首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C Sauvage  T Franza    D Expert 《Journal of bacteriology》1996,178(4):1227-1231
The fct cbsCEBA operon from the Erwinia chrysanthemi 3937 chrysobactin-dependent iron assimilation system codes for transport and biosynthetic functions. The sequence of the fct outer membrane receptor gene was determined. The fct promoter region displays a strong resemblance to the Escherichia coli bidirectional intercistronic region controlling the expression of the fepA-entD and fes-entF operons. An apparent Fur-binding site was shown to confer iron regulation on an fct::lac fusion expressed on a low-copy-number plasmid in a Fur-proficient E. coli strain. The fct gene consists of an open reading frame encoding a 735-amino-acid polypeptide with a signal sequence of 38 residues. The Fct protein has 36% sequence homology with the E. coli ferrichrome receptor FhuA and the Yersinia enterocolitica ferrioxamine receptor FoxA. On the basis of secondary-structure predictions and these homologies, we propose a two-dimensional folding model for Fct.  相似文献   

2.
A Yersinia enterocolitica receptor mutant was isolated which is impaired in ferrichrome uptake. The receptor-encoding gene fcuA was cloned in Escherichia coli K-12. A fcuA mutant of Y. enterocolitica could be complemented by the cloned DNA fragment. The FcuA-encoding region was sequenced and an open reading frame encoding 758 amino acids including a signal sequence of 36 amino acids was found. FcuA shared 34.6% amino acid sequence homology with FatA, the anguibactin receptor of Vibrio anguillarum, but only 20.6% homology with FhuA, the ferrichrome receptor of E. coli Since the structure of anguibactin differs strongly from that of ferrichrome there seems to be no co-evolution of receptor structure and substrate specificity. The ferrichrome receptors FcuA from Y. enterocolitica and FhuA from E. coli had slightly different substrate specificities. In contrast to FhuA from E. coli, FcuA from Y. enterocolitica was more stereoselective and failed to transport enantio ferrichrome. Three additional ferrichrome receptors were cloned from Pantoea aggiomerans (formerly Erwinia herbicola), Salmonella paratyphi B and Salmonella typhimurium. Their substrate specificity was similar but not identical.  相似文献   

3.
A Pseudomonas stutzeri gene (nosA) encoding an outer membrane protein was cloned into the broad-host-range vector pRK290 and expressed in a mutant lacking the protein. Deletion analysis identified the approximate extent of the nosA region which was sequenced, and it was found to contain an open reading frame encoding 683 amino acids including a presumed signal sequence of 44 amino acids. The putative processed form had a molecular weight of 70,218, characteristics typical of outer membrane proteins, and considerable amino acid sequence homology with Escherichia coli BtuB. A short stretch of amino acids was homologous with the E. coli TonB-dependent outer membrane proteins, BtuB, IutA, FepA, and FhuA, suggesting a homologous function: interaction with a periplasmic protein or uptake of a specific substrate.  相似文献   

4.
A cloned fragment of Yersinia enterocolitica DNA complemented the defect in ferrioxamine B uptake of an Escherichia coli fhuE mutant lacking the outer membrane high-affinity transport protein FhuE. Subcloning revealed that a 13.7-kDa outer membrane protein was required for complementation. The amino acid sequence deduced from the nucleotide sequence showed extensive homology to PCPHi, an outer membrane lipoprotein of Haemophilus influenzae. We therefore termed this protein PCPYe. Plasmid-encoded pcpY mediated a low-affinity uptake of ferrioxamine B which may be caused by changes in the permeability of the outer membrane due to an overexpression of this outer membrane protein. A transposon insertion mutant in the plasmid-encoded pcpY gene was transferred into the chromosome of Y. enterocolitica. The resulting mutation had no effect on the high-affinity uptake of ferrioxamine B in Yersinia cells. Using the antibiotic ferrimycin we were able to isolate a Y. enterocolitica mutant lacking the high-affinity outer membrane receptor for ferrioxamine uptake, termed FoxA.  相似文献   

