informative SNPs on the Affymetrix Porcine SNP 55K Array. In total, we detected one genome‐wide significant (P = 1.31e‐6) SNP for teat number on chromosome X and 15 chromosome‐wide significant SNPs for teat number, body weight, body length, chest circumference and cannon circumference at birth on chromosomes 1, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17 and 18. The most significant SNP had an additive effect of 0.74 × total teat number, explaining 20% of phenotypic variance. Five significant SNPs resided in the previously reported quantitative trait loci for these traits and seven significant SNPs had a pleiotropic effect on multiple traits. Intriguingly, 12 of the genes nearest to the significant SNPs are functionally related to body conformation and teat number traits, including SPRED2, MKX, TMSB4X and ESR1. GO analysis revealed that candidate genes proximal to the significant SNPs were enriched in the G‐protein coupled receptor and steroid hormone‐mediated signaling pathway. Our findings shed light on the genetic basis of the measured traits and provide molecular markers especially for the genetic improvement of teat number in Sushan and related pigs.  相似文献   

10.
Two sunflower (Helianthus annuus L.) mutants with high concentrations of saturated fatty acids in their seed oil have been identified and studied extensively. The mutant line CAS-5 has high concentrations of palmitic acid (C16:0) (>25% compared with 7% in standard sunflower seed oil) and low-C18:0 values (3%). CAS-3 is characterized by its high levels of stearic acid (C18:0) (>22% compared with 4% in standard sunflower seed oil) and a low-C16:0 content (5%). CAS-5 also possesses elevated levels of palmitoleic acid (C16:1) (>5%), which is absent in standard sunflower seed oil. The objective of this study was to determine the relationships between the loci controlling the high-C16:0 and the high-C18:0 traits in these mutants. Plants of both mutants were reciprocally crossed. Gas chromatographic analyses of fatty acids from the seed oil of F1, F2, F3 and the BC1F1 to CAS-5 generations indicated that the loci controlling the high-C16:0 trait exerted an epistatic effect over the loci responsible for the high-C18:0 character. As a result, the phenotypic combination containing both the high-C16:0 levels of CAS-5 and the high-C18:0 levels of CAS-3 was not possible. However, phenotypes with a saturated fatty acid content of 44% (34.5% C16:0+9.5% C18:0) were identified in the F3 generation. These are the highest saturated (C16:0 and C18:0) levels reported so far in sunflower seed oil. When F3 C16:0 segregating generations in both a high- and a low-C18:0 background were compared, the high-C16:1 levels were not expressed as expected in the high-C18:0 background (CAS-3 background). In this case, the C16:1 content decreased to values below 1.5%, compared with >5% in a low-C18:0 background. As the stearoyl-ACP desaturase has been reported to catalyze the desaturation from C16:0-ACP to C16:1-ACP, these results suggested that a decrease in its activity was involved in the accumulation of C18:0 in the high-C18:0 mutant CAS-3. Received: 10 March 1999 / Accepted: 16 June 1999  相似文献   

11.
Intramuscular fat (IMF) content and fatty acid composition affect the organoleptic quality and nutritional value of pork. A genome-wide association study was performed on 138 Duroc pigs genotyped with a 60k SNP chip to detect biologically relevant genomic variants influencing fat content and composition. Despite the limited sample size, the genome-wide association study was powerful enough to detect the association between fatty acid composition and a known haplotypic variant in SCD (SSC14) and to reveal an association of IMF and fatty acid composition in the LEPR region (SSC6). The association of LEPR was later validated with an independent set of 853 pigs using a candidate quantitative trait nucleotide. The SCD gene is responsible for the biosynthesis of oleic acid (C18:1) from stearic acid. This locus affected the stearic to oleic desaturation index (C18:1/C18:0), C18:1, and saturated (SFA) and monounsaturated (MUFA) fatty acids content. These effects were consistently detected in gluteus medius, longissimus dorsi, and subcutaneous fat. The association of LEPR with fatty acid composition was detected only in muscle and was, at least in part, a consequence of its effect on IMF content, with increased IMF resulting in more SFA, less polyunsaturated fatty acids (PUFA), and greater SFA/PUFA ratio. Marker substitution effects estimated with a subset of 65 animals were used to predict the genomic estimated breeding values of 70 animals born 7 years later. Although predictions with the whole SNP chip information were in relatively high correlation with observed SFA, MUFA, and C18:1/C18:0 (0.48–0.60), IMF content and composition were in general better predicted by using only SNPs at the SCD and LEPR loci, in which case the correlation between predicted and observed values was in the range of 0.36 to 0.54 for all traits. Results indicate that markers in the SCD and LEPR genes can be useful to select for optimum fatty acid profiles of pork.  相似文献   

