首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Monocytes are one of the predominant cell types in the peripheral blood that are infected by human cytomegalovirus (HCMV). Although virus can be detected in these cells in vivo, HCMV replication in cultured monocytes has been unsuccessful. In this study, we demonstrate efficient HCMV replication in cultured monocytes. HCMV permissiveness in these cells was dependent on nonadherent cell-induced stimulation of the monocyte, with subsequent morphological differentiation into macrophages. Approximately 40% of the cells infected by virus were detected by immunofluorescent staining with both immediate-early and late antibodies. In addition, viral plaque assays demonstrated significant productive infection of macrophages. These observations are consistent with the suggestion that the monocyte/macrophage serves as a source of viral amplification and dissemination.  相似文献   

3.
4.
Martinat C  Mena I  Brahic M 《Journal of virology》2002,76(24):12823-12833
Theiler's virus, a murine picornavirus, causes a persistent infection of macrophage/microglial cells in the central nervous systems of SJL/J mice. Viral replication is restricted in the majority of infected cells, whereas a minority of them contain large amounts of viral RNA and antigens. For the present work, we infected primary cultures of bone marrow monocytes/macrophages from SJL/J mice with Theiler's virus. During the first 10 h postinfection (p.i.), infected monocytes/macrophages were round and covered with filopodia and contained large amounts of viral antigens throughout their cytoplasm. Later on, they were large, flat, and devoid of filopodia and they contained only small amounts of viral antigens distributed in discrete inclusions. These two types of infected cells were very reminiscent of the two types of infected macrophages found in the spinal cords of SJL/J mice. At the peak of virus production, the viral yield per cell was approximately 200 times lower than that for BHK-21 cells. Cell death occurred in the culture during the first 24 h p.i. but not thereafter. No infected cells could be detected after 4 days p.i., and the infection never spread to 100% of the cells. This restriction was unchanged by treating the medium at pH 2 but was abolished by treating it with a neutralizing alpha/beta interferon antiserum, indicating a role for this cytokine in limiting virus expression in monocyte/macrophage cultures. The role of alpha/beta interferon was confirmed by the observation that monocytes/macrophages from IFNA/BR(-/-) mice were fully permissive.  相似文献   

5.
6.
IL-4 has multiple biologic activities and it has been shown to have effects on B and T lymphocytes, mast cells, NK cells, and monocytes. We studied the influence of IL-4 on the expression of cell membrane determinants, in particular aminopeptidase-N (CD13) and Fc epsilon RIIb (CD23), on human peripheral blood monocytes. We compared the response of monocytes with the response of human alveolar macrophages and monocytic cell lines (U937 and THP1), as mature and more immature representatives of the mononuclear phagocyte system, respectively. A dose-dependent increase of the expression of CD13 Ag was observed when monocytes were cultured with IL-4. Kinetic analyses revealed that this induction was maximal after 2 to 3 days of culture and resembled the kinetics of IL-4-induced expression of Fc epsilon RIIb on monocytes. This IL-4-induced increase was absent when monocytes were cultured with IL-4 and an anti-IL-4 antiserum. Concomitantly, an IL-4-induced increase in leucine-aminopeptidase activity could be observed. Northern blot analysis showed that incubation of monocytes with IL-4 induced a marked increase in CD13 mRNA. Alveolar macrophages also exhibited an increase in CD13 Ag expression when exposed to IL-4. Surprisingly, IL-4 was unable to induce expression of Fc epsilon RIIb on alveolar macrophages. U937 and THP1 cells did not show an induction of CD13 Ag when cultured in the presence of IL-4. However, IL-4 did induce the expression of Fc epsilon RIIb on both cell lines, suggesting the presence of functional IL-4R. Our data demonstrate that IL-4 increases the expression of CD13 Ag on monocytes. This IL-4-induced increase can also be observed in more mature monocytic cells such as alveolar macrophages, but is absent in immature cells such as U937 or THP1 cells. This is functionally accompanied by an increase in leucine-aminopeptidase activity and may be part of the general activation of monocytes/macrophages by IL-4. In conclusion, the data suggest that IL-4 responsiveness, in particular the induction of CD13 Ag and Fc epsilon RIIb expression, may be dependent on the stage of maturation of monocytes/macrophages.  相似文献   

