首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uganda has a large population of goats, predominantly from indigenous breeds reared in diverse production systems, whose existence is threatened by crossbreeding with exotic Boer goats. Knowledge about the genetic characteristics and relationships among these Ugandan goat breeds and the potential admixture with Boer goats is still limited. Using a medium‐density single nucleotide polymorphism (SNP) panel, we assessed the genetic diversity, population structure and admixture in six goat breeds in Uganda: Boer, Karamojong, Kigezi, Mubende, Small East African and Sebei. All the animals had genotypes for about 46 105 SNPs after quality control. We found high proportions of polymorphic SNPs ranging from 0.885 (Kigezi) to 0.928 (Sebei). The overall mean observed (HO) and expected (HE) heterozygosity across breeds was 0.355 ± 0.147 and 0.384 ± 0.143 respectively. Principal components, genetic distances and admixture analyses revealed weak population sub‐structuring among the breeds. Principal components separated Kigezi and weakly Small East African from other indigenous goats. Sebei and Karamojong were tightly entangled together, whereas Mubende occupied a more central position with high admixture from all other local breeds. The Boer breed showed a unique cluster from the Ugandan indigenous goat breeds. The results reflect common ancestry but also some level of geographical differentiation. admixture and f4 statistics revealed gene flow from Boer and varying levels of genetic admixture among the breeds. Generally, moderate to high levels of genetic variability were observed. Our findings provide useful insights into maintaining genetic diversity and designing appropriate breeding programs to exploit within‐breed diversity and heterozygote advantage in crossbreeding schemes.  相似文献   

2.
Single nucleotide polymorphisms (SNPs) are essential to the understanding of population genetic variation and diversity. Here, we performed restriction‐site‐associated DNA sequencing (RAD‐seq) on 72 individuals from 13 Chinese indigenous and three introduced chicken breeds. A total of 620 million reads were obtained using an Illumina Hiseq2000 sequencer. An average of 75 587 SNPs were identified from each individual. Further filtering strictly validated 28 895 SNPs candidates for all populations. When compared with the NCBI dbSNP (chicken_9031), 15 404 SNPs were new discoveries. In this study, RAD‐seq was performed for the first time on chickens, implicating the remarkable effectiveness and potential applications on genetic analysis and breeding technique for whole‐genome selection in chicken and other agricultural animals.  相似文献   

3.
Copy number variations (CNVs) are large insertions, deletions or duplications in the genome that vary between members of a species and are known to affect a wide variety of phenotypic traits. In this study, we identified CNVs in a population of bulls using low coverage next‐generation sequence data. First, in order to determine a suitable strategy for CNV detection in our data, we compared the performance of three distinct CNV detection algorithms on benchmark CNV datasets and concluded that using the multiple sample read depth approach was the best method for identifying CNVs in our sequences. Using this technique, we identified a total of 1341 copy number variable regions (CNVRs) from genome sequences of 154 purebred sires used in Cycle VII of the USMARC Germplasm Evaluation Project. These bulls represented the seven most popular beef breeds in the United States: Hereford, Charolais, Angus, Red Angus, Simmental, Gelbvieh and Limousin. The CNVRs covered 6.7% of the bovine genome and spanned 2465 protein‐coding genes and many known quantitative trait loci (QTL). Genes harbored in the CNVRs were further analyzed to determine their function as well as to find any breed‐specific differences that may shed light on breed differences in adaptation, health and production.  相似文献   

