首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Litter size has a great impact on the profit of swine producers. Uterine development is an important determinant of reproduction efficiency and could hence affect litter size. Chinese Erhualian pig is one of the most prolific breeds in the world, even though large phenotypic variation in litter size was observed within Erhualian sows. To dissect the genetic basis of the phenotypic variation, we herein conducted genome-wide association studies for total number born and number born alive (NBA) of Erhualian sows. In total, one significant single nucleotide polymorphism (SNP) (P<1.78e−06) and 11 suggestive SNPs (P<3.57e−05) were identified on 10 chromosomes, confirming seven previously reported quantitative trait loci (QTL) and uncovering six QTL for litter size or uterus length. One locus on Sus scrofa chromosome (SSC) 13 (79.28 to 90.43 Mb) harbored a cluster of suggestive SNPs associated with multiparous NBA. The SNP (rs81447100) within this region was confirmed to be significantly (P<0.05) associated with litter size in Erhualian (n=313), Sutai (n=173) and Yorkshire (n=488) populations. Retinol binding protein 2 and retinol binding protein 1 functionally related to the development of uterus were located in a region of 2 Mb around rs81447100. Moreover, four genes related to embryo implantation and development were also detected around other significant SNPs. Taken together, our findings provide a potential marker (rs81447100) for the genetic improvement of litter size not only in Chinese Erhualian pigs but also in European commercial pig breeds like Yorkshire, and would facilitate the final identification of causative variant(s) underlying the effect of SSC13 QTL on litter size.  相似文献   

2.
K. Li  J. Ren  Y. Xing  Z. Zhang  J. Ma  Y. Guo  L. Huang 《Animal genetics》2009,40(6):963-966
To detect quantitative trait loci (QTL) for litter size related traits, the total number of born piglets (TNB), the number of born alive piglets (NBA), the number of stillborn piglets (NSB) and the number of mummies (NM) at the first parity were recorded in 299 F2 sows in a White Duroc × Chinese Erhualian intercross resource population. A whole genome scan was performed with 183 microsatellites distributed across 19 porcine chromosomes in the resource population, and the QTL analysis was performed with a least-squares method. A 5% genome-wide significant QTL was detected at 88 cM on pig chromosome (SSC) 15 for NBA, which also showed suggestive effect on TNB. In addition, four suggestive QTL were detected on SSC 6, 7, 8 and 15 for TNB, NBA or NSB. Two of the five QTL detected showed accordance with previous reports. No QTL was found for NM.  相似文献   

3.
Ren DR  Ren J  Ruan GF  Guo YM  Wu LH  Yang GC  Zhou LH  Li L  Zhang ZY  Huang LS 《Animal genetics》2012,43(5):545-551
The number of vertebrae is associated with body size and meat production in pigs. To identify quantitative trait loci (QTL) for the number of vertebrae, phenotypic values were measured in 1029 individuals from a White Duroc × Chinese Erhualian intercross F2 population. A whole genome scan was performed with 194 microsatellite markers in the F2 population. Four genome‐wide significant QTL and eight chromosome‐wide significant QTL for the number of vertebrae were identified on pig chromosomes (SSC) 1, 2, 6, 7, 10 and 12. The most significant QTL was detected on SSC7 with a confidence interval of 1 cM, explaining 42.32% of the phenotypic variance in the thoracic vertebral number. The significant QTL on SSC1, 2 and 7 confirmed previous reports. A panel of 276 animals representing seven Western and Chinese breeds was genotyped with 34 microsatellite markers in the SSC7 QTL region. No obvious selective sweep effect was observed in the tested breeds, indicating that intensive selection for enlarged body size in Western commercial breeds did not wipe out the genetic variability in the QTL region. The Q alleles for increased vertebral number originated from both Chinese Erhualian and White Duroc founder animals. A haplotype block of approximately 900 kb was found to be shared by all Q‐bearing chromosomes of F1 sires except for one distinct Q chromosome. The critical region harbours the newly reported VRTN gene associated with vertebral number. Further investigations are required to confirm whether VRTN or two other positional candidate genes, PROX2 and FOS, cause the QTL effect.  相似文献   

4.