7.
8.
Functional importance of Vpx protein of human immunodeficiency virus type 2 was evaluated in various types of cells. In 8 lymphocytic or monocytic cell lines tested, vpx mutant virus grew as well as wild-type virus. Only in primary peripheral blood mononuclear cell cultures, severely retarded growth of mutant virus was observed. No replication of vpx-minus virus was detected in primary macrophage cells. A highly sensitive single-round replication assay system was used to determine the defective replication phase in primary mononuclear cells of vpx mutant virus. In all cell lines examined, vpx mutant displayed no abnormality. In contrast, the vpx mutant was demonstrated to be defective at an early stage of the infection cycle in primary cell cultures. No evidence of a replication-defect at a late phase in primary cells of the vpx mutant was obtained by a transfection-coculture method. These results indicate that the virion-associated Vpx protein is essential for early viral replication process in natural target cells such as primary macrophages.  相似文献   

9.
Studies of lentivirus infection in ruminants, nonhuman primates, and humans suggest that virus infection of macrophages plays a central role in the disease process. To investigate whether human immunodeficiency virus type 1 (HIV-1) can infect chimpanzee macrophages, we recovered monocytes from peripheral blood mononuclear cells of HIV-1-negative animals and inoculated these and control human monocytes with a panel of four human-passaged monocytotropic virus strains and one chimpanzee-passaged isolate. HIV-1 infected human monocytes synthesized proviral DNA, viral mRNA, p24 antigen, and progeny virions. In contrast, except for the chimpanzee-passaged HIV-1 isolate, chimpanzee monocytes failed to support HIV-1 replication when cultured under both identical and a variety of other conditions. Proviral DNA was demonstrated only at background levels in these cell cultures by polymerase chain reaction for gag- and env-related sequences. Interestingly, the chimpanzee-passaged HIV-1 isolate did not replicate in human monocytes; viral p24 antigens and progeny virions were not detected. The same monocytotropic panel of HIV-1 strains replicated in both human and chimpanzee CD4+ T lymphoblasts treated with phytohemagglutinin and interleukin-2. The failure of HIV-1 to infect chimpanzee monocytes, which can be overcome by serial in vivo viral passage, occurs through a block early in the viral life cycle.  相似文献   

10.
11.
The pathogenetic mechanisms underlying hemorrhagic fevers are not fully understood, but hemorrhage, activation of coagulation, and shock suggest vascular instability. Here, we demonstrate that Marburg virus (MBG), a filovirus causing a severe form of hemorrhagic fever in humans, replicates in human monocytes/macrophages, resulting in cytolytic infection and release of infectious virus particles. Replication also led to intracellular budding and accumulation of viral particles in vacuoles, thus providing a mechanism by which the virus may escape immune surveillance. Monocytes/macrophages were activated by MBG infection as indicated by tumor necrosis factor alpha (TNF-alpha) release. Supernatants of monocyte/macrophage cultures infected with MBG increased the permeability of cultured human endothelial cell monolayers. The increase in endothelial permeability correlated with the time course of TNF-alpha release and was inhibited by a TNF-alpha specific monoclonal antibody. Furthermore, recombinant TNF-alpha added at concentrations present in supernatants of virus-infected macrophage cultures increased endothelial permeability in the presence of 10 micron H2O2. These results indicate that TNF-alpha plays a critical role in mediating increased permeability, which was identified as a paraendothelial route shown by formation of interendothelial gaps. The combination of viral replication in endothelial cells (H.-J. Schnittler, F. Mahner, D. Drenckhahn, H.-D. Klenk, and H. Feldmann, J. Clin. Invest. 19:1301-1309, 1993) and monocytes/macrophages and the permeability-increasing effect of virus-induced cytokine release provide the first experimental data for a novel concept in the pathogenesis of viral hemorrhagic fever.  相似文献   

12.
Rhinoviruses (RV) are the major cause of acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Rhinoviruses have been shown to activate macrophages, but rhinovirus replication in macrophages has not been reported. Tumor necrosis factor alpha (TNF-alpha) is implicated in the pathogenesis of acute exacerbations, but its cellular source and mechanisms of induction by virus infection are unclear. We hypothesized that rhinovirus replication in human macrophages causes activation and nuclear translocation of NF-kappaB, leading to TNF-alpha production. Using macrophages derived from the human monocytic cell line THP-1 and from primary human monocytes, we demonstrated that rhinovirus replication was productive in THP-1 macrophages, leading to release of infectious virus into supernatants, but was limited in monocyte-derived macrophages, likely due to type I interferon production, which was robust in monocyte-derived but deficient in THP-1-derived macrophages. Similar to bronchial epithelial cells, only small numbers of cells supported complete virus replication. We demonstrated RV-induced activation of NF-kappaB and colocalization of p65/NF-kappaB nuclear translocation with virus replication in both macrophage types. The infection induced TNF-alpha release in a time- and dose-dependent, RV serotype- and receptor-independent manner and was largely (THP-1 derived) or completely (monocyte derived) dependent upon virus replication. Finally, we established the requirement for NF-kappaB but not p38 mitogen-activated protein kinase in induction of TNF-alpha. These data suggest RV infection of macrophages may be an important source of proinflammatory cytokines implicated in the pathogenesis of exacerbations of asthma and COPD. They also confirm inhibition of NF-kappaB as a promising target for development of new therapeutic intervention strategies.  相似文献   

