首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Scott Power  Graham Palmer 《BBA》1980,593(2):400-413
We have prepared and characterized resealed erythrocyte ghosts in which the only discernible pigment is cytochrome c. The resealed ghosts have the normal orientation and are free of ‘leaky’ species; they are stable and can be maintained at 4°C for many days without lysis.

The internal cytochrome c participates in redox reactions with both soluble and insolubilized cytochrome c present externally, and with external cytochrome b5. No reaction was observed with plastocyanin, cytochrome c oxidase or NADPH-cytochrome c reductase.

A study has been made of the reaction of the internal cytochrome c with the low molecular weight reductants, ascorbate and glutathione. Complex kinetics are observed with both reagents: with ascorbate the results are best explained by assuming the existence, in the membrane, of a redox-active species able to undergo dedimerization. A protein bound disulfide bond would satisfy the requirement.  相似文献   


2.
Gary O. Gray  David B. Knaff 《BBA》1982,680(3):290-296
The sulfide:cytochrome c oxidoreductase activity of the flavocytochrome c-522 from the purple sulfur bacterium Chromatium vinosum has been investigated. The oxidized sulfur product of the sulfide:cytochrome c reductase activity has been shown to be elemental sulfur. Cytochrome c-552 has been found to form a stable complex with horse heart cytochrome c that appears to be held together by electrostatic interactions. The stability of this complex and the sulfide:cytochrome c reductase activity of cytochrome c-552 are both ionic strength dependent, with maximal rates of cytochrome c reduction and extent of complex formation occurring over the same ionic strength range. Trifluoroacetylated cytochrome c is not reduced in the presence of cytochrome c-552 and sulfide, nor does it form a complex with cytochrome c-552. These results suggest the possible involvement of cytochrome c lysine residues in complex formation. Cytochrome c-552 migrates with an anomalously high apparent molecular weight on gel filtration columns equilibrated with low ionic strength buffers, suggesting the possibility of conformational changes or dimerization of the protein. However, complexation of cytochrome c-552 with cytochrome c still occurs at low ionic strength.  相似文献   

3.
Ken-ichiro Takamiya  Shigemi Obata 《BBA》1986,852(2-3):198-202
The photosynthetic membranes from Rhodopseudomonas palustris contained one species of membrane-bound c-type cytochrome, presumably cytochrome c1, and a b-type cytochrome with two heme centers. The molecular weight and midpoint potential of cytochrome c1 were 30000 and 275 mV, respectively. The peak of the reduced-minus-oxidized difference spectrum of cytochrome c1 was at 552 nm. Molecular weight of the b-type cytochrome was 32000 and the cytochrome had two midpoint potentials of 60 mV and −55 mV. The peaks of the reduced-minus-oxidized difference spectra of the high and low midpoint potential heme centers were at 560 and 562 nm, respectively. These results suggested that there was a cytochrome b-c1 complex in Rps. palustris.  相似文献   

4.
Cytochrome c from Nitrobacter agilis was isolated and purified approx. 60-fold. Absorption spectra of both the oxidized and the reduced Nitrobacter cytochrome c and the oxidized minus reduced difference spectrum of this cytochrome were essentially identical to the corresponding spectra of horse-heart cytochrome c. The redox potential of this cytochrome was determined by spectrophotometric titration with ferrocyanide/ferricyanide and found to be +0.282 V over the pH range 6.0 to 8.7, while a potential of +0.265 V was determined in the same manner for horse-heart cytochrome c. The titration also indicated that the Nitrobacter ferrocytochrome is oxidized by a single electron transfer.  相似文献   

5.
Topsoil microorganisms were screened for their acceptability of the standard substrate N,N-dimethylaniline in bacterial ‘whole-cell’ incubations. One bacterium converted N,N-dimethylaniline and was identified as Bacillus megaterium by 16S rDNA analysis and DNA/DNA-hybridization. In contrast to the well-known C-hydroxylation by liver microsomes, leading to p-hydroxylation, B. megaterium formed o- and p-monohydroxylated products, i.e. N,N-dimethyl-2-aminophenol and N,N-dimethyl-4-aminophenol, both identified by gas chromatography–mass spectrometry (GC–MS) using synthesized reference compounds. The observed hydroxylation showed slight regioselectivity in favour of the o-hydroxylated product. Two further substrates, N,N-diethylaniline and N-ethyl-N-methylaniline, were also successfully biohydroxylated by B. megaterium with corresponding regioselectivity. Interestingly, aniline, known to be transformed easily by cytochrome P-450meg into p-aminophenol, was not accepted as substrate.  相似文献   

6.
1. The reduction of cytochrome c oxidase by hydrated electrons was studied in the absence and presence of cytochrome c.