Background

Understanding the genetic mechanisms that underlie meat quality traits is essential to improve pork quality. To date, most quantitative trait loci (QTL) analyses have been performed on F2 crosses between outbred pig strains and have led to the identification of numerous QTL. However, because linkage disequilibrium is high in such crosses, QTL mapping precision is unsatisfactory and only a few QTL have been found to segregate within outbred strains, which limits their use to improve animal performance. To detect QTL in outbred pig populations of Chinese and Western origins, we performed genome-wide association studies (GWAS) for meat quality traits in Chinese purebred Erhualian pigs and a Western Duroc × (Landrace × Yorkshire) (DLY) commercial population.

Methods

Three hundred and thirty six Chinese Erhualian and 610 DLY pigs were genotyped using the Illumina PorcineSNP60K Beadchip and evaluated for 20 meat quality traits. After quality control, 35 985 and 56 216 single nucleotide polymorphisms (SNPs) were available for the Chinese Erhualian and DLY datasets, respectively, and were used to perform two separate GWAS. We also performed a meta-analysis that combined P-values and effects of 29 516 SNPs that were common to Erhualian, DLY, F2 and Sutai pig populations.

Results

We detected 28 and nine suggestive SNPs that surpassed the significance level for meat quality in Erhualian and DLY pigs, respectively. Among these SNPs, ss131261254 on pig chromosome 4 (SSC4) was the most significant (P = 7.97E-09) and was associated with drip loss in Erhualian pigs. Our results suggested that at least two QTL on SSC12 and on SSC15 may have pleiotropic effects on several related traits. All the QTL that were detected by GWAS were population-specific, including 12 novel regions. However, the meta-analysis revealed seven novel QTL for meat characteristics, which suggests the existence of common underlying variants that may differ in frequency across populations. These QTL regions contain several relevant candidate genes.

Conclusions

These findings provide valuable insights into the molecular basis of convergent evolution of meat quality traits in Chinese and Western breeds that show divergent phenotypes. They may contribute to genetic improvement of purebreds for crossbred performance.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0120-x) contains supplementary material, which is available to authorized users.  相似文献   

5.
Birth weight is an economically important trait in pig production because it directly impacts piglet growth and survival rate. In the present study, we performed a genome wide survey of candidate genes and pathways associated with individual birth weight (IBW) using the Illumina PorcineSNP60 BeadChip on 24 high (HEBV) and 24 low estimated breeding value (LEBV) animals. These animals were selected from a reference population of 522 individuals produced by three sires and six dam lines, which were crossbreds with multiple breeds. After quality-control, 43,257 SNPs (single nucleotide polymorphisms), including 42,243 autosomal SNPs and 1,014 SNPs on chromosome X, were used in the data analysis. A total of 27 differentially selected regions (DSRs), including 1 on Sus scrofa chromosome 1 (SSC1), 1 on SSC4, 2 on SSC5, 4 on SSC6, 2 on SSC7, 5 on SSC8, 3 on SSC9, 1 on SSC14, 3 on SSC18, and 5 on SSCX, were identified to show the genome wide separations between the HEBV and LEBV groups for IBW in piglets. A DSR with the most number of significant SNPs (including 7 top 0.1% and 31 top 5% SNPs) was located on SSC6, while another DSR with the largest genetic differences in FST was found on SSC18. These regions harbor known functionally important genes involved in growth and development, such as TNFRSF9 (tumor necrosis factor receptor superfamily member 9), CA6 (carbonic anhydrase VI) and MDFIC (MyoD family inhibitor domain containing). A DSR rich in imprinting genes appeared on SSC9, which included PEG10 (paternally expressed 10), SGCE (sarcoglycan, epsilon), PPP1R9A (protein phosphatase 1, regulatory subunit 9A) and ASB4 (ankyrin repeat and SOCS box containing 4). More importantly, our present study provided evidence to support six quantitative trait loci (QTL) regions for pig birth weight, six QTL regions for average birth weight (ABW) and three QTL regions for litter birth weight (LBW) reported previously by other groups. Furthermore, gene ontology analysis with 183 genes harbored in these 27 DSRs suggested that protein, metal, ion and ATP binding, viral process and innate immune response present important pathways for deciphering their roles in fetal growth or development. Overall, our study provides useful information on candidate genes and pathways for regulating birth weight in piglets, thus improving our understanding of the genetic mechanisms involved in porcine embryonic or fetal development.  相似文献   

