首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand the origin and genetic diversity of Iranian native horses, mitochondrial DNA (mtDNA) D‐loop sequences were generated for 95 horses from five breeds sampled in eight geographical locations in Iran. Sequence analysis of a 247‐bp segment revealed a total of 27 haplotypes with 38 polymorphic sites. Twelve of 19 mtDNA haplogroups were identified in the samples. The most common haplotypes were found within haplogroup X2. Within‐population haplotype and nucleotide diversities of the five breeds ranged from 0.838 ± 0.056 to 0.974 ± 0.022 and 0.011 ± 0.002 to 0.021 ± 0.001 respectively, indicating a relatively high genetic diversity in Iranian horses. The identification of several ancient sequences common between the breeds suggests that the lineage of the majority of Iranian horse breeds is old and obviously originated from a vast number of mares. We found in all native Iranian horse breeds lineages of the haplogroups D and K, which is concordant with the previous findings of Asian origins of these haplogroups. The presence of haplotypes E and K in our study also is consistent with a geographical west–east direction of increasing frequency of these haplotypes and a genetic fusion in Iranian horse breeds.  相似文献   

2.
Sheep were among the first domesticated animals to appear in Estonia in the late Neolithic and became one of the most widespread livestock species in the region from the Late Bronze Age onwards. However, the origin and historical expansion of local sheep populations in Estonia remain poorly understood. Here, we analysed fragments of the hypervariable D‐loop of mitochondrial DNA (mtDNA; 213 bp) and the Y‐chromosome SRY gene (130 bp) extracted from 31 archaeological sheep bones dated from approximately 800 BC to 1700 AD. The ancient DNA data of sheep from Estonia were compared with ancient sheep from Finland as well as a set of contemporary sheep breeds from across Eurasia in order to place them in a wider phylogeographical context. The analysis shows that: (i) 24 successfully amplified and analysed mtDNA sequences of ancient sheep cluster into two haplogroups, A and B, of which B is predominant; (ii) four of the ancient mtDNA haplotypes are novel; (iii) higher mtDNA haplotype diversity occurred during the Middle Ages as compared to other periods, a fact concordant with the historical context of expanding international trade during the Middle Ages; (iv) the proportion of rarer haplotypes declined during the expansion of sheep from the Near Eastern domestication centre to the northern European region; (v) three male samples showed the presence of the characteristic northern European haplotype, SNP G‐oY1 of the Y‐chromosome, and represent the earliest occurrence of this haplotype. Our results provide the first insight into the genetic diversity and phylogeographical background of ancient sheep in Estonia and provide basis for further studies on the temporal fluctuations of ancient sheep populations.  相似文献   

3.

Background

Several molecular and population genetic studies have focused on the native sheep breeds of Finland. In this work, we investigated their ancestral sheep populations from Iron Age, Medieval and Post-Medieval periods by sequencing a partial mitochondrial DNA D-loop and the 5’-promoter region of the SRY gene. We compared the maternal (mitochondrial DNA haplotypes) and paternal (SNP oY1) genetic diversity of ancient sheep in Finland with modern domestic sheep populations in Europe and Asia to study temporal changes in genetic variation and affinities between ancient and modern populations.

Results

A 523-bp mitochondrial DNA sequence was successfully amplified for 26 of 36 sheep ancient samples i.e. five, seven and 14 samples representative of Iron Age, Medieval and Post-Medieval sheep, respectively. Genetic diversity was analyzed within the cohorts. This ancient dataset was compared with present-day data consisting of 94 animals from 10 contemporary European breeds and with GenBank DNA sequence data to carry out a haplotype sharing analysis. Among the 18 ancient mitochondrial DNA haplotypes identified, 14 were present in the modern breeds. Ancient haplotypes were assigned to the highly divergent ovine haplogroups A and B, haplogroup B being the major lineage within the cohorts. Only two haplotypes were detected in the Iron Age samples, while the genetic diversity of the Medieval and Post-Medieval cohorts was higher. For three of the ancient DNA samples, Y-chromosome SRY gene sequences were amplified indicating that they originated from rams. The SRY gene of these three ancient ram samples contained SNP G-oY1, which is frequent in modern north-European sheep breeds.

