共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The kinetics of amyloid fibril formation are in most cases explained by classical nucleation theory, yet the mechanisms behind nucleation are not well understood. We show using molecular dynamics simulations that the hydrophobic cooperativity in the self-association of the model amyloidogenic peptide STVIYE is sufficient to allow for nucleation-dependent polymerization with a pentamer critical nucleus. The role of electrostatics was also investigated. Novel considerations of the electrostatic solvation energy using the Born-Onsager equation are put forth to rationalize the aggregation of charged peptides and provide new insight into the energetic differences between parallel and antiparallel beta-sheets. Together these results help explain the influence of molecular charge in the class of fibril-forming hexapeptides recently designed by Serrano and collaborators. 相似文献
4.
Many bacterial small RNAs (sRNAs) efficiently inhibit translation of target mRNAs by forming a duplex that sequesters the Shine-Dalgarno (SD) sequence or start codon and prevents formation of the translation initiation complex. There are a growing number of examples of sRNA–mRNA binding interactions distant from the SD region, but how these mediate translational regulation remains unclear. Our previous work in Escherichia coli and Salmonella identified a mechanism of translational repression of manY mRNA by the sRNA SgrS through a binding interaction upstream of the manY SD. Here, we report that SgrS forms a duplex with a uridine-rich translation-enhancing element in the manY 5ʹ untranslated region. Notably, we show that the enhancer is ribosome-dependent and that the small ribosomal subunit protein S1 interacts with the enhancer to promote translation of manY. In collaboration with the chaperone protein Hfq, SgrS interferes with the interaction between the translation enhancer and ribosomal protein S1 to repress translation of manY mRNA. Since bacterial translation is often modulated by enhancer-like elements upstream of the SD, sRNA-mediated enhancer silencing could be a common mode of gene regulation. 相似文献
5.
6.
7.
8.
Ligand binding to the dimeric hemoglobin from Scapharca inaequivalvis, a hemoglobin with a novel mechanism for cooperativity 总被引:1,自引:0,他引:1
The homodimeric hemoglobin from Scapharca inaequivalvis has an unusual spatial arrangement of the subunits (Royer, W.E., Jr., Love, W.E., and Fenderson, F.F. (1985) Nature 316, 277-280). The time course of oxygen and nitric oxide rebinding to this protein following flash photolysis has been measured on a nanosecond time scale. A large amplitude is observed with a half-time of 20 ns (NO). With oxygen the half-time decreases from 70 ns at low fractional photolysis to 30 ns at large breakdown. The second order rate of NO binding is 1.6 x 10(7)/MS, and is the same as that for oxygen. Analysis of the geminate data suggests that oxygen and nitric oxide react more rapidly with the heme than in myoglobin, but also escape much more rapidly from its vicinity. 相似文献
9.
The structure of a functional unit from the wall of a gastropod hemocyanin offers a possible mechanism for cooperativity 总被引:5,自引:0,他引:5
Perbandt M Guthöhrlein EW Rypniewski W Idakieva K Stoeva S Voelter W Genov N Betzel C 《Biochemistry》2003,42(21):6341-6346
Structure-function relationships in a molluscan hemocyanin have been investigated by determining the crystal structure of the Rapana thomasiana (gastropod) hemocyanin functional unit RtH2e in deoxygenated form at 3.38 A resolution. This is the first X-ray structure of an unit from the wall of the molluscan hemocyanin cylinder. The crystal structure of RtH2e demonstrates molecular self-assembly of six identical molecules forming a regular hexameric cylinder. This suggests how the functional units are ordered in the wall of the native molluscan hemocyanins. The molecular arrangement is stabilized by specific protomer-to-protomer interactions, which are probably typical for the functional units building the wall of the cylinders. A molecular mechanism for cooperative dioxygen binding in molluscan hemocyanins is proposed on the basis of the molecular interactions between the protomers. In particular, the deoxygenated RtH2e structure reveals a tunnel leading from two opposite sides of the molecule to the active site. The tunnel represents a possible entrance pathway for dioxygen molecules. No such tunnels have been observed in the crystal structure of the oxy-Odg, a functional unit from the Octopus dofleini (cephalopod) hemocyanin in oxygenated form. 相似文献
10.
Koudelka GB 《Current biology : CB》2000,10(19):R704-R707
A new high resolution crystal structure of the phage lambda repressor reveals the basis for repressor dimer formation and, together with biochemical data, provides insights into the mechanism of repressor tetramer formation, a process essential to the cooperative binding and gene regulatory activities of this protein. 相似文献
11.
12.