4.
In this study, we investigated the genetic variants, including SNPs and indels (short insertions or deletions, less than 50 bp in length), in the genomes and genetic structures of five pig populations (in the northern Taihu Lake region, Jiangsu Province) using the genotyping by genome reducing and sequencing (GGRS) approach. A total of 581 million good reads with an average depth of 11× and an average coverage of 2.16% were used to call variants. In general, 202 106 SNPs and 34 415 indels were obtained, of which 2690 SNPs and 224 indels were capable of inducing protein‐coding changes. The genes containing these variants were extracted for functional annotation. The results of gene enrichment analysis revealed that the SNPs under investigation may be associated with reproduction, disease resistance, meat quality and adipose tissue traits, whereas the indels were associated mainly with adipose tissue and disease. Analysis of the genetic structure showed that each population displayed comparable, large differentiations from the others, indicating their uniqueness. In conclusion, the results of our study provide the first genomic overview of the genetic variants and population structures of five Chinese indigenous pig populations.  相似文献   

5.
Chinese indigenous pig breeds are recognized as an invaluable component of the world''s pig genetic resources and are divided traditionally into six types. Twenty-six microsatellite markers recommended by the FAO (Food and Agriculture Organization) and ISAG (International Society of Animal Genetics) were employed to analyze the genetic diversity of 18 Chinese indigenous pig breeds with 1001 individuals representing five types, and three commercial breeds with 184 individuals. The observed heterozygosity, unbiased expected heterozygosity and the observed and effective number of alleles were used to estimate the genetic variation of each indigenous breed. The unbiased expected heterozygosity ranged between 0.700 (Mashen) and 0.876 (Guanling), which implies that there is an abundant genetic variation stored in Chinese indigenous pig breeds. Breed differentiation was shown by fixation indices (FIT, FIS, and FST). The FST per locus varied from 0.019 (S0090) to 0.170 (SW951), and the average FST of all loci was 0.077, which means that most of the genetic variation was kept within breeds and only a little of the genetic variation exists between populations. The Neighbor-Joining tree was constructed based on the Nei DA (1978) distances and one large cluster with all local breeds but the Mashen breed, was obtained. Four smaller sub-clusters were also found, which included two to four breeds each. These results, however, did not completely agree with the traditional type of classification. A Neighbor-Joining dendrogram of individuals was established from the distance of – ln(proportions of shared alleles); 92.14% of the individuals were clustered with their own breeds, which implies that this method is useful for breed demarcation. This extensive research on pig genetic diversity in China indicates that these 18 Chinese indigenous breeds may have one common ancestor, helps us to better understand the relative distinctiveness of pig genetic resources, and will assist in developing a national plan for the conservation and utilization of Chinese indigenous pig breeds.  相似文献   

6.
7.
Li K  Chen Y  Moran C  Fan B  Zhao S  Peng Z 《Animal genetics》2000,31(5):322-325
The genetic diversities and relationships of four Chinese indigenous pig breeds and one Australian commercial pig breed have been evaluated using 27 microsatellites recommended by the International Society of Animal Genetics (ISAG) and the Food and Agriculture Organization (FAO). The allele frequencies, effective numbers of alleles and the polymorphic information content have been calculated. Nei's standard genetic distances have been used to construct a UPGMA dendrogram, which has been evaluated by the Bootstrap test. The utility of microsatellites for evaluating genetic diversity of pigs is discussed.  相似文献   

8.
The Chinese indigenous pig breeds in the Taihu Lake region are the most prolific pig breeds in the world. In this study, we investigated the genetic diversity and population structure of six breeds, including Meishan, Erhualian, Mi, Fengjing, Shawutou and Jiaxing Black, in this region using whole‐genome SNP data. A high SNP with proportions of polymorphic markers ranging from 0.925 to 0.995 was exhibited by the Chinese indigenous pigs in the Taihu Lake region. The allelic richness and expected heterozygosity also were calculated and indicated that the genetic diversity of the Meishan breed was the greatest, whereas that of the Fengjing breed was the lowest. The genetic differentiation, as indicated by the fixation index, exhibited an overall mean of 0.149. Both neighbor‐joining tree and principal components analysis were able to distinguish the breeds from each other, but structure analysis indicated that the Mi and Erhualian breeds exhibited similar major signals of admixture. With this genome‐wide comprehensive survey of the genetic diversity and population structure of the indigenous Chinese pigs in the Taihu Lake region, we confirmed the rationality of the current breed classification of the pigs in this region.  相似文献   

