首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
1. Neutral streams with elevated concentrations of iron and manganese can develop blooms of ferromanganese-depositing bacteria within oxide deposition zones. Algal abundance declines within these blooms. An in situ experiment was conducted in a Vermont stream to assess the importance of increased concentrations of iron and manganese, without the confounding effects of ferromanganese-depositing bacteria, on limiting diatom colonization. 2. Diatom abundance in treatments receiving iron increased over time, but densities were lower by a factor of ten or more compared with either control or manganese treatments. These results indicate that the presence of ferromanganese-depositing bacteria is not necessary for lowering algal abundance. 3. We speculate that ferromanganese-depositing bacteria may thrive in iron oxide deposition zones, in part because iron oxides help displace periphytic algae which may be superior competitors for space and/or limiting nutrients.  相似文献   

2.
Manganese exists in different oxidation states under different environmental conditions with respect to redox potential. Various forms of manganese oxides, namely, Manganosite (MnO), Bixbyite (Mn2O3), Hausmannite (Mn3O4) and Pyrolusite (MnO2) were synthesized and their possible role in chemical evolution studied. Adsorption studies of ribose nucleotides (5′-AMP, 5′-GMP, 5′-CMP and 5′-UMP) on these manganese oxides at neutral pH, revealed a higher binding affinity to manganosite (MnO) compared to the other manganese oxides. That manganese oxides having a lower Mn-O ratio show higher binding affinity for the ribonucleotides indirectly implies that such oxides may have provided a surface onto which biomonomers could have been concentrated through selective adsorption. Purine nucleotides were adsorbed to a greater extent compared to the pyrimidine nucleotides. Adsorption data followed Langmuir adsorption isotherms, and X m and K L values were calculated. The nature of the interaction and mechanism was elucidated by infrared spectral studies conducted on the metal-oxide and ribonucleotide-metal-oxide adducts.  相似文献   

3.
Summary Manganese oxide, produced byCorynebacterium sp. in liquid medium was found to be amorphous, probably hydrated and was readily reduced by neutral quinol. Preparations of the oxide had values of n in the formula MnOn which ranged from 1.76 to 1.88. The oxide was completely available to oats grown in sand culture but only slightly available in a manganese deficient soil. Plants grown under sterile conditions on agar slopes were able to obtain manganese from manganese oxide, indicating that the roots and not associated micro-organisms, were responsible for the solution process. Root washings of oat plants contained substances which dissolved manganese oxides and the activity of these substances increased with increasing acidity. The possible importance of these substances in making soil manganese available to plants is discussed.  相似文献   

4.
The effect of added CaCO3 and iron as ferrous sulphate on the availability of various forms of manganese in light-textured soil was studied in laboratory at room temperature. All forms of manganese decrease with increase in added CaCO3 upto 16%. Application of iron as ferrous sulphate also decreased all forms of manganese. The addition of iron and CaCO3 together showed additive negative effect on the forms of manganese through various reactions. The increase in the time of incubation decreases manganese extracted with all forms of extractants due to oxidation and hydration of manganese to higher insoluble oxides and hydroxides. Ammoni um acetate (pH 7.0) + 0.1 % hydroquinone extracted highest amount of manganese by reducing some of the higher oxides along with lower oxides.  相似文献   

5.
Manganese Transport in Bacillus subtilis W23 During Growth and Sporulation   总被引:15,自引:12,他引:3  
Manganese is accumulated in Bacillus subtilis by a highly specific active transport system. This trace element "pump" is insensitive to added magnesium or calcium and preferentially accumulates manganese in the presence of cobalt, iron, and copper. Manganese uptake in B. subtilis is inhibited by cyanide, azide, pentachlorophenol, and m-chlorophenyl carbonylcyanide hydrazone. The uptake of manganese follows Michaelis-Menten kinetics, and the net accumulation of manganese is regulated by increasing the V(max) after exposure to manganese-starvation conditions and by decreasing the V(max) for manganese uptake during growth in excess manganese. The K(m) remains constant during these regulatory changes in V(max). Manganese accumulated during growth is exchangeable for exogenous manganese and can be released from the cells by toluene (which causes leakage but not lysis) or by lysis with lysozyme. Two stages can be distinguished with regard to intracellular manganese during the process of growth and sporulation. During logarithmic growth, B. subtilis maintains a relatively constant internal manganese content, which is a function of the external manganese concentration following approximately a Langmuir adsorption isotherm. At the end of log phase, net accumulation of manganese slows. A second phase of net manganese accumulation begins at about the same time during sporulation as the accumulation of calcium begins. The manganese accumulated during growth and early sporulation is exchangeable and therefore relatively "free"; intracellular manganese is converted later during sporulation into a bound form that cannot be released by toluene or lysozyme.  相似文献   