Conclusions

Our study did not reveal any sign of major population replacement of native sheep in Finland since the Iron Age. Variations in the availability of archaeological remains may explain differences in genetic diversity estimates and patterns within the cohorts rather than demographic events that occurred in the past. Our ancient DNA results fit well with the genetic context of domestic sheep as determined by analyses of modern north-European sheep breeds.  相似文献   

4.
To fill remaining gaps in mitochondrial DNA diversity in the least surveyed eastern and western flanks of Siberia, 391 mtDNA samples (144 Tubalar from Altai, 87 Even from northeastern Siberia, and 160 Ulchi from the Russian Far East) were characterized via high-resolution restriction fragment length polymorphism/single nucleotide polymorphisms analysis. The subhaplogroup structure was extended through complete sequencing of 67 mtDNA samples selected from these and other related native Siberians. Specifically, we have focused on the evolutionary histories of the derivatives of M and N haplogroups, putatively reflecting different phases of settling Siberia by early modern humans. Population history and phylogeography of the resulting mtDNA genomes, combined with those from previously published data sets, revealed a wide range of tribal- and region-specific mtDNA haplotypes that emerged or diversified in Siberia before or after the last glacial maximum, ~18 kya. Spatial distribution and ages of the "east" and "west" Eurasian mtDNA haploclusters suggest that anatomically modern humans that originally colonized Altai derived from macrohaplogroup N and came from Southwest Asia around 38,000 years ago. The derivatives of macrohaplogroup M, which largely emerged or diversified within the Russian Far East, came along with subsequent migrations to West Siberia millennia later. The last glacial maximum played a critical role in the timing and character of the settlement of the Siberian subcontinent.  相似文献   

5.
Previous studies on mitochondrial DNA analysis of sheep from different regions of the world have revealed the presence of two major- A and B, and three minor- C, D and E maternal lineages. Lineage A is more frequent in Asia and lineage B is more abundant in regions other than Asia. We have analyzed mitochondrial DNA sequences of 330 sheep from 12 different breeds of India. Neighbor-joining analysis revealed lineage A, B and C in Indian sheep. Surprisingly, multidimensional scaling plot based on FST values of control region of mtDNA sequences showed significant breed differentiation in contrast to poor geographical structuring reported earlier in this species. The breed differentiation in Indian sheep was essentially due to variable contribution of two major lineages to different breeds, and sub- structuring of lineage A, possibly the latter resulting from genetic drift. Nucleotide diversity of this lineage was higher in Indian sheep (0.014 ± 0.007) as compared to that of sheep from other regions of the world (0.009 ± 0.005 to 0.01 ± 0.005). Reduced median network analysis of control region and cytochrome b gene sequences of Indian sheep when analyzed along with available published sequences of sheep from other regions of the world showed that several haplotypes of lineage A were exclusive to Indian sheep. Given the high nucleotide diversity in Indian sheep and the poor sharing of lineage A haplotypes between Indian and non-Indian sheep, we propose that lineage A sheep has also been domesticated in the east of Near East, possibly in Indian sub-continent. Finally, our data provide support that lineage B and additional lineage A haplotypes of sheep might have been introduced to Indian sub-continent from Near East, probably by ancient sea trade route.  相似文献   

6.
We analyzed genetic diversity of 215 mitochondrial DNA (mtDNA) D‐loop sequences from seven populations of domesticated helmeted guinea fowl (Numida meleagris) in Nigeria and compared that with results of samples collected in Kenya (n = 4) and China (n = 22). In total, 241 sequences were assigned to 22 distinct haplotypes. Haplotype diversity in Nigeria was 0.693 ± 0.022. The network grouped most matrilines into two main haplogroups: A and B. There was an absence of a geographic signal, and two haplotypes dominated across all locations with the exception of the Kebbi population in the northwest of the country; AMOVA also confirmed this observation (FST = 0.035). The low genetic diversity may be a result of recent domestication, whereas the lack of maternal genetic structure likely suggests the extensive genetic intermixing within the country. Additionally, the differentiation of the Kebbi population may be due to a certain demographic history and/or artificial selection that shaped its haplotype profile. The current data do not permit us to make further conclusions; therefore, more research evidence from genetics and archaeology is still required.  相似文献   