9.
Italy counts several sheep breeds, arisen over centuries as a consequence of ancient and recent genetic and demographic events. To finely reconstruct genetic structure and relationships between Italian sheep, 496 subjects from 19 breeds were typed at 50K single nucleotide polymorphism loci. A subset of foreign breeds from the Sheep HapMap dataset was also included in the analyses. Genetic distances (as visualized either in a network or in a multidimensional scaling analysis of identical by state distances) closely reflected geographic proximity between breeds, with a clear north–south gradient, likely because of high levels of past gene flow and admixture all along the peninsula. Sardinian breeds diverged more from other breeds, a probable consequence of the combined effect of ancient sporadic introgression of feral mouflon and long‐lasting genetic isolation from continental sheep populations. The study allowed the detection of previously undocumented episodes of recent introgression (Delle Langhe into the endangered Altamurana breed) as well as signatures of known, or claimed, historical introgression (Merino into Sopravissana and Gentile di Puglia; Bergamasca into Fabrianese, Appenninica and, to a lesser extent, Leccese). Arguments that would question, from a genomic point of view, the current breed classification of Bergamasca and Biellese into two separate breeds are presented. Finally, a role for traditional transhumance practices in shaping the genetic makeup of Alpine sheep breeds is proposed. The study represents the first exhaustive analysis of Italian sheep diversity in an European context, and it bridges the gap in the previous HapMap panel between Western Mediterranean and Swiss breeds.  相似文献   

10.
Traditional selection for sow reproductive longevity is ineffective due to low heritability and late expression of the trait. Incorporation of DNA markers into selection programs is potentially a more practical approach for improving sow lifetime productivity. Using a resource population of crossbred gilts, we explored pleiotropic sources of variation that influence age at puberty and reproductive longevity. Of the traits recorded before breeding, only age at puberty significantly affected the probability that females would produce a first parity litter. The genetic variance explained by 1‐Mb windows of the sow genome, compared across traits, uncovered regions that influence both age at puberty and lifetime number of parities. Allelic variants of SNPs located on SSC5 (27–28 Mb), SSC8 (36–37 Mb) and SSC12 (1.2–2 Mb) exhibited additive effects and were associated with both early expression of puberty and a greater than average number of lifetime parities. Combined analysis of these SNPs showed that an increase in the number of favorable alleles had positive impact on reproductive longevity, increasing number of parities by up to 1.36. The region located on SSC5 harbors non‐synonymous alleles in the arginine vasopressin receptor 1A (AVPR1A) gene, a G‐protein‐coupled receptor associated with social and reproductive behaviors in voles and humans and a candidate for the observed effects. This region is characterized by high levels of linkage disequilibrium in different lines and could be exploited in marker‐assisted selection programs across populations to increase sow reproductive longevity.  相似文献   

11.
12.
The Tetraodontidae family are known to have relatively small and compact genomes compared to other vertebrates. The obscure puffer fish Takifugu obscurus is an anadromous species that migrates to freshwater from the sea for spawning. Thus the euryhaline characteristics of T. obscurus have been investigated to gain understanding of their survival ability, osmoregulation, and other homeostatic mechanisms in both freshwater and seawater. In this study, a high quality chromosome‐level reference genome for T. obscurus was constructed using long‐read Pacific Biosciences (PacBio) Sequel sequencing and a Hi‐C‐based chromatin contact map platform. The final genome assembly of T. obscurus is 381 Mb, with a contig N50 length of 3,296 kb and longest length of 10.7 Mb, from a total of 62 Gb of raw reads generated using single‐molecule real‐time sequencing technology from a PacBio Sequel platform. The PacBio data were further clustered into chromosome‐scale scaffolds using a Hi‐C approach, resulting in a 373 Mb genome assembly with a contig N50 length of 15.2 Mb and and longest length of 28 Mb. When we directly compared the 22 longest scaffolds of T. obscurus to the 22 chromosomes of the tiger puffer Takifugu rubripes, a clear one‐to‐one orthologous relationship was observed between the two species, supporting the chromosome‐level assembly of T. obscurus. This genome assembly can serve as a valuable genetic resource for exploring fugu‐specific compact genome characteristics, and will provide essential genomic information for understanding molecular adaptations to salinity fluctuations and the evolution of osmoregulatory mechanisms.  相似文献   

