首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Plants contain more genes encoding core cell cycle regulators than other organisms but it is unclear whether these represent distinct functions. D-type cyclins (CYCD) play key roles in the G1-to-S-phase transition, and Arabidopsis (Arabidopsis thaliana) contains 10 CYCD genes in seven defined subgroups, six of which are conserved in rice (Oryza sativa). Here, we identify 22 CYCD genes in the poplar (Populus trichocarpa) genome and confirm that these six CYCD subgroups are conserved across higher plants, suggesting subgroup-specific functions. Different subgroups show gene number increases, with CYCD3 having three members in Arabidopsis, six in poplar, and a single representative in rice. All three species contain a single CYCD7 gene. Despite low overall sequence homology, we find remarkable conservation of intron/exon boundaries, because in most CYCD genes of plants and mammals, the first exon ends in the conserved cyclin signature. Only CYCD3 genes contain the complete cyclin box in a single exon, and this structure is conserved across angiosperms, again suggesting an early origin for the subgroup. The single CYCD gene of moss has a gene structure closely related to those of higher plants, sharing an identical exon/intron structure with several higher plant subgroups. However, green algae have CYCD genes structurally unrelated to higher plants. Conservation is also observed in the location of potential cyclin-dependent kinase phosphorylation sites within CYCD proteins. Subgroup structure is supported by conserved regulatory elements, particularly in the eudicot species, including conserved E2F regulatory sites within CYCD3 promoters. Global expression correlation analysis further supports distinct expression patterns for CYCD subgroups.  相似文献   

3.
4.
The G1-to-S-phase transition is a key regulatory point in the cell cycle, but the rate-limiting component in plants is unknown. Overexpression of CYCLIN D3;1 (CYCD3;1) in transgenic plants increases mitotic cycles and reduces endocycles, but its effects on cell cycle progression cannot be unambiguously determined. To analyze the cell cycle roles of plant D-type cyclins, we overexpressed CYCD3;1 in Arabidopsis thaliana cell suspension cultures. Changes in cell number and doubling time were insignificant, but cultures exhibited an increased proportion of G2- over G1-phase cells, as well as increased G2 arrest in response to stationary phase and sucrose starvation. Synchronized cultures confirm that CYCD3;1-expressing (but not CYCD2;1-expressing) cells show increased G2-phase length and delayed activation of mitotic genes such as B-type cyclins, suggesting that CYCD3;1 has a specific G1/S role. Analysis of putative cyclin-dependent kinase phosphorylation sites within CYCD3;1 shows that mutating Ser-343 to Ala enhances CYCD3;1 potency without affecting its rate of turnover and results in a fivefold increase in the level of cell death in response to sucrose removal. We conclude that CYCD3;1 dominantly drives the G1/S transition, and in sucrose-depleted cells the decline in CYCD3;1 levels leads to G1 arrest, which is overcome by ectopic CYCD3;1 expression. Ser-343 is likely a key residue in modulating CYCD3;1 activity in response to sucrose depletion.  相似文献   

5.
6.
7.
The Arabidopsis genome encodes 10 D-type cyclins (CYCD); however, their differential role in cell cycle control is not well known. Among them, CYCD4;2 is unique in the amino acid sequence; namely, it lacks the Rb-binding motif and the PEST sequence that are conserved in CYCDs. Here, we have shown that CYCD4;2 suppressed G1 cyclin mutations in yeast and formed a kinase complex with CDKA;1, an ortholog of yeast Cdc28, in insect cells. Hypocotyl explants of CYCD4;2 over-expressing plants showed faster induction of calli than wild-type explants on a medium containing lower concentration of auxin. These results suggest that CYCD4;2 has a promotive function in cell division by interacting with CDKA;1 regardless of the unusual primary sequence.  相似文献   

8.
The integration of cell division in root growth and development requires mediation of developmental and physiological signals through regulation of cyclin-dependent kinase activity. Cells within the pericycle form de novo lateral root meristems, and D-type cyclins (CYCD), as regulators of the G1-to-S phase cell cycle transition, are anticipated to play a role. Here, we show that the D-type cyclin protein CYCD2;1 is nuclear in Arabidopsis thaliana root cells, with the highest concentration in apical and lateral meristems. Loss of CYCD2;1 has a marginal effect on unstimulated lateral root density, but CYCD2;1 is rate-limiting for the response to low levels of exogenous auxin. However, while CYCD2;1 expression requires sucrose, it does not respond to auxin. The protein Inhibitor-Interactor of CDK/Kip Related Protein2 (ICK2/KRP2), which interacts with CYCD2;1, inhibits lateral root formation, and ick2/krp2 mutants show increased lateral root density. ICK2/KRP2 can modulate the nuclear levels of CYCD2;1, and since auxin reduces ICK2/KRP2 protein levels, it affects both activity and cellular distribution of CYCD2;1. Hence, as ICK2/KRP2 levels decrease, the increase in lateral root density depends on CYCD2;1, irrespective of ICK2/CYCD2;1 nuclear localization. We propose that ICK2/KRP2 restrains root ramification by maintaining CYCD2;1 inactive and that this modulates pericycle responses to auxin fluctuations.  相似文献   

