首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In this study we aimed to identify genomic regions associated with muscle pH, meat colour and water‐holding capacity in a population of 280 Italian Duroc pigs genotyped by the Illumina PorcineSNP60 v2 Genotyping BeadChip. After quality control, the remaining 32 597 SNPs and 278 subjects were used to perform a genome‐wide association study with the genabel package, using a kinship matrix in a model with the effects of sex, age and slaughter day. Bonferroni correction was applied, and the significant markers and regions were then further investigated to identify the nearest genes and the linkage disequilibrium (LD) between markers. Four markers (ASGA0082344, ASGA0095635, DBWU0000985 and CASI0005117) were significantly associated with ultimate pH (pHu); no significant association was detected for the other traits. The four significant variants, located from 16.841 to 17.643 Mb on chromosome 3, were found within or close to the sequences of the sulfatase modifying factor 2 (SUMF2), lysine acetyltransferase 8 (KAT8), serine protease 8 (PRSS8) and phosphorylase kinase catalytic subunit gamma 2 (PHKG2) genes. The four associated markers lie in two LD blocks, suggesting that the observed effect is related to mutations located in two regions: the first one where SUMF2 is mapped and the second one where genes KAT8, PRSS8 and PHKG2 are located.  相似文献   

3.
4.
5.
A large number of studies have confirmed that variants within the fat mass and obesity‐associated (FTO) gene are associated with higher obesity risk in humans. We and others have shown that FTO polymorphisms are associated with fat deposition and related traits in several pig populations, thus confirming the role of this gene in fatness across species. However, some differences observed in different pig populations may be derived, at least in part, from genetic heterogeneity at this locus. Here, we characterise the nucleotide variability and haplotype diversity of the porcine FTO gene in breeds having different predispositions to fat deposition traits. We resequenced 4749 bp of coding and non‐coding regions of the porcine FTO gene in 44 pigs of eight different breeds and identified 27 single nucleotide polymorphisms (SNPs) and four insertions/deletions. A positive Tajima's D‐value (< 0.10) obtained in Italian Duroc pigs may be compatible with putative balancing selection. From the sequenced pig panel, 20 haplotypes were inferred, some of which clustered according to the breed of origin (Meishan and Italian Duroc). Genetic heterogeneity at this locus could complicate the dissection of the effects of this gene on fat deposition and production traits in pigs. This situation resembles, to some extent, what has been reported in humans, thus making the study of the porcine FTO gene variability especially interesting, as it could be used as a model to understand the complex and elusive role of this gene in human obesity.  相似文献   

6.
L. Zhou  W. Zhao  Y. Fu  X. Fang  S. Ren  J. Ren 《Animal genetics》2019,50(6):753-756
Body conformation at birth and teat number are economically important traits in the pig industry, as these traits are usually explored to evaluate the growth and reproductive potential of piglets. To detect genetic loci and candidate genes for these traits, we performed a GWAS on 269 pigs from a recently developed Chinese breed (Sushan) using 38  128 informative SNPs on the Affymetrix Porcine SNP 55K Array. In total, we detected one genome‐wide significant (P = 1.31e‐6) SNP for teat number on chromosome X and 15 chromosome‐wide significant SNPs for teat number, body weight, body length, chest circumference and cannon circumference at birth on chromosomes 1, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17 and 18. The most significant SNP had an additive effect of 0.74 × total teat number, explaining 20% of phenotypic variance. Five significant SNPs resided in the previously reported quantitative trait loci for these traits and seven significant SNPs had a pleiotropic effect on multiple traits. Intriguingly, 12 of the genes nearest to the significant SNPs are functionally related to body conformation and teat number traits, including SPRED2, MKX, TMSB4X and ESR1. GO analysis revealed that candidate genes proximal to the significant SNPs were enriched in the G‐protein coupled receptor and steroid hormone‐mediated signaling pathway. Our findings shed light on the genetic basis of the measured traits and provide molecular markers especially for the genetic improvement of teat number in Sushan and related pigs.  相似文献   