13.
Using next‐generation sequencing, we developed the first whole‐genome resources for two hybridizing Nothofagus species of the Patagonian forests that crucially lack genomic data, despite their ecological and industrial value. A de novo assembly strategy combining base quality control and optimization of the putative chloroplast gene map yielded ~32 000 contigs from 43% of the reads produced. With 12.5% of assembled reads, we covered ~96% of the chloroplast genome and ~70% of the mitochondrial gene content, providing functional and structural annotations for 112 and 52 genes, respectively. Functional annotation was possible on 15% of the contigs, with ~1750 potentially novel nuclear genes identified for Nothofagus species. We estimated that the new resources (13.41 Mb in total) included ~4000 gene regions representing ~6.5% of the expected genic partition of the genome, the remaining contigs potentially being nongenic DNA. A high‐quality single nucleotide polymorphisms resource was developed by comparing various filtering methods, and preliminary results indicate a strong conservation of cpDNA genomes in contrast to numerous exclusive nuclear polymorphisms in both species. Finally, we characterized 2274 potential simple sequence repeat (SSR) loci, designed primers for 769 of them and validated nine of 29 loci in 42 individuals per species. Nothofagus obliqua had more alleles (4.89) on average than N. nervosa (2.89), 8 SSRs were efficient to discriminate species, and three were successfully transferred in three other Nothofagus species. These resources will greatly help for future inferences of demographic, adaptive and hybridizing events in Nothofagus species, and for conserving and managing natural populations.  相似文献   

14.
Many conflicting hypotheses regarding the relationships among crops and wild species closely related to wheat (the genera Aegilops, Amblyopyrum, and Triticum) have been postulated. The contribution of hybridization to the evolution of these taxa is intensely discussed. To determine possible causes for this, and provide a phylogeny of the diploid taxa based on genome‐wide sequence information, independent data were obtained from genotyping‐by‐sequencing and a target‐enrichment experiment that returned 244 low‐copy nuclear loci. The data were analyzed using Bayesian, likelihood and coalescent‐based methods. D statistics were used to test if incomplete lineage sorting alone or together with hybridization is the source for incongruent gene trees. Here we present the phylogeny of all diploid species of the wheat wild relatives. We hypothesize that most of the wheat‐group species were shaped by a primordial homoploid hybrid speciation event involving the ancestral Triticum and Am. muticum lineages to form all other species except Ae. speltoides. This hybridization event was followed by multiple introgressions affecting all taxa except Triticum. Mostly progenitors of the extant species were involved in these processes, while recent interspecific gene flow seems insignificant. The composite nature of many genomes of wheat‐group taxa results in complicated patterns of diploid contributions when these lineages are involved in polyploid formation, which is, for example, the case for tetraploid and hexaploid wheats. Our analysis provides phylogenetic relationships and a testable hypothesis for the genome compositions in the basic evolutionary units within the wheat group of Triticeae.  相似文献   