6.
Litter size is an important economic traits in pigs. SLA-11 gene is a member of SLA (swine leukocyte antigen) complex. In our previous study, the SLA-11 gene was differentially expressed in PMSG-hCG stimulated preovulatory ovarian follicles of Chinese Taihu and Large White sows. Here, we identified two mutations (c.754-132 T?>?C and c.1421?+?38 T?>?C) in SLA-11 gene and analyzed the associations of two SNPs with litter size traits in Large White (n?=?263) and DIV (n?=?117) sows. The results showed that in Large White pigs, SLA-11 c.754-132?CC sows produced 0.74 and 0.87 more pigs per litter for TNB and NBA of all parities than did TT sows (p?<?.05); In DIV pigs, SLA-11 c.754-132?CC sows produced 1.17 more pigs per litter for TNB of all parities than did TC sows (p?<?.05). In Large White pigs, SLA-11 c.1421?+?38?CC sows produced 0.9 more pigs per litter for TNB of all parities than did TT sows (p?<?.05), while in DIV pigs SLA-11 c.1421?+?38?CC sows produced 0.84 and 0.7 less pigs per litter for TNB and NBA of all parities than did TT sows (p?<?.05). Our research indicated that SLA-11 mutations were potential molecular markers for improving the litter size traits in pigs.  相似文献   

7.
Puberty is a fundamental development process experienced by all reproductively competent adults, yet the specific factors regulating age at puberty remain elusive in pigs. In this study, we performed a genome scan to identify quantitative trait loci (QTL) affecting age at puberty in gilts using a White Duroc × Erhualian intercross. A total of 183 microsatellites covering 19 porcine chromosomes were genotyped in 454 F2 gilts and their parents and grandparents in the White Duroc × Erhualian intercross. A linear regression method was used to map QTL for age at puberty via QTLexpress. One 1% genome-wise significant QTL and one 0.1% genome-wise significant QTL were detected at 114 cM (centimorgan) on SSC1 and at 54 cM on SSC7, respectively. Moreover, two suggestive QTL were found on SSC8 and SSC17, respectively. This study confirmed the QTL for age at puberty previously identified on SSC1, 7 and 8, and reports for the first time a QTL for age at puberty in gilts on SSC17. Interestingly, the Chinese Erhualian alleles were not systematically favourable for younger age at puberty.  相似文献   

8.
Postpartum dysgalactia syndrome (PDS) in sows is an important disease after parturition with a relevant economic impact, affecting the health and welfare of both sows and piglets. The genetic background of this disease has been discussed and its heritability estimated, but further genetic analyses are lacking in detail. The aim of the current study was to detect loci affecting the susceptibility to PDS through a genome‐wide association approach. The study was designed as a family‐based association study with matched sampling of affected sows and healthy half‐ or full‐sib control sows on six farms. For the study, 597 sows (322 affected vs. 275 healthy control sows) were genotyped on 62 163 single nucleotide polymorphisms (SNPs) using the Illumina PorcineSNP60 BeadChip. After quality control, 585 sows (314 affected vs. 271 healthy control sows) and 49 740 SNPs remained for further analysis. Statistics were performed mainly with the r package genabel and included a principal component analysis. A statistically significant genome‐wide associated SNP was identified on porcine chromosome (SSC) 17. Further promising results with moderate significance were detected on SSC 13 and on an unplaced scaffold with an older annotation on SSC 15. The PRICKLE2 and NRP2 genes were identified as candidate genes near associated SNPs. Several quantitative trait loci (QTL) have been previously described in these genomic regions, including QTL for mammary gland condition, as teat number and non‐functional nipples QTL, as well as QTL for body temperature and gestation length.  相似文献   