2. Hydrated electrons do not readily reduce the heme of cytochrome c oxidase. This observation supports our previous conclusion that heme a is not directly exposed to the solvent.

3. In a mixture of cytochrome c and cytochrome c oxidase, cytochrome c is first reduced by hydrated electrons (k = 4 · 1010 M−1 · s−1 at 22 °C and pH 7.2) after which it transfers electrons to cytochrome c oxidase with a rate constant of 6 · 107 M−1 · s−1 at 22 °C and pH 7.2.

4. It was found that two equivalents of cytochrome c are oxidized initially per equivalent of heme a reduced, showing that one electron is accepted by a second electron acceptor, probably one of the copper atoms of cytochrome c oxidase.

5. After the initial reduction, redistribution of electrons takes place until an equilibrium is reached similar to that found in redox experiments of Tiesjema, R. H., Muijsers, A. O. and Van Gelder, B. F. (1973) Biochim. Biophys. Acta 305, 19–28.  相似文献   


7.
T.E. Meyer  S.J. Kennel  S.M. Tedro  M.D. Kamen 《BBA》1973,292(3):634-643
Four out of five soluble electron transport iron proteins of Thiocapsa pfennigii plus the particulate cytochromes have been found to be analogous to those of Chromatium vinosum strain D. In addition to ferredoxin, high potential iron-sulfur protein. cytochrome c′, and cytochrome c-552(550), T. pfennigii contains a cytochrome c-552(545) not previously isolated from photosynthetic bacteria. It is concluded that T. pfennigii is more closely related to C. vinosum than to Rhodopseudomonas viridis, the only other known bacterial species having bacteriochlorophyll b.  相似文献   

8.
J.Peter Kusel  Bayard T. Storey 《BBA》1973,305(3):570-580
Highly purified mitochondrial preparations from the trypanosomatid hemoflagellate, Crithidia fasciculata (A.T.C.C. No.11745), were examined by low-temperature difference spectroscopy. The cytochrome a+a3 maximum of hypotonically-treated mitochondria reduced with succinate, was shifted from 605 nm at room temperature to 601 nm at 77 °K. The Soret maximum, found at 445 nm at 23 °C, was split at 77 °K into two approximately equally absorbing species with maxima at 438 and 444 nm. A prominent shoulder observed at 590 nm with hypotonically-treated mitochondria was not present in spectra of isotonic controls.

The cytochrome b maxima observed in the presence of succinate plus antimycin A were shifted from the 431 and 561 nm positions observed at 23 °C to 427 and 557 nm at 77 °K. Multiple b cytochromes were not apparent.

Unlike other soluble c-type cytochromes, the maximum of cytochrome c555 was not shifted at 77 °K although it was split to give a 551 nm shoulder adjacent to the 555 nm maximum. This lack of a low-temperature blue shift was true for partially purified hemoprotein preparations as well as in situ in the mitochondrial membrane.

Using cytochrome c555-depleted mitochondria, a cytochrome c1 pigment was observed with a maximum at 420 nm and multiple maxima at 551, 556, and 560 nm. After extraction of non-covalently bound heme, the pyridine hemochromogen difference spectrum of cytochrome c555-depleted preparations exhibited an maximum at 553 nm at room temperature.

The reduced rate of succinate oxidation by cytochrome c555-depleted mitochondria and the ferricyanide requirement for the reoxidation of cytochrome c1, even in the presence of antimycin, indicated that cytochrome c555-mediated electron transfer between cytochromes c1 and a+a3 in a manner analagous to that of cytochrome c in mammalian mitochondria.  相似文献   


9.
J. A. Berden  E. C. Slater 《BBA》1970,216(2):237-249
1. Succinate-cytochrome c reductase activity was reconstituted by incubating a mixture of succinate dehydrogenase, cytochrome c1, ubiquinone-10, phospholipid and a preparation of cytochrome b, made by the method of .