15.
In the present study, a sample of 88 animals belonging to four local (Modicana, Sarda, Sardo‐Bruna and Sardo‐Modicana) and one cosmopolitan (Italian Brown Swiss) cattle breeds were genotyped with a medium density SNP beadchip and compared to investigate their genetic diversity and the existence of selection signatures. A total of 43 012 SNPs distributed across all 29 autosomal chromosomes were retained after data quality control. Basic population statistics, Wright fixation index and runs of homozygosity (ROH) analyses confirmed that the Italian Brown Swiss genome was shaped mainly by selection, as underlined by the low values of heterozygosity and minor allele frequency. As expected, local cattle exhibited a large within‐breed genetic heterogeneity. The FST comparison revealing the largest number of significant SNPs was Sardo‐Bruna vs. Sardo‐Modicana, whereas the smallest was observed for Italian Brown Swiss vs. Sardo‐Modicana. Modicana exhibited the largest number of detected ROHs, whereas the smallest was observed for Sardo‐Modicana. Signatures of selection were detected in genomic regions that harbor genes involved in milk production traits for Italian Brown Swiss and fitness traits for local breeds. According to the results of multi‐dimensional scaling and the admixture analysis the Sardo‐Bruna is more similar to the Sarda than to the Italian Brown Swiss breed. Moreover, the Sardo‐Modicana is genetically closer to the Modicana than to the Sarda breed. Results of the present work confirm the usefulness of single nucleotide polymorphisms in deciphering the genetic architecture of livestock breeds.  相似文献   

16.
Plants produce structurally diverse secondary (specialized) metabolites to increase their fitness for survival under adverse environments. Several bioactive compounds for new drugs have been identified through screening of plant extracts. In this study, genome‐wide association studies (GWAS) were conducted to investigate the genetic architecture behind the natural variation of rice secondary metabolites. GWAS using the metabolome data of 175 rice accessions successfully identified 323 associations among 143 single nucleotide polymorphisms (SNPs) and 89 metabolites. The data analysis highlighted that levels of many metabolites are tightly associated with a small number of strong quantitative trait loci (QTLs). The tight association may be a mechanism generating strains with distinct metabolic composition through the crossing of two different strains. The results indicate that one plant species produces more diverse phytochemicals than previously expected, and plants still contain many useful compounds for human applications.  相似文献   

17.
Plasma cholinesterase (PCHE) activity is an important auxiliary test in human clinical medicine. It can distinguish liver diseases from non‐liver diseases and help detect organophosphorus poisoning. Animal experiments have confirmed that PCHE activity is associated with obesity and hypertension and changes with physiological changes in an animal's body. The objective of this study was to locate the genetic loci responsible for PCHE activity variation in ducks. PCHE activity of Pekin duck × mallard F2 ducks at 3 and 8 weeks of age were analyzed, and genome‐wide association studies were conducted. A region of about 1.5 Mb (21.8–23.3 Mb) on duck chromosome 9 was found to be associated with PCHE activity at both 3 and 8 weeks of age. The top SNP, g.22643979C>T in the butyrylcholinesterase (BCHE) gene, was most highly associated with PCHE activity at 3 weeks (?logP = 21.45) and 8 weeks (?logP = 27.60) of age. For the top SNP, the strong associations of CC and CT genotypes with low PCHE activity and the TT genotype with high PCHE activity indicates the dominant inheritance of low PCHE activity. Problems with block inheritance or linkage exist in this region. This study supports that BCHE is a functional gene for determining PCHE levels in ducks and that the genetic variations around this gene can cause phenotypic variations of PCHE activity.  相似文献   