6.
The addition of manganese oxides to iron-limited medium promoted the formation of the pyoverdin siderophore azotobactin by Azotobacter vinelandii. When active-MnO2 was used, there was greatly decreased iron uptake into the cells, hyperproduction of azotobactin and the abiotic, chemical destruction or adsorbtion of the catechol siderophores azotochelin and aminochelin by this strong oxidizing agent. Although the iron content of the cells was the same as iron-limited cells, the growth of cells in medium with active-MnO2 was increased 1.5- to 2.5-fold over iron-limited controls. This growth promotion was not caused by iron contaminating the oxide or by manganese solubilized from the oxide. Soluble 0.05–4 mm Mn2+ inhibited the growth of iron-limited cells and had a minimal effect on iron uptake, but caused hyperproduction of azotobactin. This later effect was caused by the inhibition of soluble ferric reductase, in a manner identical to that previously observed for Zn2+. These results suggest that active-MnO2 may interfere with a surface-localized iron uptake site, possibly another ferric reductase. The reason for the growth promotion by active-MnO2 remains unknown, but is most likely related to decreased oxygen toxicity.  相似文献   

7.
Radioactive 129I, a byproduct of nuclear power generation, can pose risks to human health if released into the environment, where its mobility is highly dependent on speciation. Based on thermodynamic principles, 129I should exist primarily as iodide (I?) in most terrestrial environments; however, organo-129I and 129iodate are also commonly detected in contaminated soils and groundwater. To investigate the capability of biogenic manganese oxides to influence iodide speciation, 17 manganese-oxidizing bacterial strains, representing six genera, were isolated from soils of the Savannah River Site, South Carolina. The isolates produced between 2.6 and 67.1 nmole Mn oxides (ml?1 media after 25 days, pH 6.5). Results from inhibitor assays targeting extracellular enzymes and reactive oxygen species indicated that both play a role in microbe-induced Mn(II) oxidation among the strains examined. Iodide oxidation was not observed in cultures of the most active Mn-oxidizing bacteria, Chryseobacterium sp. strain SRS1 and Chromobacterium sp. strain SRS8, or the fungus, Acremonium strictum strain KR21–2. While substantial amounts of Mn(III/IV) oxides were only generated in cultures at ≥pH 6, iodide oxidation was only observed in the presence of Mn(III/IV) oxides when the pH was ≤5. Iodide oxidation was promoted to a greater extent by synthetic Mn(IV)O2 than biogenic Mn(III/IV) oxides under these low pH conditions (≤pH 5). These results indicate that the influence of biogenic manganese oxides on iodide oxidation and immobilization is primarily limited to low pH environments.  相似文献   

8.
Addition of five types of organic matter to Lake Washington sediments resulted in release of high concentrations of iron, organic carbon, and manganese into the interstitial water, and caused an increase in observed sediment oxygen consumption rates. The depressed electrode potentials (Eh < —150 mV) that should accompany such reduction processes did not occur, indicating that Eh was being poised by redox systems present in the sediment. Iron redox systems [Fe(OH)3‐Fe2+, Fe3(OH)8‐Fe2+, and Fe(OH)3‐Fe3(OH)8] were shown to be poising the Eh of control sediments throughout 13 weeks of incubation and dominating the potential of several of the organically amended sediments following the first three weeks of incubation. Depression of calculated iron system Eo values relative to that of the control sediment early in the incubation appeared to be due to the decreased pH and non‐equilibrium conditions in the organic matter‐amended sediment during the first weeks of incubation. Manganese redox systems exerted no discernable impact on the Eh of the sediment.  相似文献   