7.
Millions to billions of DNA sequences can now be generated from ancient skeletal remains thanks to the massive throughput of next‐generation sequencing platforms. Except in cases of exceptional endogenous DNA preservation, most of the sequences isolated from fossil material do not originate from the specimen of interest, but instead reflect environmental organisms that colonized the specimen after death. Here, we characterize the microbial diversity recovered from seven c. 200‐ to 13 000‐year‐old horse bones collected from northern Siberia. We use a robust, taxonomy‐based assignment approach to identify the microorganisms present in ancient DNA extracts and quantify their relative abundance. Our results suggest that molecular preservation niches exist within ancient samples that can potentially be used to characterize the environments from which the remains are recovered. In addition, microbial community profiling of the seven specimens revealed site‐specific environmental signatures. These microbial communities appear to comprise mainly organisms that colonized the fossils recently. Our approach significantly extends the amount of useful data that can be recovered from ancient specimens using a shotgun sequencing approach. In future, it may be possible to correlate, for example, the accumulation of postmortem DNA damage with the presence and/or abundance of particular microbes.  相似文献   

8.
Domestic sheep (Ovis aries) can be divided into two groups with significantly different responses to hypoxic environments, determined by two allelic beta‐globin haplotypes. Haplotype A is very similar to the goat beta‐globin locus, whereas haplotype B has a deletion spanning four globin genes, including beta‐C globin, which encodes a globin with high oxygen affinity. We surveyed the beta‐globin locus using resequencing data from 70 domestic sheep from 42 worldwide breeds and three Ovis canadensis and two Ovis dalli individuals. Haplotype B has an allele frequency of 71.4% in O. aries and was homozygous (BB) in all five wild sheep. This shared ancestry indicates haplotype B is at least 2–3 million years old. Approximately 40 kb of the sequence flanking the ~37‐kb haplotype B deletion had unexpectedly low identity between haplotypes A and B. Phylogenetic analysis showed that the divergent region of sheep haplotype B is remarkably distinct from the beta‐globin loci in goat and cattle but still groups with the Ruminantia. We hypothesize that this divergent ~40‐kb region in haplotype B may be from an unknown ancestral ruminant and was maintained in the lineage to O. aries, but not other Bovidae, evolving independently of haplotype A. Alternatively, the ~40‐kb sequence in haplotype B was more recently acquired by an ancestor of sheep from an unknown non‐Bovidae ruminant, replacing part of haplotype A. Haplotype B has a lower nucleotide diversity than does haplotype A, suggesting a recent bottleneck, whereas the higher frequency of haplotype B suggests a subsequent spread through the global population of O. aries.  相似文献   

9.
Comprehensive investigation of nucleotide diverdity in yaks   总被引:1,自引:0,他引:1       下载免费PDF全文
To understand the maternal genetic diversity of Tianzhu white yak better, we analyzed mtDNA D‐loop sequences of 209 Tianzhu white yaks, which are from the central region of Tianzhu white yak habitat. Accordingly, a total of 45 haplotypes were identified in Tianzhu white yaks in this study, and 18 of them were unique. The nucleotide diversity and haplotype diversity of population studied were 0.024 ± 0.003 and 0.946 ± 0.007 respectively, revealing that Tianzhu white yak possess a relatively high genetic diversity. The phylogenetic analysis, combining D‐loop sequences in this study with 533 previous published D‐loop sequences of 13 yak breeds, indicated that Tianzhu white yaks fell mainly into haplogroup A and that a small portion belonged to haplogroups B, C, D and E. Moreover, six haplotypes of 20 individuals identified in Tianzhu white yak were in the taurine haplogroup, indicating hybridization between Bos taurus and Tianzhu white yaks. In summary, this study supplies a comprehensive maternal genetic pattern for Tianzhu white yak and provides a basic reference for future breeding programs to conserve the purebred Tianzhu white yak.  相似文献   