2. Preparations of cytochrome b active in reconstitution contained 5–28% native cytochrome b, as adjudged by reducibility with succinate in the reconstituted preparation and by lack of reaction with CO. Preparations of cytochrome b containing no native cytochrome b according to this criterion were inactive in reconstitution.

3. With a fixed amount of cytochrome b, the activity of the reconstituted preparation increased with increasing amounts of cytochrome c1 until a ratio of about 2b (total): 1c1 (allowing for the cytochrome c1 present in the cytochrome b preparation) was reached.

4. The amount of antimycin necessary for maximal inhibition of the reconstituted enzyme is a function of the amount of the cytochrome b and is independent of the amount of cytochrome c1. It is equal to about one half the amount of native cytochrome b.

5. Preparations of intact or reconstituted succinate-cytochrome c reductase or of cytochrome b completely quench the fluorescence of added antimycin, until an amount of antimycin equal to onehalf the amount of native cytochrome b present was added. Antimycin added in excess of this amount fluoresces with normal intensity. The quenching is only partial in the presence of Na2S2O4. Denatured cytochrome b does not quench the fluorescence.

6. Since preparations of cytochrome b active in reconstitution contained cytochrome c1 in an amount exceeding one half the amount of native cytochrome b present in the preparation, there is no evidence that native cytochrome b has been resolved from cytochrome c1. The stimulatory action of cytochrome c1 may be due to the restoration of a damaged membrane conformation.

7. Based on the assumption that the bc1 segment of the respiratory chain contains 2b:1c1:1 antimycin-binding sites, the specific quenching of antimycin fluorescence by binding to cytochrome b enables an accurate determination of the absorbance coefficients of cytochromes b and c1. These are 25.6 and 20.1 mM−1×cm−1 for the wavelength pairs 563–577 nm and 553–539 nm, respectively, in the difference spectrum reduced minus oxidized.  相似文献   


10.
Linda Yu  Jian-Hua Dong  Chang-An Yu 《BBA》1986,852(2-3):203-211
Cytochrome c1 from a photosynthetic bacterium Rhodobacter sphaeroides R-26 has been purified to homogeneity. The purified protein contains 30 nmol heme per mg protein, has an isoelectric point of 5.7, and is soluble in aqueous solution in the absence of detergents. The apparent molecular weight of this protein is about 150 000, determined by Bio Gel A-0.5 m column chromatography; a minimum molecular weight of 30 000 is obtained by sodium dodecylsulfate polyacrylamide gel electrophoresis. The absorption spectrum of this cytochrome is similar to that of mammalian cytochrome c1, but the amino acid composition and circular dichroism spectral characteristics are different. The heme moiety of cytochrome c1 is more exposed than is that of mammalian cytochrome c1, but less exposed than that of cytochrome c2. Ferricytochrome c1 undergoes photoreduction upon illumination with light under anaerobic conditions. Such photoreduction is completely abolished when p-chloromercuriphenylsulfonate is added to ferricytochrome c1, suggesting that the sulfhydryl groups of cytochrome c1 are the electron donors for photoreduction. Purified cytochrome c1 contains 3 ± 0.1 mol of the p-chloromercuriphenylsulfonate titratable sulfhydryl groups per mol of protein. In contrast to mammalian cytochrome c1, the bacterial protein does not form a stable complex with cytochrome c2 or with mammalian cytochrome c at low ionic strength. Electron transfer between bacterial ferrocytochrome c1 and bacterial ferricytochrome c2, and between bacterial ferrocytochrome c1 and mammalian ferricytochrome c proceeds rapidly with equilibrium constants of 49 and 3.5, respectively. The midpoint potential of purified cytochrome c1 is calculated to be 228 mV, which is identical to that of mammalian cytochrome c1.  相似文献   