9.
Manganese‐reducing bacteria were isolated from a manganiferous silver ore mining site using enrichment procedures. The most rapid Mn(IV) reducer was identified as Bacillus polymyxa and was designated as strain D1. Isolate D1 has no growth‐factor requirements and is mesophilic and neutrophilic. D1 respires glucose aerobically, under which conditions cyanide is bactericidal. Nonfermentable substrates such as lactate, acetate, citrate, and succinate cannot serve as sole carbon sources. D1 ferments glucose anaerobically, producing acetic acid, ethanol, and butanediol as major metabolic end products. Both anaerobic conditions and direct physical contact with pyrolusite (MnO2) particles were necessary for manganese reduction. Strain D1 is unique in that manganese serves as an ancillary electron acceptor during anaerobic fermentation. Kinetic experiments showed that D1 reduced manganese three to five times as rapidly as the widely studied Mn(IV)/Fe(III)‐reducing microorganisms Shewanella putrefaciens MR‐1 and Shewanella putrefa‐ciens sp. 200. Strain D1 is capable of liberating silver via the reductive dissolution of refractory manganiferous ores.  相似文献   

10.

In this study, we assessed concentrations of 13 trace metals in the scales of Notothenia coriiceps, Trematomus bernacchii and Gobionotothen gibberifrons caught off the coast of James Ross Island (Antarctic Peninsula). Overall, our results for scales broadly match those of previous studies using different fish and different organs, with most metals found at trace levels and manganese, aluminium, iron and zinc occurring at high levels in all species. This suggests that scales can serve as a useful, non-invasive bioindicator of long-term contamination in Antarctic fishes. High accumulation of manganese, aluminium, iron and zinc is largely due to high levels in sediments associated with nearby active volcanic sites. Manganese, vanadium and aluminium showed significant positive bioaccumulation in T. bernacchii (along with non-significant positive accumulation of iron, zinc, cobalt and chromium), most likely due to greater dietary specialisation on sediment feeding benthic prey and higher trophic species. Levels of significance in bioaccumulation regressions were strongly affected by large-scale variation in the data, driven largely by individual differences in diet and/or changes in habitat use and sex differences associated with life stage and reproductive status. Increased levels of both airborne deposition and precipitation and meltwater runoff associated with climate change may be further adding to the already high levels of manganese, aluminium, iron and zinc in Antarctic Peninsula sediments. Further long-term studies are encouraged to elucidate mechanisms of uptake (especially for aluminium and iron) and possible intra- and interspecific impacts of climate change on the delicate Antarctic food web.

  相似文献   

11.
Hyphal budding bacteria were observed by electron microscopy in thin sections of surface material from Baltic Sea ferromanganese concretions. Similar bacteria were also observed in and isolated from enrichment cultures prepared from the same concretion material. Three morphologically similar strains of Mn-Fe-depositing budding bacteria were isolated from the enrichment cultures. Strain B-4 possessed extracellular anionic polymers that accumulated Mn oxides. Mn deposition by B-4 was inhibited by elevated concentrations of Mn, 0.05% glutaraldehyde, 0.1 mM HgCl2, and heating at 93°C for 15 min, suggesting the participation of an enzyme protein in the Mn-depositing activity.  相似文献   

12.
 Three new water-soluble ruthenium porphyrin complexes have been prepared and characterized, one with a cationic ligand, Ru(TMPyP), and two others with anionic ligands, Ru(p–COOH-PP) and Ru(TPPS). These different complexes and their manganese and iron analogues were tested in vivo as potential antitumor agents with mice bearing P388 leukemia cells, but these complexes have no significant antitumor activity. The nuclease activity of Ru(TMPyP) and Ru(p–COOH-PP) was evaluated on supercoiled plasmid DNA after activation by a reducing agent (ascorbate) in the presence of air or by potassium monopersulfate. No significant activity was evidenced for these ruthenium complexes, in contrast with the already known nuclease activity of the manganese and iron derivatives of TMPyP. Received: 15 November 1996 / Accepted: 7 April 1997  相似文献   