10.
Population genetic studies of nonmodel organisms frequently employ reduced representation library (RRL) methodologies, many of which rely on protocols in which genomic DNA is digested by one or more restriction enzymes. However, because high molecular weight DNA is recommended for these protocols, samples with degraded DNA are generally unsuitable for RRL methods. Given that ancient and historic specimens can provide key temporal perspectives to evolutionary questions, we explored how custom‐designed RNA probes could enrich for RRL loci (Restriction Enzyme‐Associated Loci baits, or REALbaits). Starting with genotyping‐by‐sequencing (GBS) data generated on modern common ragweed (Ambrosia artemisiifolia L.) specimens, we designed 20 000 RNA probes to target well‐characterized genomic loci in herbarium voucher specimens dating from 1835 to 1913. Compared to shotgun sequencing, we observed enrichment of the targeted loci at 19‐ to 151‐fold. Using our GBS capture pipeline on a data set of 38 herbarium samples, we discovered 22 813 SNPs, providing sufficient genomic resolution to distinguish geographic populations. For these samples, we found that dilution of REALbaits to 10% of their original concentration still yielded sufficient data for downstream analyses and that a sequencing depth of ~7m reads was sufficient to characterize most loci without wasting sequencing capacity. In addition, we observed that targeted loci had highly variable rates of success, which we primarily attribute to similarity between loci, a trait that ultimately interferes with unambiguous read mapping. Our findings can help researchers design capture experiments for RRL loci, thereby providing an efficient means to integrate samples with degraded DNA into existing RRL data sets.  相似文献   

11.

Background

The extant roe deer (Capreolus Gray, 1821) includes two species: the European roe deer (C. capreolus) and the Siberian roe deer (C. pygargus) that are distinguished by morphological and karyotypical differences. The Siberian roe deer occupies a vast area of Asia and is considerably less studied than the European roe deer. Modern systematics of the Siberian roe deer remain controversial with 4 morphological subspecies. Roe deer fossilized bones are quite abundant in Denisova cave (Altai Mountains, South Siberia), where dozens of both extant and extinct mammalian species from modern Holocene to Middle Pleistocene have been retrieved.

Methodology/Principal Findings

We analyzed a 629 bp fragment of the mitochondrial control region from ancient bones of 10 Holocene and four Pleistocene Siberian roe deer from Denisova cave as well as 37 modern specimen belonging to populations from Altai, Tian Shan (Kyrgyzstan), Yakutia, Novosibirsk region and the Russian Far East. Genealogical reconstructions indicated that most Holocene haplotypes were probably ancestral for modern roe deer populations of Western Siberia and Tian Shan. One of the Pleistocene haplotypes was possibly ancestral for modern Yakutian populations, and two extinct Pleistocene haplotypes were close to modern roe deer from Tian Shan and Yakutia. Most modern geographical populations (except for West Siberian Plains) are heterogeneous and there is some tentative evidence for structure. However, we did not find any distinct phylogenetic signal characterizing particular subspecies in either modern or ancient samples.

Conclusion/Significance

Analysis of mitochondrial DNA from both ancient and modern samples of Siberian roe deer shed new light on understanding the evolutionary history of roe deer. Our data indicate that during the last 50,000 years multiple replacements of populations of the Siberian roe deer took place in the Altai Mountains correlating with climatic changes. The Siberian roe deer represent a complex and heterogeneous species with high migration rates and without evident subspecies structure. Low genetic diversity of the West Siberian Plain population indicates a recent bottleneck or founder effect.  相似文献   