18.
Imprinting is an epigenetic phenomenon referring to allele‐biased expression of certain genes depending on their parent of origin. Accumulated evidence suggests that, while imprinting is a conserved mechanism across kingdoms, the identities of the imprinted genes are largely species‐specific. Using deep RNA sequencing of endosperm 14 days after pollination in sorghum, 5683 genes (29.27% of the total 19 418 expressed genes) were found to harbor diagnostic single nucleotide polymorphisms between two parental lines. The analysis of parent‐of‐origin expression patterns in the endosperm of a pair of reciprocal F1 hybrids between the two sorghum lines led to identification of 101 genes with ≥ fivefold allelic expression difference in both hybrids, including 85 maternal expressed genes (MEGs) and 16 paternal expressed genes (PEGs). Thirty of these genes were previously identified as imprinted in endosperm of maize (Zea mays), rice (Oryza sativa) or Arabidopsis, while the remaining 71 genes are sorghum‐specific imprinted genes relative to these three plant species. Allele‐biased expression of virtually all of the 14 tested imprinted genes (nine MEGs and five PEGs) was validated by pyrosequencing using independent sources of RNA from various developmental stages and dissected parts of endosperm. Forty‐six imprinted genes (30 MEGs and 16 PEGs) were assayed by quantitative RT–PCR, and the majority of them showed endosperm‐specific or preferential expression relative to embryo and other tissues. DNA methylation analysis of the 5’ upstream region and gene body for seven imprinted genes indicated that, while three of the four PEGs were associated with hypomethylation of maternal alleles, no MEG was associated with allele‐differential methylation.  相似文献   

19.
Taihu pig breeds are the most prolific breeds of swine in the world, and they also have superior economic traits, including high resistance to disease, superior meat quality, high resistance to crude feed and a docile temperament. The formation of these phenotypic characteristics is largely a result of long-term artificial or natural selection. Therefore, exploring selection signatures in the genomes of the Taihu pigs will help us to identify porcine genes related to productivity traits, disease and behaviour. In this study, we used both intra-population (Relative Extend Haplotype Homozygosity Test (REHH)) and inter-population (the Cross-Population Extend Haplotype Homozygosity Test (XPEHH); F-STATISTICS, FST) methods to detect genomic regions that might be under selection process in Taihu pig breeds. As a result, we found 282 (REHH) and 112 (XPEHH) selection signature candidate regions corresponding to 159.78 Mb (6.15%) and 62.29 Mb (2.40%) genomic regions, respectively. Further investigations of the selection candidate regions revealed that many genes under these genomic regions were related to reproductive traits (such as the TLR9 gene), coat colour (such as the KIT gene) and fat metabolism (such as the CPT1A and MAML3 genes). Furthermore, gene enrichment analyses showed that genes under the selection candidate regions were significantly over-represented in pathways related to diseases, such as autoimmune thyroid and asthma diseases. In conclusion, several candidate genes potentially under positive selection were involved in characteristics of Taihu pig. These results will further allow us to better understand the mechanisms of selection in pig breeding.  相似文献   

20.
Enhancing climate resilience and sustainable production for animals in harsh environments are important goals for the livestock industry given the predicted impacts of climate change. Rapid adaptation to extreme climatic conditions has already been imposed on livestock species, including those exported after Columbus's arrival in the Americas. We compared the methylomes of two Creole cattle breeds living in tropical environments with their putative Spanish ancestors to understand the epigenetic mechanisms underlying rapid adaptation of a domestic species to a new and more physiologically challenging environment. Reduced representation bisulfite sequencing was used to assess differences in methylation in Creole and Spanish samples and revealed 334 differentially methylated regions using high stringency parameters (P‐value <0.01, ≥4 CpGs within a distance of 200 bp, mean methylation difference >25%) annotated to 263 unique features. Gene ontology analysis revealed candidate genes involved in tropical adaptation processes, including genes differentially hyper‐ or hypomethylated above 80% in Creole samples displaying biological functions related to immune response (IRF6, PTGDR, FAM19A5, PGLYRP1), nervous system (GBX2, NKX2‐8, RPGR), energy management (BTD), heat resistance (CYB561) and skin and coat attributes (LGR6). Our results entail that major environmental changes imposed on Creole cattle have had an impact on their methylomes measurable today, which affects genes implicated in important pathways for adaptation. Although further work is needed, this first characterization of methylation patterns driven by profound environmental change provides a valuable pointer for the identification of biomarkers of resilience for improved cattle performance and welfare under predicted climatic change models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号