7.
P. Xu  L. Ni  Y. Tao  Z. Ma  T. Hu  X. Zhao  Z. Yu  C. Lu  X. Zhao  J. Ren 《Animal genetics》2020,51(2):314-318
Growth and fatness traits are complex and economically important traits in the pig industry. The molecular basis underlying porcine growth and fatness traits remains largely unknown. To uncover genetic loci and candidate genes for these traits, we explored the GeneSeek GGP Porcine 80K SNP chip to perform a GWAS for seven growth and fatness traits in 365 individuals from the Sujiang pig, a recently developed breed in China. We identified two, 17, one and 11 SNPs surpassing the suggestively significant threshold (P < 1.86 × 10−5) for body weight, chest circumference, chest width and backfat thickness respectively. Of these SNPs, 20 represent novel genetic loci, and five and four SNPs were respectively associated with chest circumference and backfat thickness at a genome-wide significant threshold (P < 9.31 × 10−7). Eight SNPs had a pleiotropic effect on both chest circumference and backfat thickness. The most remarkable locus resided in a region between 72.95 and 76.27 Mb on pig chromosome 4, harboring a number of previously reported quantitative trait loci related to backfat deposition. In addition to two reported genes (PLAG1 and TAS2R38), we identified four genes including GABRB3, ZNF106, XKR4 and MGAM as novel candidates for body weight and backfat thickness at the mapped loci. Our findings provide insights into the genetic architecture of porcine growth and fatness traits and potential markers for selective breeding of Chinese Sujiang pigs.  相似文献   

8.
Previous studies have confirmed that insulin growth factor-1 (IGF1) plays important roles in growth and body size in humans and animals. However, whether single nucleotide polymorphisms (SNPs) within the IGF1 gene affects body size and growth in pigs has been unclear. We identified IGF1 SNPs among 5 pig breeds (Berkshire, Duroc, Landrace, Yorkshire and Korea Native Pig) and found that the G allele of SNP (c.G189A) was associated with higher body weight and was more predominant in western pig breeds, while the Korean Native Pig is the breed with the highest frequency of the A allele. Four haplotypes (–GA–, –GG–, –AG–, and –AA–) were constructed using the 2 identified SNPs. The GA haplotype was most frequently observed, except in the Berkshire breed. In addition, these SNPs and haplotypes were significantly associated with body size (final weight), average daily gain, and backfat thickness (P < 0.05) in 2 intercrossed F2 pig populations (KNP × YS F2 and KNP × LR F2). Furthermore, the major GA haplotype had a significant additive effect on body size and average daily gain. In conclusion, specific SNPs within the porcine IGF1 gene may contribute to the smaller body size and lower growth rate of Korea Native Pigs.  相似文献   

9.
Liu W  Yu Y  Li G  Tang S  Zhang Y  Wang Y  Zhang S  Zhang Y 《Animal genetics》2012,43(5):564-569
Growth hormone‐releasing hormone receptor (GHRHR) plays a critical role in growth hormone (GH) synthesis, release and regulation in animals. The objective of this study was to investigate variations of the chicken GHRHR gene and their associations with growth and reproduction traits in 768 Beijing You chickens. Results revealed three single nucleotide polymorphisms (SNPs) in the promoter region of the gene (g.‐1654A>G, g.‐1411A>G and g.‐142T>C). Association analysis revealed that the novel SNP g.‐1654A>G had significant effects on chicken body weight at 7, 9, 11, 13, 17 weeks of age and the age of first egg as well as egg number at 32, 36 and 40 weeks. Significant association was also observed between g.‐1411A>G and g.‐142T>C with EN24. Moreover, the age of first egg was distinctly related with g.‐142T>C (< 0.05). Although significant statistical difference was not detected in GHRHR mRNA levels among genotypes of the SNPs (> 0.05), strong expression variations of the gene were found between the ages 17 and 20 weeks in the population (< 0.05). These results suggest that the three SNPs in the GHRHR promoter could be used as potential genetic markers to improve the growth and reproductive traits in chickens.  相似文献   