9.
Skin is the largest organ in the pig body and plays a key role in protecting the body against pathogens and excessive water loss. Deciphering the genetic basis of swine skin thickness would enrich our knowledge about the skin. To identify the loci for porcine skin thickness, we first performed a genome scan with 194 microsatellite markers in a White Duroc × Erhualian F2 intercross. We identified three genome‐wide significant QTL on pig chromosomes (SSC) 4, 7 and 15 using linkage analysis. The most significant QTL was found on SSC7 with a small confidence interval of ~5 cM, explaining 23.9 percent of phenotypic variance. Further, we conducted a genome‐wide association study (GWAS) using Illumina PorcineSNP60 Beadchips for the F2 pedigree and a population of Chinese Sutai pigs. We confirmed significant QTL in the F2 pedigree and replicated QTL on SSC15 in Chinese Sutai pigs. A meta‐analysis of GWASs on both populations detected a genomic region associated with skin thickness on SSC4. GWAS results were generally consistent with QTL mapping. Identical‐by‐descent analysis defined QTL on SSC7 in a 683‐kb region harboring an interesting candidate gene: HMGA1. On SSC15, the linkage disequilibrium analysis showed a haplotype block of 2.20 Mb that likely harbors the gene responsible for skin thickness. Our findings provide novel insights into the genetic basis of swine skin thickness, which would benefit further understanding of porcine skin function.  相似文献   

10.
Female reproductive performance traits in pigs have low heritabilities thus limiting improvement through traditional selective breeding programmes. However, there is substantial genetic variation found between pig breeds with the Chinese Meishan being one of the most prolific pig breeds known. In this study, three cohorts of Large White × Meishan F2 cross‐bred pigs were analysed to identify quantitative trait loci (QTL) with effects on reproductive traits, including ovulation rate, teat number, litter size, total born alive and prenatal survival. A total of 307 individuals were genotyped for 174 genetic markers across the genome. The genome‐wide analysis of the trait‐recorded F2 gilts in their first parity/litter revealed one QTL for teat number significant at the genome level and a total of 12 QTL, which are significant at the chromosome‐wide level, for: litter size (three QTL), total born alive (two QTL), ovulation rate (four QTL), prenatal survival (one QTL) and teat number (two QTL). Further support for eight of these QTL is provided by results from other studies. Four of these 12 QTL were mapped for the first time in this study: on SSC15 for ovulation rate and on SSC18 for teat number, ovulation rate and litter size.  相似文献   

11.
A dataset consisting of 787 animals with high‐density SNP chip genotypes (346 774 SNPs) and 939 animals with medium‐density SNP chip genotypes (33 828 SNPs) from eight indigenous Swiss sheep breeds was analyzed to characterize population structure, quantify genomic inbreeding based on runs of homozygosity and identify selection signatures. In concordance with the recent known history of these breeds, the highest genetic diversity was observed in Engadine Red sheep and the lowest in Valais Blacknose sheep. Correlation between FPED and FROH was around 0.50 and thereby lower than that found in similar studies in cattle. Mean FROH estimates from medium‐density data and HD data were highly correlated (0.95). Signatures of selection and candidate gene analysis revealed that the most prominent signatures of selection were found in the proximity of genes associated with body size (NCAPG, LCORL, LAP3, SPP1, PLAG1, ALOX12, TP53), litter size (SPP1), milk production (ABCG2, SPP1), coat color (KIT, ASIP, TBX3) and horn status (RXFP2). For the Valais Blacknose sheep, the private signatures in proximity of genes/QTL influencing body size, coat color and fatty acid composition were confirmed based on runs of homozygosity analysis. These private signatures underline the genetic uniqueness of the Valais Blacknose sheep breed. In conclusion, we identified differences in the genetic make‐up of Swiss sheep breeds, and we present relevant candidate genes responsible for breed differentiation in locally adapted breeds.  相似文献   