T Alderson 《Mutation research》1985,154(2):101-110
A novel and unique mechanism for formaldehyde-induced mutagenesis is described which is mediated by the formation of an N6-substituted adenine ribonucleoside analogue, N6-hydroxymethyl adenosine, after an in vitro reaction of formaldehyde with adenosine. This type of ribonucleoside analogue (the deoxyribose derivative is ineffective) exhibits a powerful and remarkable germ-cell-stage-specific mutagenic effect in male Drosophila larvae, apparently by interfering with DNA repair. Circumstantial evidence is presented which indicates that the analogue most probably acts by its utilisation in the synthesis of diadenosine tetraphosphate (Ap4A) to form an antimetabolite(s) of Ap4A which subsequently interferes with Ap4A-mediated intracellular events, amongst which an effect on DNA repair would appear to be its mutagenic mechanism of action. 相似文献
13.
Due to their prowess in interspecific competition and ability to catch a wide range of arthropod prey (mostly termites with which they are engaged in an evolutionary arms race), ants are recognized as a good model for studying the chemicals involved in defensive and predatory behaviors. Ants' wide diversity of nesting habits and relationships with plants and prey types implies that these chemicals are also very diverse. Using the African myrmicine ant Crematogaster striatula as our focal species, we adopted a three-pronged research approach. We studied the aggressive and predatory behaviors of the ant workers, conducted bioassays on the effect of their Dufour gland contents on termites, and analyzed these contents. (1) The workers defend themselves or eliminate termites by orienting their abdominal tip toward the opponent, stinger protruded. The chemicals emitted, apparently volatile, trigger the recruitment of nestmates situated in the vicinity and act without the stinger having to come into direct contact with the opponent. Whereas alien ants competing with C. striatula for sugary food sources are repelled by this behavior and retreat further and further away, termites defend their nest whatever the danger. They face down C. striatula workers and end up by rolling onto their backs, their legs batting the air. (2) The bioassays showed that the toxicity of the Dufour gland contents acts in a time-dependent manner, leading to the irreversible paralysis, and, ultimately, death of the termites. (3) Gas chromatography-mass spectrometry analyses showed that the Dufour gland contains a mixture of mono- or polyunsaturated long-chain derivatives, bearing functional groups like oxo-alcohols or oxo-acetates. Electrospray ionization-mass spectrometry showed the presence of a molecule of 1584 Da that might be a large, acetylated alkaloid capable of splitting into smaller molecules that could be responsible for the final degree of venom toxicity. 相似文献
14.
Background
TATA-box-binding protein 2 (TBP2/TRF3) is a vertebrate-specific paralog of TBP that shares with TBP a highly conserved carboxy-terminal domain and the ability to bind the TATA box. TBP2 is highly expressed in oocytes whereas TBP is more abundant in embryos. 相似文献15.
The TATA box-binding protein (TBP) recognizes its target sites (TATA boxes) by indirectly reading the DNA sequence through its conformation effects (indirect readout). Here, we explore the molecular mechanisms underlying indirect readout of TATA boxes by TBP by studying the binding of TBP to adenovirus major late promoter (AdMLP) sequence variants, including alterations inside as well as in the sequences flanking the TATA box. We measure here the dissociation kinetics of complexes of TBP with AdMLP targets and, by phase-sensitive assay, the intrinsic bending in the TATA box sequences as well as the bending of the same sequence induced by TBP binding. In these experiments we observe a correlation of the kinetic stability to sequence changes within the TATA recognition elements. Comparison of the kinetic data with structural properties of TATA boxes in known crystalline TBP/TATA box complexes reveals several "signals" for TATA box recognition, which are both on the single base-pair level, as well as larger DNA tracts within the TATA recognition element. The DNA bending induced by TBP on its binding sites is not correlated to the stability of TBP/TATA box complexes. Moreover, we observe a significant influence on the kinetic stability of alteration in the region flanking the TATA box. This effect is limited however to target sites with alternating TA sequences, whereas the AdMLP target, containing an A tract, is not influenced by these changes. 相似文献
16.