9.
In yeast and animals, cyclins have been demonstrated to be important regulators of cell cycle progression. In recent years, a large number of A-, B-, and D-class cyclins have been isolated from a variety of plant species. One class of cyclins, the D-class cyclins, is important for progression through G1 phase of the cell cycle. In Arabidopsis, four D-class cyclins have been isolated and characterized (CYCLIN-D1;1, CYCLIN-D2;1, CYCLIN-D3;1, and CYCLIN-D4;1). In this report we describe the characterization of a fifth D-class cyclin gene, CYCLIN-D3;2 (CYCD3;2), from Arabidopsis. An enhancer trap line, line 5580, contains a T-DNA insertion in CYCD3;2. Enhancer trap line 5580 exhibits expression in young vegetative and floral primordia. In line 5580, T-DNA is inserted in the first exon of the CYCD3;2 gene; in homozygous 5580 plants CYCD3;2 RNA is not detectable. Even though CYCD3;2 gene function is eliminated, homozygous 5580 plants do not exhibit an obvious growth or developmental phenotype. Via in situ hybridization we demonstrate that CYCD3;2 RNA is expressed in developing vegetative and floral primordia. In addition, CYCD3;2 is also capable of rescuing a yeast strain that is deficient in G1 cyclin activity.  相似文献   

10.
Seed development in Arabidopsis is characterized by stereotypical division patterns, suggesting that coordinated control of cell cycle may be required for correct patterning and growth of the embryo and endosperm. D-type cyclins (CYCD) are key cell cycle regulators with roles in developmental processes, but knowledge regarding their involvement in seed development remains limited. Here, a family-wide gene expression, and loss- and gain-of-function approach was adopted to reveal additional functions for CYCDs in the development of seed tissues. CYCD genes have both discrete and overlapping tissue-specific expression patterns in the seed as revealed by GUS reporter gene expression. Analysis of different mutant combinations revealed that correct CYCD levels are required in seed development. The CYCD3 subgroup is specifically required as its loss caused delayed development, whereas overexpression in the embryo and endosperm of CYCD3;1 or a previously uncharacterized gene, CYCD7;1, variously leads to induced proliferation, abnormal phenotypes, and elevated seed abortion. CYCD3;1 overexpression provoked a delay in embryonic developmental progression and abnormalities including additional divisions of the hypophysis and suspensor, regions where CYCD3 genes are normally expressed, but did not affect endosperm development. Overexpression of CYCD7;1, not normally expressed in seed development, promoted overgrowth of both embryo and endosperm through increased division and cell enlargement. In contrast to post-germination growth, where pattern and organ size is not generally related to division, results suggest that a close control of cell division through regulation of CYCD activity is important during seed development in conferring both developmental rate and correct patterning.  相似文献   

11.
G1到S期的转换是植物细胞周期中一个关键的调控点,而D型细胞周期蛋白(CYCD)在这一转换过程中起着重要作用.CYCD通过感受外界信号的刺激,调控细胞周期进程,进而影响植物的生长发育.为研究木本植物中不同CYCD基因家族的功能,从黑杨中克隆出6个CYCD基因,并将其转化至酵母G1期细胞周期蛋白突变体进行功能鉴定.各家族...  相似文献   

12.
Qi R  John PC 《Plant physiology》2007,144(3):1587-1597
The Arabidopsis (Arabidopsis thaliana) CYCD2;1 gene introduced in genomic form increased cell formation in the Arabidopsis root apex and leaf, while generating full-length mRNA, raised CDK/CYCLIN enzyme activity, reduced G1-phase duration, and reduced size of cells at S phase and division. Other cell cycle genes, CDKA;1, CYCLIN B;1, and the cDNA form of CYCD2;1 that produced an aberrantly spliced mRNA, produced smaller or zero increases in CDK/CYCLIN activity and did not increase the number of cells formed. Plants with a homozygous single insert of genomic CYCD2;1 grew with normal morphology and without accelerated growth of root or shoot, not providing evidence that cell formation or CYCLIN D2 controls growth of postembryonic vegetative tissues. At the root apex, cells progressed normally from meristem to elongation, but their smaller size enclosed less growth and a 40% reduction in final size of epidermal and cortical cells was seen. Smaller elongated cell size inhibited endoreduplication, indicating a cell size requirement. Leaf cells were also smaller and more numerous during proliferation and epidermal pavement and palisade cells attained 59% and 69% of controls, whereas laminas reached normal size. Autonomous control of expansion was therefore not evident in abundant cell types that formed tissues of root or leaf. Cell size was reduced by a greater number formed in a tissue prior to cell and tissue expansion. Initiation and termination of expansion did not correlate with cell dimension or number and may be determined by tissue-wide signals acting across cellular boundaries.  相似文献   