11.
Hiroshi Seki  Yael A. Ilan  Yigal Ilan  Gabriel Stein   《BBA》1976,440(3):573-586
The reduction of ferricytochrome c by O2 and CO2 was studied in the pH range 6.6–9.2 and Arrhenius as well as Eyring parameters were derived from the rate constants and their temperature dependence. Ionic effects on the rate indicate that the redox process proceeds through a multiply-positively charged interaction site on cytochrome c. It is shown that the reaction with O2 and correspondingly with O2 of ferrocytochrome c) is by a factor of approx. 103 slower than warranted by factors such as redox potential. Evidence is adduced to support the view that this slowness is connected with the role of water in the interaction between O2/O2 and ferri-ferrocytochrome c in the positively charged interaction site on cytochrome c in which water molecules are specifically involved in maintaining the local structure of cytochrome c and participate in the process of electron equivalent transfer.  相似文献   

12.
The low-spin ferric cyanide complex of beef heart cytochrome aa3 can be partially reduced by stoichiometric additions of ferrous cytochrome c or by similar additions of N,N,N′,N′-tetramethyl-p-phenylene diamine. In both cases the initial ratio of cytochrome c oxidized: cytochrome a reduced or Wurster's Blue: cytochrome a reduced approximates the value 2. It is concluded that the binding of a single HCN prevents the reduction of both cytochrome a3 and its associated EPR-invisible Cu atom.  相似文献   

13.
Bacillus subtilis membrane-bound holo-cytochrome c-550 was found to be expressed from the structural gene cloned on a plasmid vector in aerobically grown Escherichia coli and exhibited normal biochemical properties. This occurs despite the lack of endogenous eytochrome c and suggests that eytochrome c-heme lyase activity is also present in aerobic E. coli. The membrane topology of B. subtilis eytochrome c-550 was studied using fusions to alkaline phosphatase (PhoA). The results show that the heme domain (at least when fused to PhoA) can be translocated as apo-cytochrome and confirm that the N-terminal part of the cytochrome functions as both export signal and membrane anchor for the C-tenninal heme domain. A model for the organisation of B. subtilis cytochrome c-550 in the cytoplasmic membrane is presented.  相似文献   

14.
A photosynthetically-incompetent mutant Rhodopseudomonas spheroides that lacks bacteriochlorophyll was isolated. Spectroscopic evidence from CO difference spectra and cyanide difference spectra suggested that a cytochrome oxidase was present in this mutant that contained two components, corresponding to cytochromes a and a3 of mitochondria. Potentiometric titration at 607 nm also showed the presence of two components with oxidation-reduction mid-point potentials of +375 mV and +200 mV. They were present in a ratio close to unity. No cytochrome of the the c-type corresponding to mitochondrial cytochrome c was detected, but a minor c component (near 10% of the total cytochrome c) with an oxidation-reduction mid-point potential of +120 mV was found

Growth of the mutant in medium with low aeration or lacking added copper diminished the concentration of the a-type cytochrome but not the concentrations of cytochromes of the b and c-type.  相似文献   


15.
The hydrogen peroxide (H2O2) and cytochrome c-dependent oxidation of o-phenylenediamine (o-PD) was investigated by spectrophotometry and electrochemistry. The results indicated that o-PD underwent facile catalytic oxidation in the presence of cytochrome c, and that the degradation of cytochrome c by hydrogen peroxide can also be partly prevented in the presence of o-PD. The hydroxyl radical scavengers (mannitol and sodium benzoate) and oxo-heme species scavenger (uric acid) do not inhibit the oxidation, which implies that the hydroxylation of o-PD may not be involved in its oxidation. Combining with the results of the mass spectrum, elemental analysis, nuclear magnetic resonance and Fourier transform infrared spectrum of the isolated product, a conceivable structure of the product was suggested.  相似文献   

16.
Electrochemical sensors based on immobilised cytochrome c or superoxide dismutase for the measurement of superoxide radical production by stimulated neutrophils are described. Cytochrome c was immobilised covalently at a surface-modified gold electrode and by passive adsorption to novel platinised activated carbon electrodes (PACE). The reoxidation of cytochrome c at the electrode surface upon reduction by superoxide was monitored using both xanthine/xanthine oxidase and stimulated neutrophils as sources of the free radical. In addition, bovine Cu/Zn superoxide dismutase was immobilised to PACE by passive adsorption and superoxide, generated by xanthine/xanthine oxidase, detected by oxidation of hydrogen peroxide produced by the enzymic dismutation of the superoxide radical. A biopsy needle probe electrode based on cytochrome c immobilised at PACE and suitable for continuous monitoring of free radical production was constructed and characterised.  相似文献   