12.
Recent advances in high‐throughput sequencing technologies have offered the possibility to generate genomewide sequence data to delineate previously unidentified genetic structure, obtain more accurate estimates of demographic parameters and to evaluate potential adaptive divergence. Here, we identified 27 556 single nucleotide polymorphisms for the small yellow croaker (Larimichthys polyactis) using restriction‐site‐associated DNA (RAD) sequencing of 24 individuals from two populations. Significant sources of genetic variation were identified, with an average nucleotide diversity (π) of 0.00105 ± 0.000425 across individuals, and long‐term effective population size was thus estimated to range between 26 172 and 261 716. According to the results, no differentiation between the two populations was detected based on the SNP data set of top quality score per contig or neutral loci. However, the two analysed populations were highly differentiated based on SNP data set of both top FST value per contig and the outlier SNPs. Moreover, local adaptation was highlighted by an FST‐based outlier tests implemented in LOSITAN and a total of 538 potentially locally selected SNPs were identified. blast2go annotation of contigs containing the outlier SNPs yielded hits for 37 (66%) of 56 significant blastx matches. Candidate genes for local adaptation constituted a wide array of biological functions, including cellular response to oxidative stress, actin filament binding, ion transmembrane transport and synapse assembly. The generated SNP resources in this study provided a valuable tool for future population genetics and genomics studies of L. polyactis.  相似文献   

13.
Intermuscular fat content in protected designations of origin dry‐cured hams is a very important meat quality trait that affects the acceptability of the product by the consumers. An excess in intermuscular fat (defined as the level of fat deposition between leg muscles) is a defect that depreciates the final product. In this study we carried out a genome‐wide association study for visible intermuscular fat (VIF) of hams in the Italian Large White pig breed. This trait was evaluated on the exposed muscles of green legs in 1122 performance‐tested gilts by trained personnel, according to a classification scale useful for routine and cheap evaluation. All animals were genotyped with the Illumina PorcineSNP60 BeadChip. The genome‐wide association study identified three QTL regions on porcine chromosome 1 (SSC1; accounting for ~79% of the SNPs below the 5.0E?04 threshold) and SSC2, two on SSC7 and one each on SSC3, SSC6, SSC9, SSC11, SSC13, SSC15, SSC16 and SSC17. The most significant SNP (ALGA0004143 on SSC1 at 77.3 Mb; PFDR < 0.05), included in the largest QTL region which spanned about 6.8 Mb on SSC1, is located within the glutamate ionotropic receptor kainate type subunit 2 (GRIK2) gene. Functional annotation of all genes included in QTL regions for VIF suggested that intermuscular fat in the Italian Large White breed is a complex trait apparently influenced by complex biological mechanisms also involving obesity‐related processes. These QTL target mainly chromosome regions different from those affecting subcutaneous and intramuscular fat deposition.  相似文献   

14.
Growth traits, such as body weight and carcass body length, directly affect productivity and economic efficiency in the livestock industry. We performed a genome‐wide linkage analysis to detect the quantitative trait loci (QTL) that affect body weight, growth curve parameters and carcass body length in an F2 intercross between Landrace and Korean native pigs. Eight phenotypes related to growth were measured in approximately 1000 F2 progeny. All experimental animals were subjected to genotypic analysis using 173 microsatellite markers located throughout the pig genome. The least squares regression approach was used to conduct the QTL analysis. For body weight traits, we mapped 16 genome‐wide significant QTL on SSC1, 3, 5, 6, 8, 9 and 12 as well as 22 suggestive QTL on SSC2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16 and 17. On SSC12, we identified a major QTL affecting body weight at 140 days of age that accounted for 4.3% of the phenotypic variance, which was the highest test statistic (F‐ratio = 45.6 under the additive model, nominal = 2.4 × 10?11) observed in this study. We also showed that there were significant QTL on SSC2, 5, 7, 8, 9 and 12 affecting carcass body length and growth curve parameters. Interestingly, the QTL on SSC2, 3, 5, 6, 8, 9, 10, 12 and 17 influencing the growth‐related traits showed an obvious trend for co‐localization. In conclusion, the identified QTL may play an important role in investigating the genetic structure underlying the phenotypic variation of growth in pigs.  相似文献   