13.
Phragmites australis (the common reed) was collected at six sites in southern Québec and Ontario, Canada, in order to study the accumulation of iron plaque on the roots. The deposition of iron oxides on roots ofP. australis did not correlate directly with soil measurements; however, the amounts of iron-bound-to-carbonates fraction of the soil/sediment, responsible for the iron plaque accumulation, correlated with the % of water, % of organic matter, % of clay and pH of the substrate. Plants located very near flowing water accumulated more iron plaque on the roots than plants in other habitats through the summer; it is hypothesized that carbonates associated with iron come from the flowing water. In wetlands or sites near flowing water, most root iron was found on the surface, as iron plaque, while there was more iron inside the root in dry environments. Radial oxygen loss from the roots is probably the most important source of oxygen for the oxidation of iron.  相似文献   

14.
White-rot fungi (basidiomycetes) play an important role in the degradation of lignin which is, beside cellulose, the major compound of wood. This process is catalyzed by ligninolytic enzymes, which are able to cleave oxidatively aromatic rings in lignin structure. Manganese peroxidase and laccase of white-rot-fungi are the most important of these among the ligninolytic enzymes. In addition, they are able to degrade xenobiotic aromatic polymers, persisting as environmental pollutants. Manganese and aromatic compounds have often been discussed as being inducers, enhancers or mediators of these ligninolytic enzymes. It is known that supplementing the growth medium with either Mn2+, veratryl alcohol or coal-derived humic acids leads to significantly enhanced extracellular ligninolytic activities. Measuring the amount of expressed mRNA of the two enzymes by quantitative RT-PCR provided evidence that the expression of manganese peroxidase was induced in the three tested white-rot fungi, Clitocybula dusenii b11, Nematoloma frowardii b19, and a straw-degrading strain designated i63–2. Laccase, on the other hand, was expressed in all three fungi with a significant basic activity even without inducer added. However, since the level of laccase mRNA was higher in cultures supplemented with any one of the tested inducers, we conclude that both manganese and the aromatic substances also increase the expression of laccase. Received: 4 February 2000 / Received revision: 11 May 2000 / Accepted: 12 May 2000  相似文献   

15.
Summary The solubility of two manganese oxides was measured in 5×10–5 to 15×10–5 M iron and organic acid solutions. The oxides were soluble in all the 15 × 10–5 M solutions tested except ferric chloride. The amount of manganese dissolved by mixtures of the iron and acid solutions was greater than the sum of that dissolved by the separate solutions. It was suggested that ferric chloride should be used as the iron source in critical studies of the availability of manganese oxides in sand cultures.  相似文献   

16.
Else Boken 《Plant and Soil》1956,7(3):237-252
Summary Pot experiments with oats on manganese deficient sandy and moor soils, which are not deficient in iron, showed a steady increase in yield and manganese uptake by the plants with increasing additions of ferrous sulphate at four levels of manganese. Residual effects from ferrous sulphate application were not found either in the case of yields or manganese uptake by oats on a sandy soil.The effect observed following application of ferrous sulphate was due to a manganese effect. This is corroborated by the coincidence of the yield curves, showing the relationship between absorbed manganese and yield of dry matter, following the application of manganese sulphate and ferrous sulphate.Soils treated withM magnesium nitrate in the presence of equivalent quantities of either ferrous sulphate or hydroquinone yielded the same amounts of manganese. This result suggests that the manganese effect of ferrous sulphate is due to reduction of higher manganese oxides by ferrous sulphate.  相似文献   

17.
The Pacific deep-sea bottoms are dominated by rhizopodan Protozoa. Their abundance on manganese nodules and in the associated sediments suggests a contribution to nodule formation, though direct evidence is still lacking. Attention is called to iron contents in solid excretion products of some sessile rhizopods that may contribute to the initiation of manganese deposition and nodule growth. Manganese is scarce in the faecal pellets of sediment-dwelling rhizopods. This is discussed in context with questions regarding manganese mobilization in pelagic sediments.  相似文献   