12.
The taxonomy of African black rhinoceros (Diceros bicornis) remains unresolved. Maintaining levels of genetic diversity and species rescue by reintroduction and restocking requires its resolution. We compared the sequences of the mitochondrial DNA (mtDNA) control region for a total of 101 D. bicornis from three subspecies: D. b. minor, D. b. michaeli and D. b. bicornis. A single unique haplotype was found within the 65 D. b. minor samples from KwaZulu‐Natal (KZN) Province, South Africa, 55 of which came from Hluhluwe‐iMfolozi Game Park (HiP) and Mkuzi Game Reserve (MGR) source populations. However, six different haplotypes were represented in eleven D. b. minor samples from Zimbabwe. Similarly, published autosomal microsatellite data indicate low levels of diversity within the KZN D. b. minor populations. The low levels of mtDNA diversity within the KZN metapopulation point to the possible need for genetic supplementation. However, there is a need to determine whether the low levels of genetic variation within KZN D. b. minor are a result of the recent bottleneck or whether KZN historically always had low diversity.  相似文献   

13.
The tephritid Bactrocera oleae (Gmelin) is a harmful pest of olive crops that cause important agricultural and economic losses in the Mediterranean area where 90% of the world olive trees are cultivated. The knowledge of the genetic diversity in insect pest species populations is critical for decisions concerning appropriate control management strategies. In the present work, the genetic variability within and among 7 populations ‐five from Spain, one from Italy and one from Tunisia‐, was assessed by sequencing 1151 bp of the COI gene. A total of 21 haplotypes were observed. The intraspecific diversity was high, particularly in the Spanish populations (haplotype and nucleotide diversity 0.84 and 0.00137, respectively). However, the genetic differentiation among the populations was low in the case of Spanish ones (Fst between 0 and 0.041), and higher –and statistically significant– when comparing with the Italian and Tunisian samples. The haplotypes distribution and the PCoA analysis show three clear groups of populations: Spanish, Italian and Tunisian. The results might indicate the length of time elapsed since B. oleae became established in the Mediterranean region, the large effective sizes expected of its populations and the high gene flow among Iberian populations. The information could be relevant for integrated control programmes coordination.  相似文献   

14.
The extent of genetic diversity loss and former connectivity between fragmented populations are often unknown factors when studying endangered species. While genetic techniques are commonly applied in extant populations to assess temporal and spatial demographic changes, it is no substitute for directly measuring past diversity using ancient DNA (aDNA). We analysed both mitochondrial DNA (mtDNA) and nuclear microsatellite loci from 64 historical fossil and skin samples of the critically endangered Western Australian woylie (Bettongia penicillata ogilbyi), and compared them with 231 (= 152 for mtDNA) modern samples. In modern woylie populations 15 mitochondrial control region (CR) haplotypes were identified. Interestingly, mtDNA CR data from only 29 historical samples demonstrated 15 previously unknown haplotypes and detected an extinct divergent clade. Through modelling, we estimated the loss of CR mtDNA diversity to be between 46% and 91% and estimated this to have occurred in the past 2000–4000 years in association with a dramatic population decline. In addition, we obtained near‐complete 11‐loci microsatellite profiles from 21 historical samples. In agreement with the mtDNA data, a number of ‘new’ microsatellite alleles was only detected in the historical populations despite extensive modern sampling, indicating a nuclear genetic diversity loss >20%. Calculations of genetic diversity (heterozygosity and allelic rarefaction) showed that these were significantly higher in the past and that there was a high degree of gene flow across the woylie's historical range. These findings have an immediate impact on how the extant populations are managed and we recommend the implementation of an assisted migration programme to prevent further loss of genetic diversity. Our study demonstrates the value of integrating aDNA data into current‐day conservation strategies.  相似文献   