12.
Cho IC  Park HB  Yoo CK  Lee GJ  Lim HT  Lee JB  Jung EJ  Ko MS  Lee JH  Jeon JT 《Animal genetics》2011,42(6):621-626
Haematological traits play important roles in disease resistance and defence functions. The objective of this study was to locate quantitative trait loci (QTL) and the associated positional candidate genes influencing haematological traits in an F2 intercross between Landrace and Korean native pigs. Eight blood‐related traits (six erythrocyte traits, one leucocyte trait and one platelet trait) were measured in 816 F2 progeny. All experimental animals were genotyped with 173 informative microsatellite markers located throughout the pig genome. We report that nine chromosomes harboured QTL for the baseline blood parameters: genomic regions on SSC 1, 4, 5, 6, 8, 9, 11, 13 and 17. Eight of twenty identified QTL reached genome‐wide significance. In addition, we evaluated the KIT locus, an obvious candidate gene locus affecting variation in blood‐related traits. Using dense single nucleotide polymorphism marker data on SSC 8 and the marker‐assisted association test, the strong association of the KIT locus with blood phenotypes was confirmed. In conclusion, our study identified both previously reported and novel QTL affecting baseline haematological parameters in pigs. Additionally, the positional candidate genes identified here could play an important role in elucidating the genetic architecture of haematological phenotype variation in swine and in humans.  相似文献   

13.
Previous work from our laboratory has shown dinoflagellates, which possess the carotenoid peridinin, have been divided into two clusters based on plastid galactolipid fatty acid composition. In one cluster major forms of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), lipids that comprise the majority of photosynthetic membranes, were C18/C18 (sn‐1/sn‐2), with octadecapentaenoic [18:5(n‐3)] and octadecatetraenoic [18:4(n‐3)] acid as principal fatty acids. The other cluster contained C20/C18 major forms, with eicosapentaenoic acid [20:5(n‐3)] being the predominant sn‐1 fatty acid. In this study, we have found that Symbiodinium microadriaticum isolated from the jellyfish, Cassiopea xamachana, when grown at 30°C, produced MGDG and DGDG with a more saturated fatty acid, 18:4(n‐3), at the sn‐2 carbon than when grown at 20°C where 18:5(n‐3) predominates. This modulation of the sn‐2 fatty acid's level of saturation is mechanistically similar to what has been observed in Pyrocystis, a C20/C18 dinoflagellate. We have also examined the effect of growth temperature on the betaine lipid, diacylglycerylcarboxyhydroxymethylcholine (DGCC), which has been observed by others to be the predominant non plastidial polar lipid in dinoflagellates. Temperature effects on it were minimal, with very few modulations in fatty acid unsaturation as observed in MGDG and DGDG. Rather, the primary difference seen at the two growth temperatures was the alteration of the amount of minor forms of DGCC, as well as a second betaine lipid, diacylglyceryl‐N,N,N‐trimethylhomoserine.  相似文献   

