首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Rtg2 protein links metabolism and genome stability in yeast longevity   总被引:4,自引:0,他引:4  
Mitochondrial dysfunction induces a signaling pathway, which culminates in changes in the expression of many nuclear genes. This retrograde response, as it is called, extends yeast replicative life span. It also results in a marked increase in the cellular content of extrachromosomal ribosomal DNA circles (ERCs), which can cause the demise of the cell. We have resolved the conundrum of how these two molecular mechanisms of yeast longevity operate in tandem. About 50% of the life-span extension elicited by the retrograde response involves processes other than those that counteract the deleterious effects of ERCs. Deletion of RTG2, a gene that plays a central role in relaying the retrograde response signal to the nucleus, enhances the generation of ERCs in cells with (grande) or in cells without (petite) fully functional mitochondria, and it curtails the life span of each. In contrast, overexpression of RTG2 diminishes ERC formation in both grandes and petites. The excess Rtg2p did not augment the retrograde response, indicating that it was not engaged in retrograde signaling. FOB1, which is known to be required for ERC formation, and RTG2 were found to be in converging pathways for ERC production. RTG2 did not affect silencing of ribosomal DNA in either grandes or petites, which were similar to each other in the extent of silencing at this locus. Silencing of ribosomal DNA increased with replicative age in either the presence or the absence of Rtg2p, distinguishing silencing and ERC accumulation. Our results indicate that the suppression of ERC production by Rtg2p requires that it not be in the process of transducing the retrograde signal from the mitochondrion. Thus, RTG2 lies at the nexus of cellular metabolism and genome stability, coordinating two pathways that have opposite effects on yeast longevity.  相似文献   

9.
10.
Treatment of Saccharomyces cerevisiae cells with the immunosuppressive drug rapamycin results in a variety of cellular changes in response to perceived nutrient deprivation. Among other effects, rapamycin treatment results in the nuclear localization of the global nitrogen activators Gln3p and Nil1p/Gat1p, which leads to expression of nitrogen assimilation genes. The proline utilization (Put) pathway genes were shown to be among the genes induced by rapamycin. Having previously shown that the Put pathway activator Put3p is differentially phosphorylated in response to the quality of the nitrogen source, we examined the phosphorylation status of Put3p after rapamycin treatment. Treatment with rapamycin resulted in the hyperphosphorylation of Put3p, which was independent of Gln3p, Nil1p, and Ure2p. The relative contributions of global nitrogen (Gln3p and Nil1p) and pathway-specific (Put3p) activators to rapamycin-induced expression of the target gene PUT1 were also examined. We found that Nil1p and Put3p, but not Gln3p, play major roles in rapamycin-induced PUT1 expression. Our findings show that perceived nitrogen deprivation triggered by rapamycin treatment and steady-state growth in nitrogen-derepressing conditions are associated with hyperphosphorylation of Put3p and increased PUT1 expression. Rapamycin treatment and nitrogen derepression may share some, but not all, regulatory elements, since Gln3p and Nil1p do not participate identically in both processes and are not required for hyperphosphorylation. A complex relationship exists among the global and pathway-specific regulators, depending on the nature and quality of the nitrogen source.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Nitrogen-responsive control of Gln3 localization is implemented through TorC1-dependent (rapamycin-responsive) and TorC1-independent (nitrogen catabolite repression-sensitive and methionine sulfoximine (Msx)-responsive) regulatory pathways. We previously demonstrated amino acid substitutions in a putative Gln3 α-helix(656–666), which are required for a two-hybrid Gln3-Tor1 interaction, also abolished rapamycin responsiveness of Gln3 localization and partially abrogated cytoplasmic Gln3 sequestration in cells cultured under nitrogen-repressive conditions. Here, we demonstrate these three characteristics are not inextricably linked together. A second distinct Gln3 region (Gln3(510–589)) is specifically required for rapamycin responsiveness of Gln3 localization, but not for cytoplasmic Gln3 sequestration under repressive growth conditions or relocation to the nucleus following Msx addition. Aspartate or alanine substitution mutations throughout this region uniformly abolish rapamycin responsiveness. Contained within this region is a sequence with a predicted propensity to form an α-helix(583–591), one side of which consists of three hydrophobic amino acids flanked by serine residues. Substitution of aspartate for even one of these serines abolishes rapamycin responsiveness and increases rapamycin resistance without affecting either of the other two Gln3 localization responses. In contrast, alanine substitutions decrease rapamycin resistance. Together, these data suggest that targets in the C-terminal portion of Gln3 required for the Gln3-Tor1 interaction, cytoplasmic Gln3 sequestration, and Gln3 responsiveness to Msx addition and growth in poor nitrogen sources are distinct from those needed for rapamycin responsiveness.  相似文献   

19.
Firm support for the notion that metabolism and particularly mitochondrial metabolism plays a significant role in aging has been gathered in studies on yeast. As in other organisms, mitochondria contribute to aging through their propensity to generate reactive oxygen species. There is more to the involvement of mitochondria in aging than this, however. Mitochondrial dysfunction, which accumulates during aging, triggers the retrograde response, an intracellular signaling pathway that activates genes that compensate for this dysfunction. A key signaling protein in this pathway is the Rtg2 protein. Recent studies have provided evidence that this protein lies at the nexus of the four major processes that are involved in aging in yeast and in other organisms; namely, metabolism, stress resistance, chromatin-dependent gene regulation, and genome stability. The details of this central role of Rtg2 protein explain the delicate balance between longevity and aging, which ultimately must tip towards the latter. Phenomena that resemble the retrograde response appear to exist in human cells, with both common and cell type-specific gene expression changes as the output.  相似文献   

20.
Cell growth (accumulation of mass) needs to be coordinated with metabolic processes that are required for the synthesis of macromolecules. The PI3-kinase/Akt signaling pathway induces cell growth via activation of complex 1 of the target of rapamycin (TORC1). Here we show that Akt-dependent lipogenesis requires mTORC1 activity. Furthermore, nuclear accumulation of the mature form of the sterol responsive element binding protein (SREBP1) and expression of SREBP target genes was blocked by the mTORC1 inhibitor rapamycin. We also show that silencing of SREBP blocks Akt-dependent lipogenesis and attenuates the increase in cell size in response to Akt activation in vitro. Silencing of dSREBP in flies caused a reduction in cell and organ size and blocked the induction of cell growth by dPI3K. Our results suggest that the PI3K/Akt/TOR pathway regulates protein and lipid biosynthesis in an orchestrated manner and that both processes are required for cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号