15.
In this study, data genotyping by sequence (GBS) was used to perform single step GWAS (ssGWAS) to identify SNPs associated with the litter traits in domestic pigs and search for candidate genes in the region of significant SNPs. After quality control, 167,355 high-quality SNPs from 532 pigs were obtained. Phenotypic traits on 2112 gilt litters from 532 pigs were recorded including total number born (TNB), number born alive (NBA), and litter weight born alive (LWB). A single-step genomic BLUP approach (ssGBLUP) was used to implement the genome-wide association analysis at a 5% genome-wide significance level. A total of 8, 23 and 20 significant SNPs were associated with TNB, NBA, and LWB, respectively, and these significant SNPs accounted for 62.78%, 79.75%, and 58.79% of genetic variance. Furthermore, 1 (SSC14: 16314857), 4 (SSC1: 81986236, SSC1: 66599775, SSC1: 161999013, and SSC1: 267883107), and 5 (SSC9: 29030061, SSC2: 32368561, SSC5: 110375350, SSC13: 45619882 and SSC13: 45647829) significant SNPs for TNB, NBA, and LWB were inferred to be novel loci. At SSC1, the AIM1 and FOXO3 genes were found to be associated with NBA; these genes increase ovarian reproductive capacity and follicle number and decrease gonadotropin levels. The genes SLC36A4 and INTU are involved in cell growth, cytogenesis and development were found to be associated with LWB. These significant SNPs can be used as an indication for regions in the Sus scrofa genome for variability in litter traits, but further studies are expected to confirm causative mutations.  相似文献   

16.
A significant quantitative trait locus (QTL) for low‐density lipoprotein cholesterol (LDL‐C) and total cholesterol (TC) was identified around the LDLR gene on chromosome 2 (SSC2) in a White Duroc × Erhualian F2 resource population and Sutai pigs in our previous study. However, in previous reports, the causality of LDLR with serum lipids is controversial in pigs. To systematically assess the causality of LDLR with serum lipids, association analyses were successively performed in three populations: Sutai pigs, a White Duroc × Erhualian F2 resource population and a Duroc × (Landrace × Large White) population. We first performed a haplotype‐based association study with 60K SNP genotyping data and evidenced the significant association with LDL‐C and TC around the LDLR gene region. We also found that there is more than one QTL for LDL‐C and TC on SSC2. Then, we evaluated the causalities of two missense mutations, c.1812C>T and c.1520A>G, with LDL‐C and TC. We revealed that the c.1812C>T SNP showed the strongest association with LDL‐C (= 5.40 × 10?11) and TC (= 3.64 × 10?8) and explained all the QTL effect in Sutai pigs. Haplotype analysis found that two missense SNPs locate within a 1.93‐Mb haplotype block. One major haplotype showed the strongest significant association with LDL‐C (= 4.62 × 10?18) and TC (= 1.06 × 10?9). However, the c.1812C>T SNP was not identified in the White Duroc × Erhualian intercross, and the association of c.1520A>G with both LDL‐C and TC did not achieve significance in this F2 population, suggesting population heterogeneity. Both missense mutations were identified in the Duroc × (Landrace × Large White) population and showed significant associations with LDL‐C and TC. Our data give evidence that the LDLR gene should be a candidate causative gene for LDL‐C and TC in pigs, but heterogeneity exists in different populations.  相似文献   

17.
An investigation was undertaken to study the association between the variable number of tandem repeats polymorphism of the Muc1 gene and the litter size in pigs. Four different alleles were found in three breeds. The sequence analysis shows that the repetitive region of pig Muc1 gene is an array of 108-bp repeats. A total of 2,430 litter records from 897 sows genotyped at Muc1 gene were used to analyze the total number born (TNB) and number born alive (NBA). The study of the effects on litter size suggests that TNB and NBA of genotype AA are the highest in Large White, and the TNB and NBA of the third to ninth parities are 1.61 and 2.29 piglets per litter higher (P < 0.05) than those of the genotype DD, respectively. In Landrace, TNB and NBA of the genotype AA are 1.68 (P < 0.01) and 1.58 (P < 0.05) piglets per litter higher than those of the BB genotype in the third to ninth parities, but for all parities the TNB of genotype AA were 0.76 piglets per litter (P < 0.05) higher than BB. In Duroc, the TNB and NBA of genotype AA are about 1.5 piglets per litter more than those of DD in the third to ninth parities, though not significantly. The research suggests that the smaller allele tends to have higher litter size. The results indicate that Muc1 gene is significantly associated with litter size in pigs.  相似文献   