14.
To investigate both seasonal changes and possible intracorporal gradients of phospholipid fatty acid composition, skeletal muscles (n=124), hearts (n=27), and livers (n=34) from free-living brown hares (Lepus europaeus) were analyzed. Phospholipids from both skeletal muscles and heart had a high degree of unsaturation with 66.8±0.63% and 65.7±0.5% polyunsaturated fatty acids, respectively. This is the highest proportion of polyunsaturated fatty acids reported in any mammalian tissue. Polyunsaturated fatty acid content in skeletal muscles was 2.3% greater in winter compared to summer (F1,106=17.7; P=0.0001), which may reflect thermoregulatory adjustments. Arachidonate (C20:4n-6) showed the greatest seasonal increase (+2.5%; F=7.95; P=0.0057). However, there were no pronounced differences in polyunsaturated fatty acid content between skeletal muscles from different locations in the body (m. iliopsoas, m. longissimus dorsi and m. vastus). Total muscle phospholipid polyunsaturated fatty acid content was correlated with polyunsaturated fatty acid content in triacyglycerols from perirenal white adipose tissue depots (r2=0.61; P=0.004). Polyunsaturated fatty acids were enriched in muscle phospholipids (56.8–73.6%), compared to white adipose tissue lipids (20.9–61.2%), and liver phospholipids (25.1–54.2%). We suggest that the high degree of muscle membrane unsaturation is related to hare-specific traits, such as a high maximum running speed.Abbreviations BMR basal metabolic rate - DPA docosapentaenoic acid - DHA docosahexaenoic acid - FA fatty acid - MUFA monounsaturated fatty acid - PC principal component - PUFA polyunsaturated fatty acid - SFA saturated fatty acid - UI unsaturation index - WAT white adipose tissueCommunicated by: G. Heldmaier  相似文献   

15.
Perennial ryegrass (Lolium perenne L.) is the most important forage crop in temperate livestock agriculture. Its nutritional quality has significant impact on the quality of meat and milk for human consumption. Evidence suggests that higher energy content in forage can assist in reducing greenhouse gas emissions from ruminants. Increasing the fatty acid content (especially α‐linolenic acid, an omega‐3 fatty acid) may thus contribute to better forage, but little is known about the genetic basis of variation for this trait. To this end, quantitative trait loci (QTLs) were identified associated with major fatty acid content in perennial ryegrass using a population derived from a cross between the heterozygous and outbreeding high‐sugar grass variety AberMagic and an older variety, Aurora. A genetic map with 434 restriction‐associated DNA (RAD) and SSR markers was generated. Significant QTLs for the content of palmitic (C16:0) on linkage groups (LGs) 2 and 7; stearic (C18:0) on LGs 3, 4 and 7; linoleic (C18:2n‐6) on LGs 2 and 5; and α‐linolenic acids (C18:3n‐3) on LG 1 were identified. Two candidate genes (a lipase and a beta‐ketoacyl CoA synthase), both associated with C16:0, and separately with C18:2n‐6 and C18:0 contents, were identified. The physical positions of these genes in rice and their genetic positions in perennial ryegrass were consistent with established syntenic relationships between these two species. Validation of these associations is required, but the utility of RAD markers for rapid generation of genetic maps and QTL analysis has been demonstrated for fatty acid composition in a global forage crop.  相似文献   

16.
Muscle fatty acid profiles and PCB contents of the detritivorous species Prochilodus lineatus and its diet (stomach contents, settling particles and sediments) were analysed from reference and polluted areas of the Paraná‐Rio de la Plata basin, to evaluate the alterations produced by opportunistic feeding on sewage discharges. Overall muscle fatty acid composition was dominated by saturated and monounsaturated 16 and 18 carbon (18 C‐FA) components with reduced long‐chain polyunsaturated fatty acids (LC‐PUFA). Compared to sediments, settling particles and stomach contents were enriched in lipids and had a similar fatty acid composition. Opportunistic feeding on sewage detritus at Buenos Aires resulted in enhanced PCB and triglyceride accumulation, with higher proportions of 18 C‐FA and lower proportions of 16:1 and LC‐PUFA compared to fish from northern pristine reaches of the basin. Mid‐Paraná showed intermediate values reflecting mixing of the North stock with migrating Buenos Aires P. lineatus identified by their lipid and contaminant profile. According to multivariate analyses, this geographical variation of fatty acid composition was strongly influenced by PCB concentration. Prochilodus lineatus assimilates the energy subsidy of sewage inputs through enhanced lipogenesis with dominant 18 C‐FA and significant amounts of valuable LC‐PUFA. This lipid alteration facilitates the bioaccumulation of PCBs which in turn may reinforce the adipogenic effect of sewage feeding.  相似文献   