13.
Human blood monocytes when cultured on hydrophobic Teflon membranes differentiate into mature macrophages. The expression of transferrin receptors was monitored by monoclonal antibody (OKT9) binding as detected by immunoperoxidase staining. Whereas monocytes were negative, an increasing percentage of macrophages, starting from day 2 in culture, labelled with the antitransferrin receptor antibody as these cells undergo differentiation. After completion of maturation more than 90% of macrophages expressed transferrin receptors. While 90-95% of macrophages from broncho-alveolar lavage fluids labelled with the OKT9 antibody, only a minor portion of macrophages obtained from peritoneal and pleural cavities did so. In parallel, intracellular ferritin in cells of the monocyte-macrophage lineage increased from 10 ng/10(6) cells to 350-1,500 ng/10(6) cells during maturation in vitro. Alveolar macrophages proved to have the highest ferritin content which ranged from 355-8,400 ng/10(6). The results may indicate that iron uptake and storage is a function of cells at late stages of macrophage maturation and that the occurrence of surface receptors for transferrin can be regarded as differentiation dependent marker.  相似文献   

14.
Long-term persistent infection was established in 100% of pigs (n = 19) experimentally infected with African swine fever virus (ASFV). Viral DNA was detected in peripheral blood mononuclear leukocytes (PBML) at greater than 500 days postinfection by a PCR assay. Infectious virus was not, however, isolated from the same PBML samples. In cell fractionation studies of PBML, monocytes/macrophages were found to harbor viral DNA during the persistent phase of infection. This result indicates that monocytes/macrophages are persistently infected with ASFV and that ASFV-swine monocyte/macrophage interactions can result in either lytic or persistent infection.  相似文献   

15.
Production of platelet-activating factor 1-O-alkyl-2-acetyl-sn-glycero-3- phosphocholine (PAF), a potent mediator of inflammation, by mononuclear phagocytes varies with their stage of cellular differentiation and the nature of the eliciting stimulus. The human monocytic cell line U937 can be induced to differentiate to a macrophage-like cell following phorbol myristate acetate exposure, and after differentiation, these cells efficiently support replication of respiratory syncytial virus (RSV). U937 cells induced to differentiate with phorbol myristate acetate demonstrated a time-dependent decrease in PAF synthesis. RSV infection of these differentiated U937 cells caused a sustained stimulation of PAF synthesis that paralleled viral replication and was dependent on infectious virus. Virus increased the activity of lyso-PAF:acetyl-CoA acetyl-transferase (PAF acetyltransferase) in cell lysates, thus enhancing the anabolic pathway of PAF synthesis without altering the activity of PAF acetylhydrolase, which regulates PAF catabolism. RSV infection of human monocytes also caused a marked increase in [3H] monocytes also caused to uninfected monocytes. Thus, virus infection serves as a novel stimulus to induce PAF synthesis in human mononuclear phagocytes and suggests that increased PAF production may have a critical role in the inflammatory response to RSV.  相似文献   

16.
The pathogenesis of HIV-1 infection is influenced by the immunoregulatory responses of the host. Macrophages present in the lymphoid tissue are susceptible to infection with HIV-1, but are relatively resistant to its cytopathic effects and serve as a reservoir for the virus during the course of disease. Previous investigators have demonstrated that increased serum levels of TNF-alpha contribute to the clinical symptoms of AIDS and that TNF-alpha stimulates the production of HIV-1 in chronically infected lymphocytic and monocytic cell lines by increasing HIV-1 gene expression. Although previous studies have suggested that TNF-alpha may increase HIV-1 infection of primary human mononuclear cells, some recent studies have indicated that TNF-alpha suppresses HIV-1 infection of macrophages. We now demonstrate that TNF-alpha suppresses HIV-1 replication in freshly infected peripheral blood monocytes (PBM) and alveolar macrophages (AM) in a dose-dependent manner. As TNF-alpha has been shown to increase the production of C-C chemokine receptor (CCR5)-binding chemokines under certain circumstances, we hypothesized that TNF-alpha inhibits HIV-1 replication by increasing the expression of these HIV-suppressive factors. We now show that TNF-alpha treatment of PBM and AM increases the production of the C-C chemokine, RANTES. Immunodepletion of RANTES alone or in combination with macrophage inflammatory protein-1alpha and -1beta block the ability of TNF-alpha to suppress viral replication in PBM and AM. In addition, we found that TNF-alpha treatment reduces CCR5 expression on PBM and AM. These findings suggest that TNF-alpha plays a significant role in inhibiting monocytotropic strains of HIV-1 by two distinct, but complementary, mechanisms.  相似文献   