15.
In this study, we aimed to assess the sequence diversity of major histocompatibility complex (MHC) class-II DRB gene at exon 2 in gazelles raised in Sanliurfa Province of Turkey. Twenty DNA samples isolated from gazelles (Gazella subgutturosa) were used for sequencing exon 2 of MHC class-II DRB gene. Target region was amplified by polymerase chain reaction (PCR) and their products were directly sequenced. Nine of these 20 samples yielded unambiguously readable sequences. Three of the nine samples were homozygotes and each showed different sequences. A 262-bp sequence obtained from the three homozygote samples were submitted to GenBank (accession numbers: KC309405, KC309406 and KC309407). Using an allele specific PCR, we detected 10 additional haplotypes. Among 13 haplotypes, 45 nucleotide positions were polymorphic and most of the polymorphic nucleotide positions localized at peptide-binding region (PBR). Rates of nonsynonymous substitutions were significantly higher than synonymous substitutions at PBR. Phylogenetic analysis of the haplotypes showed that 10 haplotypes of the gazelles were clustered together while three were clustered with ovine and bovine haplotypes. The results indicated that at least 13 haplotypes at exon 2 of MHC class-II DRB gene were showing high degree of nucleotide and amino acid diversity, and certain haplotypes of G. subgutturosa were more similar to haplotypes from sheep or cattle than to each other. Rates of synonymous and nonsynonymous substitutions suggested that positive selection was a driving force for diversity at this locus in G. subgutturosa.  相似文献   

16.
The maternal and paternal genetic variation of horse breeds from the Baltic Sea region, including three local Estonian breeds, was assessed and compared with that of Altai and Yakutian horses. In the mtDNA D‐loop region, 72 haplotypes assigned to 20 haplogroups in the nine breeds were detected. In Estonian local breeds, 38 mtDNA haplotypes were found, and five of them were shared by the three breeds. More than 60% of all identified haplotypes were rare. Compared with the Estonian Native and Estonian Heavy Draught breeds, a higher haplotypic diversity was found in the Tori breed (h = 0.969). Moreover, four haplotypes shared among Finnish and Estonian local horse breeds indicated ancient ancestry, and of these, H30 (haplogroup D3) showed global sharing and genetic links between modern Baltic Sea region and Siberian horses, specifically. The studied breed set showed high variability in maternal inheritance and mixed patterns of the international and native breeds of the Siberian and Baltic regions. No variation was found in paternally inherited markers among horse breeds in the Baltic Sea region.  相似文献   

17.
BackgroundAncient DNA analysis offers a way to detect changes in populations over time. To date, most studies of ancient cattle have focused on their domestication in prehistory, while only a limited number of studies have analysed later periods. Conversely, the genetic structure of modern cattle populations is well known given the undertaking of several molecular and population genetic studies.ResultsBones and teeth from ancient cattle populations from the North-East Baltic Sea region dated to the Prehistoric (Late Bronze and Iron Age, 5 samples), Medieval (14), and Post-Medieval (26) periods were investigated by sequencing 667 base pairs (bp) from the mitochondrial DNA (mtDNA) and 155 bp of intron 19 in the Y-chromosomal UTY gene. Comparison of maternal (mtDNA haplotypes) genetic diversity in ancient cattle (45 samples) with modern cattle populations in Europe and Asia (2094 samples) revealed 30 ancient mtDNA haplotypes, 24 of which were shared with modern breeds, while 6 were unique to the ancient samples. Of seven Y-chromosomal sequences determined from ancient samples, six were Y2 and one Y1 haplotype. Combined data including Swedish samples from the same periods (64 samples) was compared with the occurrence of Y-chromosomal haplotypes in modern cattle (1614 samples).ConclusionsThe diversity of haplogroups was highest in the Prehistoric samples, where many haplotypes were unique. The Medieval and Post-Medieval samples also show a high diversity with new haplotypes. Some of these haplotypes have become frequent in modern breeds in the Nordic Countries and North-Western Russia while other haplotypes have remained in only a few local breeds or seem to have been lost. A temporal shift in Y-chromosomal haplotypes from Y2 to Y1 was detected that corresponds with the appearance of new mtDNA haplotypes in the Medieval and Post-Medieval period. This suggests a replacement of the Prehistoric mtDNA and Y chromosomal haplotypes by new types of cattle.  相似文献   