17.
Three-dimensionally (3D) ordered macroporous active carbon has been fabricated and used as electrode substrate for the direct electrochemistry of horse heart cytochrome c (Cyt c). The Cyt c immobilized on the surface of the ordered macroporous active carbon shows a pair of well-defined and nearly reversible redox waves at the formal potential of −0.033 V in pH 6.8 phosphate buffer solution. The interaction between Cyt c and the 3D macroporous active carbon makes the formal potential shift negatively compared to that of Cyt c in solution. Spectrophotometric and electrochemical methods have been used to investigate the interaction between Cyt c and the porous active carbon. The immobilized Cyt c maintains its biological activity, and shows a surface controlled electrode process with the electron-transfer rate constant (ks) of 17.6 s−1 and the charge-transfer coefficient (a) of 0.52, and displays the features of a peroxidase in the electrocatalytic reduction of hydrogen peroxide (H2O2). A potential application of the Cyt c-immobilized porous carbon electrode as a biosensor to monitor H2O2 has been investigated. The steady-state current response increases linearly with H2O2 concentration from 2.0 × 10−5 to 2.4 × 10−4 mol l−1. The detection limit (3σ) for determination of H2O2 has been found to be 1.46 × 10−5 mol l−1.  相似文献   

18.
Roger C. Prince  P.Leslie Dutton 《BBA》1975,387(3):609-613
In Rhodopseudomonas sphaeroides, following a single-turnover flash of light, cytochrome c2 is oxidized by reaction center bacteriochlorophyll, and a cytochrome b is reduced by the primary electron acceptor, probably via ubiquinone. In this report we show that, in the uncoupled state, the rate of re-oxidation of the cytochrome b is identical to the rate of reduction of the cytochrome c2, a kinetic completion of the cyclic photosynthetic electron transport system.  相似文献   

19.
The cytoplasmic membrane of the H37Ra strain of Mycobacterium tuberculosis has been isolated free of cell wall.

These membrane preparations contain very small quantities of cytochromes c, b and cytochrome oxidase. The cytochrome c is not extracted by any method attempted. The cytochrome b is reducible only by dithionite and is believed not to be involved in the direct transfer of electrons during the oxidation of NADH by these preparations. The NADH oxidase activity of the membrane is inhibited by high concentrations of cyanide and also by 2-(n-heptyl)-4-hydroxyquinoline-N-oxide (HQNO). The cytochrome oxidase of the membrane contains both cytochromes a and a3 and is present in low concentrations relative to cytochrome c. The cytochrome a3 component was identified by characteristic complexes with both CO and cyanide and shows a γ-band absorption maximum at a slightly lower wavelength than the cytochrome oxidase of mammalian mitochondria (442 nm vs. 445 nm). The functional activity of the cytochrome oxidase is indicated by the inhibition of reoxidation of reduced cytochromes c and a in the presence of cyanide.  相似文献   


20.
Kensuke Furukawa  Kenzo Tonomura 《BBA》1973,325(3):413-423
Cytochrome c-I which was involved in the decomposition of organic mercurials as an electron carrier was purified from the cell-free extract of the mercury-resistant strain, Pseudomonas K62, by means of (NH4)2SO4 precipitation and column chromatography on Sephadex G-150, DEAE-Sephadex and Sephadex G-75. The cytochrome was crystallized in a needle-like form. It showed absorption maxima at 550, 521, and 416.5 nm in the reduced form, and the pyridine ferrohemochrome had absorption maxima at 549, 520, and 413 nm, suggesting it to be a c-type cytochrome.

Cytochromes c prepared from type cultures of bacteria belonging to the genera Aeromonas, Micrococcus, Bacillus, Corynebacterium, Staphylococcus, Aerobacter, and Pseudomonas were all inactive with respect to the decomposition of phenylmercuric acetate. However, cytochrome c prepared from Pseudomonas CF, which was isolated from the activated sludge acclimatized with HgCl2 and phenylmercuric acetate, as well as the cytochrome c-I of Pseudomonas K62, were active in this respect.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号