17.
Induction of NF-KB during monocyte differentiation by HIV type 1 infection   总被引:11,自引:0,他引:11  
The production of human immunodeficiency virus type 1 (HIV-1) progeny was followed in the U937 promonocytic cell line after stimulation either with retinoic acid or PMA, and in purified human monocytes and macrophages. Electrophoretic mobility shift assays and Southwestern blotting experiments were used to detect the binding of cellular transactivation factor NF-KB to the double repeat-KB enhancer sequence located in the long terminal repeat. PMA treatment, and not retinoic acid treatment of the U937 cells acts in inducing NF-KB expression in the nuclei. In nuclear extracts from monocytes or macrophages, induction of NF-KB occurred only if the cells were previously infected with HIV-1. When U937 cells were infected with HIV-1, no induction of NF-KB factor was detected, whereas high level of progeny virions was produced, suggesting that this factor was not required for viral replication. These results indicate that in monocytic cell lineage, HIV-1 could mimic some differentiation/activation stimuli allowing nuclear NF-KB expression.  相似文献   

18.
19.
Tissue macrophages are derived exclusively from blood monocytes, which as monocyte-derived macrophages support HIV-1 replication. However, among human tissue macrophages only intestinal macrophages are non-permissive to HIV-1, suggesting that the unique microenvironment in human intestinal mucosa renders lamina propria macrophages non-permissive to HIV-1. We investigated this hypothesis using blood monocytes and intestinal extracellular matrix (stroma)-conditioned media (S-CM) to model the exposure of newly recruited monocytes and resident macrophages to lamina propria stroma, where the cells take up residence in the intestinal mucosa. Exposure of monocytes to S-CM blocked up-regulation of CD4 and CCR5 expression during monocyte differentiation into macrophages and inhibited productive HIV-1 infection in differentiated macrophages. Importantly, exposure of monocyte-derived macrophages simultaneously to S-CM and HIV-1 also inhibited viral replication, and sorted CD4+ intestinal macrophages, a proportion of which expressed CCR5+, did not support HIV-1 replication, indicating that the non-permissiveness to HIV-1 was not due to reduced receptor expression alone. Consistent with this conclusion, S-CM also potently inhibited replication of HIV-1 pseudotyped with vesicular stomatitis virus glycoprotein, which provides CD4/CCR5-independent entry. Neutralization of TGF-β in S-CM and recombinant TGF-β studies showed that stromal TGF-β inhibited macrophage nuclear translocation of NF-κB and HIV-1 replication. Thus, the profound inability of intestinal macrophages to support productive HIV-1 infection is likely the consequence of microenvironmental down-regulation of macrophage HIV-1 receptor/coreceptor expression and NF-κB activation.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) infection in mononuclear phagocyte lineage cells (monocytes, macrophages, and microglia) is a critical component in the pathogenesis of viral infection. Viral replication in macrophages serves as a reservoir, a site of dissemination, and an instigator for neurological sequelae during HIV-1 disease. Recent studies demonstrated that chemokine receptors are necessary coreceptors for HIV-1 entry which determine viral tropism for different cell types. To investigate the relative contribution of the β-chemokine receptors CCR3 and CCR5 to viral infection of mononuclear phagocytes we utilized a panel of macrophage-tropic HIV-1 strains (from blood and brain tissue) to infect highly purified populations of monocytes and microglia. Antibodies to CD4 (OKT4A) abrogated HIV-1 infection. The β chemokines and antibodies to CCR3 failed to affect viral infection of both macrophage cell types. Antibodies to CCR5 (3A9) prevented monocyte infection but only slowed HIV replication in microglia. Thus, CCR5, not CCR3, is an essential receptor for HIV-1 infection of monocytes. Microglia express both CCR5 and CCR3, but antibodies to them fail to inhibit viral entry, suggesting the presence of other chemokine receptors for infection of these cells. These studies demonstrate the importance of mononuclear phagocyte heterogeneity in establishing HIV-1 infection and persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号