10.
Understanding the genetic basis of variation in traits related to growth and fillet quality in Atlantic salmon is of importance to the aquaculture industry. Several growth‐related QTL have been identified via the application of genetic markers. The IGF1 gene is considered a highly conserved and crucial growth‐regulating gene in salmonid species. However, the association between polymorphisms in the IGF1 gene and growth‐related traits in Atlantic salmon is unknown. Therefore, in this study, regions of the Atlantic salmon IGF1 gene were sequenced, aligned and compared across individuals. Three SNPs were identified in the putative promoter (SNP1, g.5763G>T; GenBank no. AGKD01012745 ), intron 1 (SNP2, g.7292C>T; GenBank no. AGKD01012745 ) and intron 3 (SNP3, g.4671A>C; GenBank no. AGKD01133398 ) regions respectively. These SNPs were genotyped in a population of 4800 commercial Atlantic salmon with data on several weight and fillet traits measured at harvest (at approximately 3 years of age). In a mixed model, association analysis of individual SNPs, SNP1 and SNP3 were both significantly associated with several weight traits (< 0.05). The estimated additive effect on overall harvest weight was approximately 35 and 110 g for SNPs 1 and 3 respectively. A haplotype analysis confirmed the association between genetic variation in the IGF1 gene with overall body weight (< 0.05) and fillet component traits (< 0.05). Our findings suggest the identified nucleotide polymorphisms of the IGF1 gene may either affect farmed Atlantic salmon growth directly or be in population‐wide linkage disequilibrium with causal variation, highlighting their possible utility as candidates for marker‐assisted selection in the aquaculture industry.  相似文献   

11.
Umbilical hernia (UH) is one of the most common congenital defects in pigs, leading to considerable economic loss and serious animal welfare problems. To test whether copy number variations (CNVs) contribute to pig UH, we performed a case–control genome‐wide CNV association study on 905 pigs from the Duroc, Landrace and Yorkshire breeds using the Porcine SNP60 BeadChip and penncnv algorithm. We first constructed a genomic map comprising 6193 CNVs that pertain to 737 CNV regions. Then, we identified eight CNVs significantly associated with the risk for UH in the three pig breeds. Six of seven significantly associated CNVs were validated using quantitative real‐time PCR. Notably, a rare CNV (CNV14:13030843–13059455) encompassing the NUGGC gene was strongly associated with UH (permutation‐corrected = 0.0015) in Duroc pigs. This CNV occurred exclusively in seven Duroc UH‐affected individuals. SNPs surrounding the CNV did not show association signals, indicating that rare CNVs may play an important role in complex pig diseases such as UH. The NUGGC gene has been implicated in human omphalocele and inguinal hernia. Our finding supports that CNVs, including the NUGGC CNV, contribute to the pathogenesis of pig UH.  相似文献   

12.
The proprotein convertase subtilisin/kexin type 1 (PCSK1) gene encodes the prohormone convertase 1/3 enzyme that processes prohormones into functional hormones that, in turn, regulate central and peripheral energy metabolism. Mutations in the human PCSK1 gene cause severe monogenic obesity or confer risk of obesity. We herein investigated the porcine PCSK1 gene with the aim of identifying polymorphisms associated with fat deposition and production traits in Italian heavy pigs. By re-sequencing about 5.1 kb of this gene in 21 pigs of different breeds, we discovered 14 polymorphisms that were organized in nine haplotypes, clearly distributed in two clades of putative European and Asian origin. Then we re-mapped this gene on porcine chromosome 2 and analysed its expression in several tissues including gastric oxyntic mucosa of weanling pigs in which PCSK1 processes the pre-pro-ghrelin into ghrelin, which in turn is involved in the control of feed intake and energy metabolism. Association analyses between PCSK1 single-nucleotide polymorphisms (SNPs) and production, carcass and several other traits were conducted on five groups of pigs from three different experimental designs, for a total of 1221 animals. Results indicated that the analysed SNPs were associated (P < 0.01 or P < 0.05) with several traits including backfat thickness and visible intermuscular fat in Italian Duroc (ID) and growth performances in Italian Large White (ILW) and in ILW × Italian Landrace pigs. However, the effects estimated in the ILW were opposite to the effects reported in the ID pigs. Suggestive association (P < 0.10) was observed with muscle cathepsin B activity, opening, if confirmed, potential applications to reduce the excessive softness defect of the green hams that is of particular concern for the processing industry. The results obtained supported the need to further investigate the PCSK1 gene to fully exploit the value of its variability and apply this information in pig breeding programmes.  相似文献   