5.
We have identified and cloned a novel toxin gene (tccC1/xptB1) from Xenorhabdus nematophilus strain isolated from Korea-specific entomophagous nematode Steinernema glaseri MK. The DNA sequence of cloned toxin gene (3048 bp) has an open reading frame encoding 1016 amino acids with a predicted molecular mass of 111058 Da. The toxin sequence shares 50-96% identical amino acid residues with the previously reported tccC1 cloned from X. nematophilus, Photorhabdus luminescens W14 P. luminescens TTO1, and Yersinia pestis CO92. The toxin gene was successfully expressed in Escherichia coli, and the recombinant toxin protein caused a rapid cessation in mortality of Galleria mellonella larvae (80% death of larvae within 2 days). Conclusively, the heterologous expression of the novel gene tccC1 cloned into E. coli plasmid vector produced recombinant toxin with high insecticidal activity.  相似文献   

6.
The outer membrane receptor for ferrioxamines (FoxA Erw ) of Erwinia herbicola (Pantoea agglomerans) was cloned from a cosmid gene bank and partially sequenced. A comparison of the partial amino acid sequence of FoxA with the amino acid sequence of FoxA Yer from Yersinia enterocolitica revealed a high sequence homology. A functional analysis of FoxA and FoxA receptors cloned into a Fhu-negative background (HK97) revealed that ferrioxamines are recognized at very low concentrations (< 10 pmoles) in growth promotion bioassays. A collection of ferrioxamine derivatives containing varying chain lengths and ether bridges within the molecule was also accepted. However, the three ether containing ferrioxamine (Et ) behaved differently in the two FoxA receptors. Coprogen was also recognized to a certain extent, whereas ferrichromes were completely excluded from the FoxA receptors, confirming that coprogens share some structural similarities with the ferrioxamines. FoxA mutants (FM13) of Erwinia herbicola obtained by ferrimycin selection showed no uptake of Fe-labelled ferrioxamine E and B any more, while the transport of coprogen and ferrichrome was unaffected or even slightly increased. © Rapid Science 1998  相似文献   

7.
The fhuA gene of Escherichia coli K-12 encodes an outer membrane protein that acts as the ferrichrome-iron(III) receptor. To determine the export signals and sorting information within FhuA, gene fusions of fhuA'-'lacZ and fhuA'-'phoA were constructed. Although a FhuA'-'LacZ hybrid protein was detected in the Triton X-100-insoluble fraction of the cell envelope, direct immunoelectron microscopic observation showed that this protein remained in the cytoplasm. FhuA'-'PhoA hybrid proteins were all exported across the cytoplasmic membrane. Those hybrids containing up to 88 amino acids of FhuA (FhuA88) fused to PhoA were released along with other periplasmic proteins. Hybrids containing 180 or more amino acids of FhuA (FhuA180) fused to PhoA were associated with the outer membrane. It is proposed that some information inherent in the sequences between FhuA88 and FhuA180 confers stable association with the outer membrane.  相似文献   

8.
A Haemophilus influenzae gene encoding a protein with high homology to ArcB receptor protein from Escherichia coli has been cloned. An error in the previously reported sequence of this gene has been found, thus increasing its open reading frame. The cloned gene comprising the entire open reading frame restores oxygen-dependent regulation of succinate dehydrogenase in an ArcB-deficient E. coli strain. Thus, this gene is a functional analog of ArcB from E. coli. By screening partially sequenced bacterial genomes using the BLAST program, proteins with high homology to ArcB protein from E. coli were found in Salmonella typhi, Yersinia pestis, Vibrio cholerae, and Pasteurella multocida. Comparison of these proteins with ArcB protein from E. coli and H. influenzae revealed conserved amino acid regions. Transmembrane helix II was shown to be highly homologous in all the ArcB-type proteins. The involvement of this region in ArcB-mediated oxygen-dependent regulation is suggested.  相似文献   

9.
10.
The plasmid-located gene caf1 encoding the capsular antigen fraction 1 (F1) of Yersinia pestis was cloned and sequenced. The gene codes for a 170 amino acid peptide with a deduced Mr of 17.6 kDa. The signal peptide sequence was highly homologous to the E. coli consensus signal sequence. The F1 was assumed to have beta-sheet structure for the most part. The region located between amino acids 100 and 150 was suggested to contain putative antigenic determinants and to stimulate T cells.  相似文献   