13.
14.
15.
16.
Endosperm development in maize (Zea mays L.) and related cereals comprises a cell proliferation stage followed by a period of rapid growth coupled to endoreduplication. Regulation of the cell cycle in developing endosperm is poorly understood. We have characterized various subunits of cyclin-dependent kinase (CDK) complexes, master cell cycle regulators in all eukaryotes. A-, B-, and D-type cyclins as well as A- and B-type cyclin-dependent kinases were characterized with respect to their RNA and protein expression profiles. Two main patterns were identified: one showing expression throughout endosperm development, and another characterized by a sharp down-regulation with the onset of endoreduplication. Cyclin CYCB1;3 and CYCD2;1 proteins were distributed in the cytoplasm and nucleus of cells throughout the endosperm, while cyclin CYCD5 protein was localized in the cytoplasm of peripheral cells. CDKB1;1 expression was strongly associated with cell proliferation. Expression and cyclin-binding patterns suggested that CDKA;1 and CDKA;3 are at least partially redundant. The kinase activity associated with the cyclin CYCA1 was highest during the mitotic stage of development, while that associated with CYCB1;3, CYCD2;1 and CYCD5 peaked at the mitosis-to-endoreduplication transition. A-, B- and D-type cyclins were more resistant to proteasome-dependent degradation in endoreduplicating than in mitotic endosperm extracts. These results indicated that endosperm development is characterized by differential expression and activity of specific cyclins and CDKs, and suggested that endoreduplication is associated with reduced cyclin proteolysis via the ubiquitin–proteasome pathway.  相似文献   

17.
Yu Y  Steinmetz A  Meyer D  Brown S  Shen WH 《The Plant cell》2003,15(12):2763-2777
Although most of the components of the cell cycle machinery are conserved in all eukaryotes, plants differ strikingly from animals by the absence of a homolog of E-type cyclin, an important regulator involved in G1/S-checkpoint control in animals. By contrast, plants contain a complex range of A-type cyclins, with no fewer than 10 members in Arabidopsis. We previously identified the tobacco A-type cyclin Nicta;CYCA3;2 as an early G1/S-activated gene. Here, we show that antisense expression of Nicta;CYCA3;2 in tobacco plants induces defects in embryo formation and impairs callus formation from leaf explants. The green fluorescent protein (GFP)-Nicta;CYCA3;2 fusion protein was localized in the nucleoplasm. Transgenic tobacco plants overproducing GFP-Nicta;CYCA3;2 could not be regenerated from leaf disc transformation, whereas some transgenic Arabidopsis plants were obtained by the floral-dip transformation method. Arabidopsis plants that overproduce GFP-Nicta;CYCA3;2 showed reduced cell differentiation and endoreplication and a dramatically modified morphology. Calli regenerated from leaf explants of these transgenic Arabidopsis plants were defective in shoot and root regeneration. We propose that Nicta;CYCA3;2 has important functions, analogous to those of cyclin E in animals, in the control of plant cell division and differentiation.  相似文献   

18.
拟南芥CYCD3;1基因的克隆及功能研究   总被引:2,自引:0,他引:2  
从拟南芥基因组中克隆出CYCD3;1基因,将其插入植物双元载体pER8中,使其受一个嵌合转录启动子的控制;利用农杆菌介导通过真空渗透法将外源基因导入拟南芥中,经潮霉素抗性筛选出转化植株后,用PCR鉴定出阳性转化植株,对阳性转化植株进行连续光照培养并观察其表型变化,发现转基因株系与野生型之间在抽苔和开花时间上有较大差别。结果表明,CYCD3;1低水平误表达会影响植物的生长发育。  相似文献   

19.
20.
The EL2 gene of rice (Oryza sativa), previously classified as early response gene against the potent biotic elicitor N-acetylchitoheptaose and encoding a short polypeptide with unknown function, was identified as a novel cell cycle regulatory gene related to the recently reported SIAMESE (SIM) gene of Arabidopsis thaliana. Iterative two-hybrid screens, in vitro pull-down assays, and fluorescence resonance energy transfer analyses showed that Orysa; EL2 binds the cyclin-dependent kinase (CDK) CDKA1;1 and D-type cyclins. No interaction was observed with the plant-specific B-type CDKs. The amino acid motif ELERFL was identified to be essential for cyclin, but not for CDK binding. Orysa;EL2 impaired the ability of Orysa; CYCD5;3 to complement a budding yeast (Saccharomyces cerevisiae) triple CLN mutant, whereas recombinant protein inhibited CDK activity in vitro. Moreover, Orysa;EL2 was able to rescue the multicellular trichome phenotype of sim mutants of Arabidopsis, unequivocally demonstrating that Orysa;EL2 operates as a cell cycle inhibitor. Orysa;EL2 mRNA levels were induced by cold, drought, and propionic acid. Our data suggest that Orysa;EL2 encodes a new type of plant CDK inhibitor that links cell cycle progression with biotic and abiotic stress responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号