13.
Cumulus cells secreting steroid hormones have important functions in oocyte development. Several members of the short‐chain dehydrogenase/reductase (SDR) family are critical to the biosynthesis of steroid hormones. NADPH‐dependent retinol dehydrogenase/reductase ( NRDR), a member of the SDR superfamily, is overexpressed in pig breeds that also show high levels of androstenone. However, the potential functions and regulatory mechanisms of NRDR in pig ovaries have not been reported to date. The present study demonstrated that NRDR is highly expressed in pig ovaries and is specifically located in cumulus granulosa cells. Functional studies showed that NRDR inhibition increased estradiol synthesis. Both pregnant mare serum gonadotropin and human chorionic gonadotropin downregulated the expression of NRDR in pig cumulus granulosa cells. When the relationship between reproductive traits and single‐nucleotide polymorphisms (SNPs) of the NRDR gene was examined, we found that two SNPs affected reproductive traits. SNP rs701332503 was significantly associated with a decrease in the total number of piglets born during multiparity, and rs326982309 was significantly associated with an increase in the average birth weight during primiparity. Thus, NRDR has an important role in steroid hormone biosynthesis in cumulus granulosa cells, and NRDR SNPs are associated with changes in porcine reproduction traits.  相似文献   

14.
15.
We performed a genome‐wide association study using the porcine 60K SNP array to detect QTL regions for nine traits in a three‐generational Duroc samples (n = 651), viz. generations 1, 2 and 3 from a population selected over five generations using a closed nucleus breeding scheme. We applied a linear mixed model for association mapping to detect SNP effects, adjusting for fixed effects (sex and season) and random polygenic effects (reflecting genetic relatedness), and derived a likelihood ratio statistic for each SNP using the efficient mixed‐model association method. We detected a region on SSC6 for backfat thickness (BFT) and on SSC7 for cannon bone circumference (CANNON), with a genome‐wide significance of < 0.01 after Bonferroni correction. These regions had been detected previously in other pig populations. Six genes are located in the BFT‐associated region, while the CANNON‐associated region includes 66 genes. In the future, significantly associated SNPs, derived by sequencing the coding regions of the six genes in the BFT region, can be used in marker‐assisted selection of BFT, whereas haplotypes constructed from the SSC7 region with strong LD can be used to select for the CANNON trait in our resource family.  相似文献   

16.
We genotyped 58 single nucleotide polymorphisms (SNPs) in 25 candidate genes in about 800 Italian Holstein sires. Fifty‐six (minor allele frequency >0.02) were used to evaluate their association with single traits: milk yield (MY), milk fat yield (FY), milk protein yield (PY), milk fat percentage (FP), milk protein percentage (PP), milk somatic cell count (MSCC); and complex indexes: longevity, fertility and productivity–functionality type (PFT), using deregressed proofs, after adjustment for familial relatedness. Thirty‐two SNPs were significantly associated (proportion of false positives <0.05) with different traits: 16 with MSCC, 15 with PY, 14 with MY, 12 with PFT, eight with longevity, eight with FY, eight with PP, five with FP and two with fertility. In particular, a SNP in the promoter region of the PRLR gene was associated with eight of nine traits. DGAT1 polymorphisms were highly associated with FP and FY. Casein gene markers were associated with several traits, confirming the role of the casein gene cluster in affecting milk yield, milk quality and health traits. Other SNPs in genes located on chromosome 6 were associated with PY, PP, PFT, MY (PPARGC1A) and MSCC (KIT). This latter association may suggest a biological link between the degree of piebaldism in Holstein and immunological functions affecting somatic cell count and mastitis resistance. Other significant SNPs were in the ACACA, CRH, CXCR1, FASN, GH1, LEP, LGB (also known as PAEP), MFGE8, SRC, TG, THRSP and TPH1 genes. These results provide information that can complement QTL mapping and genome‐wide association studies in Holstein.  相似文献   

17.
18.
19.
KIT mutations have been detected in different cancer subtypes, including melanoma. The gene also has been extensively studied in farm animals for its prominent role in coat color. The present work aimed at detecting KIT variants in a porcine model of cutaneous melanoma, the melanoblastoma‐bearing Libechov Minipig (MeLiM). By sequencing exons and intron borders, 36 SNPs and one indel were identified. Of 10 coding SNPs, three were non‐synonymous mutations, likely to affect the protein conformation. A promising variant, located in exon 19 (p.Val870Ala), was genotyped in a MeLiM × Duroc cross, and an association analysis was conducted on several melanoma‐related traits. This variant showed a significant association with melanoma development, tumor ulceration and cutaneous invasion. In conclusion, although the KIT gene would not be a major causal gene for melanoma development in pig, its genetic variation could be influencing this trait.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号