17.
18.
The comparison of the degree of differentiation in neutral marker loci and genes coding quantitative traits with standardized and equivalent measures of genetic differentiation (FST and QST, respectively) can provide insights into two important but seldom explored questions in evolutionary genetics: (i) what is the relative importance of random genetic drift and directional natural selection as causes of population differentiation in quantitative traits, and (ii) does the degree of divergence in neutral marker loci predict the degree of divergence in genes coding quantitative traits? Examination of data from 18 independent studies of plants and animals using both standard statistical and meta‐analytical methods revealed a number of interesting points. First, the degree of differentiation in quantitative traits (QST) typically exceeds that observed in neutral marker genes (FST), suggesting a prominent role for natural selection in accounting for patterns of quantitative trait differentiation among contemporary populations. Second, the FSTQST difference is more pronounced for allozyme markers and morphological traits, than for other kinds of molecular markers and life‐history traits. Third, very few studies reveal situations were QST < FST, suggesting that selection pressures, and hence optimal phenotypes, in different populations of the same species are unlikely to be often similar. Fourth, there is a strong correlation between QST and FST indices across the different studies for allozyme (r=0.81), microsatellite (r=0.87) and combined (r=0.75) marker data, suggesting that the degree of genetic differentiation in neutral marker loci is closely predictive of the degree of differentiation in loci coding quantitative traits. However, these interpretations are subject to a number of assumptions about the data and methods used to derive the estimates of population differentiation in the two sets of traits.  相似文献   

19.
Molecular genetic markers can be used to identify chromosomal regions that contain quantitative trait loci (QTL) that control meat quality and muscle composition traits in farm animals. To study this in pigs, a resource family was generated from a cross between two Berkshire grand sires and nine Yorkshire grand dams. A total of 525 F2 progeny from 65 matings of F1 parents were produced. Phenotypic data on 28 meat quality traits (drip loss, water holding capacity, firmness, color, marbling, percentage cholesterol, ultimate pH, fiber type, and several sensory panel and cooking traits) were collected on the F2 animals. Animals were genotyped for 125 microsatellite markers covering the entire genome. Least squares regression interval mapping was used for QTL detection. Significance thresholds were determined by permutation tests. A total of 60 QTL were detected at the 5% chromosome level for meat quality traits, on Chrs 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, and X, of which 9 and 1 QTL were significant at the 5% and 1% genome-wise levels (on Chrs 1, 5, 12, 15, and 17), respectively. Received: 29 November 2000 / Accepted: 27 March 2001  相似文献   

20.
Objective: The long‐term effects of fetal hyperinsulinemia, time course of changes in liver and very‐low‐density lipoprotein (VLDL) lipid levels and fatty acid compositions were investigated in obese offspring of streptozotocin‐induced mildly diabetic rats. Research Methods and Procedures: Mild hyperglycemia in pregnant rats was induced by intraperitoneal injection of streptozotocin on day 5 of gestation. Control pregnant rats were injected with citrate buffer. Liver and VLDL lipids and fatty acids were analyzed in offspring at different ages. Results: At birth, obese pups had higher VLDL triglyceride levels, saturated fatty acids, and C20:4n‐6. They also had lower C18:2n‐6 proportions in VLDL triglycerides, phospholipids, and cholesteryl esters than controls pups. In 1‐month‐old male and female obese rats, VLDL and liver lipid amounts were similar to those in their respective controls; however, high levels of C18:2n‐6 and C20:4n‐6 were noted in liver and VLDL lipids. At the age of 2 months, liver and VLDL triglyceride levels were higher in obese females than in control females. Fatty acid abnormalities seen in obese rats included low C18:3n‐3 and high C22:6n‐3 proportions in liver triglycerides and phospholipids. At the age of 3 months, obese rats, both males and females, compared with control animals, had higher VLDL and hepatic lipids with reduced C20:4n‐6 levels and polyunsaturated/saturated fatty acids ratios in hepatic and VLDL triglycerides and phospholipids. Discussion: Fetal obesity, associated with alterations in VLDL lipid fatty acid composition, represents an important risk factor for adult obesity and diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号