Huang HW 《Biochimica et biophysica acta》2006,1758(9):1292-1302
Based on very extensive studies on four peptides (alamethicin, melittin, magainin and protegrin), we propose a mechanism to explain the cooperativity exhibited by the activities of antimicrobial peptides, namely, a non-linear concentration dependence characterized by a threshold and a rapid rise to saturation as the concentration exceeds the threshold. We first review the structural basis of the mechanism. Experiments showed that peptide binding to lipid bilayers creates two distinct states depending on the bound-peptide to lipid ratio P/L. For P/L below a threshold P/L*, all of the peptide molecules are in the S state that has the following characteristics: (1) there are no pores in the membrane, (2) the axes of helical peptides are oriented parallel to the plane of membrane, and (3) the peptide causes membrane thinning in proportion to P/L. As P/L increases above P/L*, essentially all of the excessive peptide molecules occupy the I state that has the following characteristics: (1) transmembrane pores are detected in the membrane, (2) the axes of helical peptides are perpendicular to the plane of membrane, (3) the membrane thickness remains constant for P/L> or =P/L*. The free energy based on these two states agrees with the data quantitatively. The free energy also explains why lipids of positive curvature (lysoPC) facilitate and lipids of negative curvature (PE) inhibit pore formation. 相似文献
17.
Huey W. Huang 《生物化学与生物物理学报:生物膜》2006,1758(9):1292-1302
Based on very extensive studies on four peptides (alamethicin, melittin, magainin and protegrin), we propose a mechanism to explain the cooperativity exhibited by the activities of antimicrobial peptides, namely, a non-linear concentration dependence characterized by a threshold and a rapid rise to saturation as the concentration exceeds the threshold. We first review the structural basis of the mechanism. Experiments showed that peptide binding to lipid bilayers creates two distinct states depending on the bound-peptide to lipid ratio P/L. For P/L below a threshold P/L*, all of the peptide molecules are in the S state that has the following characteristics: (1) there are no pores in the membrane, (2) the axes of helical peptides are oriented parallel to the plane of membrane, and (3) the peptide causes membrane thinning in proportion to P/L. As P/L increases above P/L*, essentially all of the excessive peptide molecules occupy the I state that has the following characteristics: (1) transmembrane pores are detected in the membrane, (2) the axes of helical peptides are perpendicular to the plane of membrane, (3) the membrane thickness remains constant for P/L ≥ P/L*. The free energy based on these two states agrees with the data quantitatively. The free energy also explains why lipids of positive curvature (lysoPC) facilitate and lipids of negative curvature (PE) inhibit pore formation. 相似文献
18.
Many conserved non-coding elements (CNEs) in vertebrate genomes have been shown to function as tissue-specific enhancers. However, the target genes of most CNEs are unknown. Here we show that the target genes of duplicated CNEs can be predicted by considering their neighbouring paralogous genes. This enables us to provide the first systematic estimate of the genomic range for distal cis-regulatory interactions in the human genome: half of CNEs are >250 kb away from their associated gene. 相似文献
19.
Activation of pro-urokinase by plasmin: non-Michaelian kinetics indicates a mechanism of negative cooperativity 总被引:3,自引:0,他引:3
M F Scully V Ellis Y Watahiki V V Kakkar 《Archives of biochemistry and biophysics》1989,268(2):438-446
Enzyme kinetic plots relating the initial rate of activation of pro-urokinase to urokinase by plasmin, according to the concentration of substrate, were smooth downward curves and indicated that an apparent decrease in binding affinity occurred with increase in the concentration of pro-urokinase. Such nonlinear plots were obtained with plasmin 1 and also plasmin 2. Over sections of each curve it was possible to estimate apparent kinetic constants. At the uppermost concentrations of substrate tested, these were Km 2.9 microM and kcat 35.5 min-1 for plasmin 1, and at the lowermost concentrations, Km 9.5 nM and kcat 2.0 min-1. Linear plots were obtained when the single proteolytic cleavage was made by K5-plasmin or undegraded plasmin in the presence of 1.0 mM 6-aminohexanoic acid (6-AHa). Constants were estimated for catalysis of this reaction by K5 plasmin to be Km 6.0 microM and kcat 38 min-1 (r = 0.987). The catalytic efficiency of plasmin, at the lowermost concentrations of pro-urokinase tested, was therefore 33-fold higher than that of K5-plasmin. Plotting of data for the cleavage of pro-urokinase by plasmin 1 (in the absence of 6-AHa) according to the model of Hill, gave a slope of 0.5 at the lowermost concentrations of pro-urokinase increasing to 1.0 at higher concentrations (greater than 0.3 microM); such a profile is characteristic of negative cooperativity. The rates of formation of plasmin and urokinase in a mixture containing a low concentration of plasminogen and pro-urokinase were measured and compared to those predicted by a computer program designed to calculate theoretical rates using available kinetic data. The observed rates of generation of both plasmin and urokinase coincided to those predicted from the negative cooperativity model. The mechanism of the negative cooperativity may reside in a conformational change induced by binding of pro-urokinase to the kringle structure of plasmin. This property may be of significance in controlling the fibrinolytic properties of the urokinase-type plasminogen activator system. 相似文献
20.