18.
Oxidation of ruthenium red for use as an intercellular tracer   总被引:1,自引:0,他引:1  
Summary When ruthenium red (RR) is combined with OsO4, an electronopaque complex forms which readily binds to the cell surface coat. However, the RR-OsO4 complex is often excluded from intercellular spaces in many cell types, and thus is not dependable as a tracer of regions continuous with the extracellular space. Postfixation of erythrocytes agglutinated by the lectin helix (Helix promatia) and intact carotid artery endothelium with a freshly prepared mixture of 1% OsO4 containing 0.1% ruthenium red (RR) resulted in a dense surface deposit of these cells, but intercellular regions were penetrated to a minimal degree by the stain. When a similar mixture of RR-OsO4 was allowed to stand 3 h before use, RR is oxidized by OsO4 to yield a ruthenium compound that has a spectrophotometric absorbance maximum at 365 nm. This RR molecule has a reduced number of cationic sites due to binding with osmium dioxide OsO 2 = . Postfixation of agglutinated RBCs and carotid artery endothelium with this oxidized ruthenium-OsO4 mixture resulted in a 50–80% decrease in surface deposition but markedly enhanced penetration into intercellular regions. The enhanced penetration is attributed to decreased binding affinity of the oxidized ruthenium for anionic surface membrane components, permitting effective stain penetration into regions of cell-to-cell contact rather than extensive surface deposition. These studies indicate that the ruthenium compound formed by OsO4 oxidation of ruthenium red may be a useful tracer for ultrastructural visualization of intercellular spaces and junctions.  相似文献   

19.
When cultured anaerobically in a chemically defined medium that was treated with Chelex-100 to lower its trace metal content, Streptococcus mutans OMZ176 had no apparent requirement for manganese or iron. Manganese or iron was necessary for aerobic cultivation in deep static cultures. During continuous aerobic cultivation in a stirred chemostat, iron did not support the growth rate achieved with manganese. Since the dissolved oxygen level in the chemostat cultures was higher than the final level in the static cultures, manganese may be required for growth at elevated oxygen levels. In medium supplemented with manganese, cells grown anaerobically contained a low level of superoxide dismutase (SOD) activity; aerobic cultivation increased SOD activity at least threefold. In iron-supplemented medium, cells grown anaerobically also had low SOD activity; aerobic incubation resulted in little increase in SOD activity. Polyacrylamide gel electrophoresis of the cell extracts revealed a major band and a minor band of SOD activity in the cells grown with manganese; however, cells grown with iron contained a single band of SOD activity with an Rf value similar to that of the major band found in cells grown with manganese. None of the SOD activity bands were abolished by the inclusion of 2 mM hydrogen peroxide in the SOD activity strain. S. mutans may not produce a separate iron-containing SOD but may insert either iron or manganese into an apo-SOD protein. Alternatively, iron may function in another activity (not SOD) that augments the defense against oxygen toxicity at low SOD levels.  相似文献   

20.
Two inhibitors of hatching in Globodera rostochiensis, ruthenium red and lanthanum, have been shown to bind to the eggshell using the techniques of microdensitometry for ruthenium red and X-ray microanalysis for lanthanum. Neither inhibitor penetrated or adhered to unhatched or hatched viable juveniles. Scatchard analysis for binding of lanthanum and ruthenium red to eggshells gave dissociation constants (K) of KLa 32.5 ± 14.0 μM and KRured 33.5 ± 5.0 μM respectively. Both values are within the 95% fiducial limits of those shown to cause 50% inhibition of hatch in previous work. Pretreatment with sodium hypochlorite separated an outer part of the eggshell from an inner region which exclusively bound ruthenium red. It is the inner lipoprotein layer that is believed to include the membranes controlling the permeability of the tylenchid eggshell. The rate of binding of ruthenium red was similar for intact and isolated eggshells with 50% binding occurring after 6.11 ± 0.91 min and 4.95 ± 2.38 min but the latter gave a significantly higher maximum binding suggesting that rupture of the eggshells made available additional binding sites on their inner surface. The binding of ruthenium red to the eggshells was pH dependant over most of the range pH 2.8–8.5 with 50% binding, given with its standard deviation, occurring at pH 5.75 ± 0.85. Competitive binding of lanthanum influenced the binding of ruthenium red to the eggshells from which Scatchard analysis gave Kla of 176 ± 79 μM. Similarly, calcium influenced the binding but this caused a biphasic plot with high and low affinity binding sites of K“ca of 0.423 ± 1.16 μm and K‘ca of 1078 ± 462 μM. The existence of a high affinity site for calcium that also binds ruthenium red, suggests that the eggshell membrane includes a calcium binding glycoprotein as found in some other receptor mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号