11.
The aroA locus of Bordetella pertussis, encoding 5-enolpyruvylshikimate 3-phosphate synthase, has been cloned into Escherichia coli by using a cosmid vector. The gene is expressed in E. coli and complemented an E. coli aroA mutant. The nucleotide sequence of the B. pertussis aroA gene was determined and contains an open reading frame encoding 442 amino acids, with a calculated molecular weight for 5-enolpyruvylshikimate 3-phosphate synthase of 46,688. The amino acid sequence derived from the nucleotide sequence shows homology with the published amino acid sequences of aroA gene products of other microorganisms.  相似文献   

12.
The hemin receptor HemR of Yersinia enterocolitica was identified as a 78 kDa iron regulated outer membrane protein. Cells devoid of the HemR receptor as well as cells mutated in the tonB gene were unable to take up hemin as an iron source. The hemin uptake operon from Y. enterocolitica was cloned in Escherichia coli K12 and was shown to encode four proteins: HemP (6.5 kDa), HemR (78 kDa), HemS (42 kDa) and HemT (27 kDa). When expressed in E.coli hemA aroB, a plasmid carrying genes for HemP and HemR allowed growth on hemin as a porphyrin source. Presence of genes for HemP, HemR and HemS was necessary to allow E.coli hemA aroB cells to use hemin as an iron source. The nucleotide sequence of the hemR gene and its promoter region was determined and the amino acid sequence of the HemR receptor deduced. HemR has a signal peptide of 28 amino acids and a typical TonB box at its amino-terminus. Upstream of the first gene in the operon (hemP), a well conserved Fur box was found which is in accordance with the iron-regulated expression of HemR.  相似文献   

13.
The ferrichrome-iron receptor encoded by the fhuA gene of Escherichia coli K-12 is a multifunctional outer membrane receptor required for the binding and uptake of ferrichrome and bacteriophages T5, T1, phi 80, and UC-1 as well as colicin M. To identify domains of the protein which are important for FhuA activities, a library of 31 overlapping deletion mutants in the fhuA gene was generated. Export of FhuA deletion proteins to the outer membrane and receptor functions of the deletion proteins were analyzed. All but three of the deletion mutant FhuA proteins cofractionated with the outer membrane; no FhuA proteins were detected in outer membrane preparations or in cell extracts when the deletions spanned amino acids 418 to 440. Most deletion proteins were susceptible to cleavage by endogenous proteolytic activity; some degradation products were detected on Coomassie blue-stained gels and on Western blots (immunoblots). Receptor functions were measured with the mutated genes present on multicopy plasmids. Two deletion mutants, FhuA delta 060-069 and FhuA delta 129-168, conferred wild-type phenotypes: they demonstrated growth promotion by ferrichrome and the same efficiency of plating of bacteriophages as that of wild-type FhuA; killing by colicin M was also unaffected. For FhuA delta 021-128 and FhuA delta 406-417, reduced sensitivity to colicin M was detected; wild-type phenotypes were observed for all other FhuA functions. Deletions from amino acids 169 to 195 slightly reduced sensitivities to bacteriophages and to colicin M; ferrichrome growth promotion was unaffected. When deletions extended into the region of amino acids 196 to 405, all FhuA functions were either reduced or abolished. The results indicate that selected regions of the FhuA protein have receptor activities and demonstrate the presence of both shared and unique ligand-responsive domains.  相似文献   

14.
Mutagenesis of Vibrio cholerae with TnphoA, followed by screening for fusions that were activated under low-iron conditions, led to the identification of seven independent fusion strains, each of which was deficient in the ability to utilize ferrichrome as a sole iron source for growth in a plate bioassay and had an insertion in genes encoding products homologous to Escherichia coli FhuA or FhuD. Expression of the gene fusions was independent of IrgB but regulated by Fur. We report here a map of the operon and the predicted amino acid sequence of FhuA, based on the nucleotide sequence. Unlike those of the E. coli fhu operon, the V. cholerae ferrichrome utilization genes are located adjacent and opposite in orientation to a gene encoding an ATP-binding cassette transporter homolog, but this gene, if disrupted, does not affect the utilization of ferrichrome in vitro.  相似文献   

15.
FhuA (Mr 78,992, 714 amino acids), siderophore receptor for ferrichrome-iron in the outer membrane of Escherichia coli, was affinity tagged, rapidly purified, and crystallized. To obtain FhuA in quantities sufficient for crystallization, a hexahistidine tag was genetically inserted into the fhuA gene after amino acid 405, which resides in a known surface-exposed loop. Recombinant FhuA405.H6 was overexpressed in an E. coli strain that is devoid of several major porins and using metal-chelate chromatography was purified in large amounts to homogeneity. FhuA crystals were grown using the hanging drop vapor diffusion technique and were suitable for X-ray diffraction analysis. On a rotating anode X-ray source, diffraction was observed to 3.0 A resolution. The crystals belong to space group P6(1) or P6(5) with unit cell dimensions of a=b=174 A, c=88 A (alpha=beta=90 degrees, gamma=120 degrees).  相似文献   