18.
Environmental DNA (eDNA) analysis has recently been used as a new tool for estimating intraspecific diversity. However, whether known haplotypes contained in a sample can be detected correctly using eDNA‐based methods has been examined only by an aquarium experiment. Here, we tested whether the haplotypes of Ayu fish (Plecoglossus altivelis altivelis) detected in a capture survey could also be detected from an eDNA sample derived from the field that contained various haplotypes with low concentrations and foreign substances. A water sample and Ayu specimens collected from a river on the same day were analysed by eDNA analysis and Sanger sequencing, respectively. The 10 L water sample was divided into 20 filters for each of which 15 PCR replications were performed. After high‐throughput sequencing, denoising was performed using two of the most widely used denoising packages, unoise3 and dada2 . Of the 42 haplotypes obtained from the Sanger sequencing of 96 specimens, 38 (unoise3 ) and 41 (dada2 ) haplotypes were detected by eDNA analysis. When dada2 was used, except for one haplotype, haplotypes owned by at least two specimens were detected from all the filter replications. Accordingly, although it is important to note that eDNA‐based method has some limitations and some risk of false positive and false negative, this study showed that the eDNA analysis for evaluating intraspecific genetic diversity provides comparable results for large‐scale capture‐based conventional methods. Our results suggest that eDNA‐based methods could become a more efficient survey method for investigating intraspecific genetic diversity in the field.  相似文献   

19.
Gymnodiptychus dybowskii is endemic to Xinjiang, China and has been locally listed as protected animals. To investigate its genetic diversity and structure, specimens were collected from six localities in Yili River system and Kaidu River. Fragments of 1092bp Cyt b gene were sequenced for 116 individuals. A total of 21 haplotypes were found in all samples, and no haplotype was shared between Yili River system and Kaidu River population. Sequence comparisons revealed 123 variable sites, with eight singleton sites and 115 parsimony informative sites. For all the populations examined, the haplotype diversity (h) was 0.8298 ± 0.0226, nucleotide diversity (π) was 0.2521 ± 0.1202, and average number of pairwise nucleotide differences (k) was 275.3369 ± 118.5660. AMOVA analysis showed that the differences were significant for total populations except for Yili River system populations. The pairwise Fst values revealed same conclusion with AMOVA analysis: Kaidu River population was divergent from Yili River system populations. The genetic distance between two groups was 0.108 and the divergence time was estimated at 5.4–6.6 Ma, the uplift of Tianshan Mountain might have separated them and resulted in the genetic differentiation. The neutrality test and mismatch analysis indicated that both two groups of G. dybowskii had went through population expansion, the expansion time of Yili River system and Kaidu River population was estimated at 0.5859–0.7146 Ma and 0.5151–0.6282 Ma, respectively. The climate changes of Qinghai-Tibetan Plateau might have influenced the demographic history of G. dybowskii.  相似文献   

20.
Approximately 850 bp of the mitochondrial control region was used to assess the genetic diversity, population structure and demographic expansion of the endangered cyprinid Barbus altianalis, a species known to be potamodramous in the Lake Victoria drainage system. The 196 samples taken from the four main rivers draining the Lake Victoria catchment (Nzoia, Yala, Nyando and Sondu–Miriu) yielded 49 mitochondrial DNA haplotypes; 83.7% thereof were private haplotypes restricted to particular rivers. The overall mean haplotype diversity was high (0.93663 ± 0.008) and ranged between 0.566 (Sondu – Miriu) and 0.944 (Nzoia). The overall mean nucleotide diversity was low (0.01322 ± 0.00141), ranging from 0.0342 (Sondu – Miriu) to 0.0267 (Nzoia). Population differentiation tests revealed strong and highly significant (P ≤ 0.001) segregation of populations in the four river basins. FST values among the four river‐based populations ranged from 0.05202 to 0.44352. The samples formed two main haplotype networks based on a 95% parsimony criterion, each exhibiting a strong signature of past population expansion. The smaller network was restricted to the River Nzoia, whereas the larger network contained representatives from all four rivers; within this the central haplotypes were found in more than one river, whereas the peripheral haplotypes tended to be river‐specific. The degree of population differentiation and the number of river‐specific haplotypes are too high to be explained by recent anthropogenic impacts alone and suggest that the species has probably existed in the Lake Victoria catchment as two populations: the now ‘extinct’ migratory population and the extant river restricted non‐migratory populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号