18.
Prediction of breed composition in an admixed cattle population   总被引:1,自引:0,他引:1  
Swiss Fleckvieh was established in 1970 as a composite of Simmental (SI) and Red Holstein Friesian (RHF) cattle. Breed composition is currently reported based on pedigree information. Information on a large number of molecular markers potentially provides more accurate information. For the analysis, we used Illumina BovineSNP50 Genotyping Beadchip data for 90 pure SI, 100 pure RHF and 305 admixed bulls. The scope of the study was to compare the performance of hidden Markov models, as implemented in structure software, with methods conventionally used in genomic selection [BayesB, partial least squares regression (PLSR), least absolute shrinkage and selection operator (LASSO) variable selection)] for predicting breed composition. We checked the performance of algorithms for a set of 40 492 single nucleotide polymorphisms (SNPs), subsets of evenly distributed SNPs and subsets with different allele frequencies in the pure populations, using FST as an indicator. Key results are correlations of admixture levels estimated with the various algorithms with admixture based on pedigree information. For the full set, PLSR, BayesB and structure performed in a very similar manner (correlations of 0.97), whereas the correlation of LASSO and pedigree admixture was lower (0.93). With decreasing number of SNPs, correlations decreased substantially only for 5% or 1% of all SNPs. With SNPs chosen according to FST, results were similar to results obtained with the full set. Only when using 96 and 48 SNPs with the highest FST, correlations dropped to 0.92 and 0.90 respectively. Reducing the number of pure animals in training sets to 50, 20 and 10 each did not cause a drop in the correlation with pedigree admixture.  相似文献   

19.
The improvement of meat quality and production traits has high priority in the pork industry. Many of these traits show a low to moderate heritability and are difficult and expensive to measure. Their improvement by targeted breeding programs is challenging and requires knowledge of the genetic and molecular background. For this study we genotyped 192 artificial insemination boars of a commercial line derived from the Swiss Large White breed using the PorcineSNP60 BeadChip with 62,163 evenly spaced SNPs across the pig genome. We obtained 26 estimated breeding values (EBVs) for various traits including exterior, meat quality, reproduction, and production. The subsequent genome-wide association analysis allowed us to identify four QTL with suggestive significance for three of these traits (p-values ranging from 4.99×10−6 to 2.73×10−5). Single QTL for the EBVs pH one hour post mortem (pH1) and carcass length were on pig chromosome (SSC) 14 and SSC 2, respectively. Two QTL for the EBV rear view hind legs were on SSC 10 and SSC 16.  相似文献   

20.
X. Ma  P. Li  Q. Zhang  L. He  G. Su  Y. Huang  Z. Lu  W. Hu  H. Ding  R. Huang 《Animal genetics》2019,50(4):326-333
Embryonic survival rate, an important factor in the fecundity of sows, is affected by endometrium‐secreting histotroph. A higher concentration of calcium ion has been observed in the uterus of highly prolific Erhualian sows (EH) compared with those of less prolific (EL) sows. This suggests that EH sows have better establishment and maintenance of pregnancies, thus increasing embryonic survival rate during the peri‐implantation period. To understand the mechanisms of how the endometrium‐secreting histotroph affects embryonic survival rate during the Erhualian peri‐implantation period, the expression patterns of endometrial mRNA in the EH and EL sows on day 12 of gestation were analyzed using RNA sequencing technology. A total of 164 differentially expressed genes (DEGs) were identified (Padj < 0.05, |log2(FC)| ≥ 1), including 46 upregulated and 118 downregulated genes in EH compared to EL. Gene Ontology enrichment indicated that a subset of DEGs was involved in calcium ion binding and cell adhesion. Solute carrier family 8 member A3 and solute carrier family 24 member 4, identified as upregulated genes (Padj < 0.05) in EH, were considered key candidate genes expressed in the endometrium affecting embryonic survival rate during the peri‐implantation period. The results improve understanding of the genetic mechanism underlying the variation in litter size of Erhualian pigs during the peri‐implantation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号