16.
A bacterial strain N-1 was isolated as a decomposer of alginate and identified as Deleya marina. The alyA encoding for alginate lyase was cloned into Escherichia coli. The structural gene, located on a 1.9-kb SalI fragment, revealed 1,122 bp encoding a mature protein of 348 amino acids and a signal peptide of 26 amino acids. The deduced amino acid sequence of the D. marina alginate lyase showed high homology to AlgL of Pseudomonas aeruginosa with 63% identity and belonging to class 1 by hydrophobic cluster analysis.  相似文献   

17.
Four outer membrane proteins of Escherichia coli were examined for their capabilities and limitations in displaying heterologous peptide inserts on the bacterial cell surface. The T7 tag or multiple copies of the myc epitope were inserted into loops 4 and 5 of the ferrichrome and phage T5 receptor FhuA. Fluorescence-activated cell sorting analysis showed that peptides of up to 250 amino acids were efficiently displayed on the surface of E. coli as inserts within FhuA. Strains expressing FhuA fusion proteins behaved similarly to those expressing wild-type FhuA, as judged by phage infection and colicin sensitivity. The vitamin B(12) and phage BF23 receptor BtuB could display peptide inserts of at least 86 amino acids containing the T7 tag. In contrast, the receptors of the phages K3 and lambda, OmpA and LamB, accepted only insertions in their respective loop 4 of up to 40 amino acids containing the T7 tag. The insertion of larger fragments resulted in inefficient transport and/or assembly of OmpA and LamB fusion proteins into the outer membrane. Cells displaying a foreign peptide fused to any one of these outer membrane proteins were almost completely recovered by magnetic cell sorting from a large pool of cells expressing the relevant wild-type platform protein only. Thus, this approach offers a fast and simple screening procedure for cells displaying heterologous polypeptides. The combination of FhuA, along with with BtuB and LamB, should provide a comprehensive tool for displaying complex peptide libraries of various insert sizes on the surface of E. coli for diverse applications.  相似文献   

18.
Using a single-probe method, we have cloned the gene for an immunogenic MPB57 protein of Mycobacterium bovis BCG. The nucleotide sequence includes an ORF of 300 base pairs encoding a protein of 99 amino acids with an Mr of 10,818. This cloned gene was expressed in an Escherichia coli expression vector to give a mature protein which reacted with a polyclonal antibody raised against MPB57.  相似文献   

19.
The glutamine synthetase (GS) gene from Bacillus subtilis PCI 219 was cloned in Escherichia coli using the vector pBR329. A plasmid, pSGS2, was isolated from a glnA+ transformant and the cloned GS gene was found to be located in a 3.6 kb DNA fragment. The nucleotide sequence of a 1.8 kb segment encoding the GS was determined. This segment showed an open reading frame which would encode a polypeptide of 444 amino acids. The amino acid sequence of this GS gene product has higher homology with that of the Clostridium acetobutylicum GS than that of the E. coli GS.  相似文献   

20.
The FhuA protein of Escherichia coli K-12 transports ferrichrome and the structurally related antibiotic albomycin across the outer membrane and serves as a receptor for the phages T1, T5, and φ80 and for colicin M. In this paper, we show that chimeric proteins consisting of the central part of FhuA and the N- and C-terminal parts of FhuE (coprogen receptor) or the N- and/or C-terminal parts of FoxA (ferrioxamine B receptor), function as ferrichrome transport proteins. Although the hybrid proteins contained the previously identified gating loop of FhuA, which is the principal binding site of the phages T5, T1, and φ80, only the hybrid protein consisting of the N-terminal third of FoxA and the C-terminal two thirds of FhuA conferred weak phage sensitivity to cells. Apparently, the gating loop is essential, but not sufficient for wild-type levels of ferrichrome transport and for phage sensitivity. The properties of FhuA-FoxA hybrids suggest different regions of the two receptors for ferric siderophore uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号