首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Xenorhabdus nematophilus is a pathogenic bacterium causing insect haemolymph septicemia, which leads to host insect death. To address the fundamental mechanisms underlying this haemolymph septicemia, or the immunodepressive response of the host insects following bacterial infection, we tested a hypothesis that the insect immune-mediating eicosanoid pathway is blocked by inhibitory action of the bacterium. Haemocoelic injection of the bacteria into the fifth instar larvae of Spodoptera exigua reduced the total number of living haemocytes with postinjection time and resulted in host death in 16 h at 25 degrees C. The lethal efficacy, described by the median lethal bacterial dose (LD(50)), was estimated as 33 colony-forming units per fifth instar larva of S. exigua. The lethal effect of the bacteria on the infected larvae decreased significantly with the addition of exogenous arachidonic acid (10 μg), a precursor of eicosanoids. In comparison, injections of dexamethasone (10 μg), a specific inhibitor of phospholipase A(2), and other eicosanoid biosynthesis inhibitors elevated significantly the bacterial pathogenicity. Live X. nematophilus induced the infected larvae to form less nodules than did the heat-killed bacteria, but the addition of arachidonic acid increased the number of nodules formed significantly in response to live bacterial injection. The treatment with dexamethasone and other inhibitors, however, decreased the nodule formation after injection of heat-killed bacteria. These results indicate that eicosanoids play a role in the immune response of S. exigua, and suggest strongly that X. nematophilus inhibits its eicosanoid pathway, which then results in immunodepressive haemolymph septicemia.  相似文献   

2.
Abstract  Nodulation is the predominant cellular defense reaction to bacterial challenges in insects. In this study, third instar larvae of Chrysomya megacephala were injected with bacteria, Escherichia coli K 12 (106 CFU/mL, 2 μL), immediately prior to injection of inhibitors of eicosanoid biosynthesis, which sharply reduced nodulation response. Test larvae were treated with specific inhibitors of phospholipase A2 (dexamethasone), cyclo-oxygenase (indomethacin, ibuprofen and piroxicam), dual cyclo-oxygenase/lipoxygenase (phenidone) and lipoxygenase (esculetin) and these reduced nodulation except esculetin. The influence of bacteria was obvious within 2 h of injection (5 nodules/larva), and increased to a maximum after 8 h (with 15 nodules/larva), and then significantly reduced over 24 h (9 nodules/larva). The inhibitory influence of dexamethasone was apparent within 2 h of injection (4 vs. 5 nodules/larva), and nodulation was significantly reduced, compared to control, over 24 h (5 vs. 8 nodules/larva). Increased dosages of ibuprofen, indomethacin, piroxicam and phenidone led to decreased numbers of nodules. Nodules continued to exist during the pupal stage. However, the effects of dexamethasone were reversed by treating bacteria-injected insects with an eicosanoid-precursor polyunsaturated fatty acid, arachidonic acid. These findings approved our view that eicosanoid can mediate cellular defense mechanisms in response to bacterial infections in another Dipteran insect C. megacephala .  相似文献   

3.
Nodule formation is the quantitatively predominant insect cellular defense reaction to bacterial challenges, responsible for clearing the largest proportion of infecting bacteria from circulation. It has been suggested that eicosanoids mediate several steps in the nodulation process, including formation of hemocyte microaggregates, an early step in the process. While fat body and hemocytes are competent to biosynthesize eicosanoids, the source of the nodulation-mediating eicosanoids remains unclear. To investigate this issue, we studied hemocyte microaggregation reactions to bacterial challenge in vitro. Hemocyte suspensions from the tobacco hornworm, Manduca sexta, were treated with the phospholipase A(2) inhibitor, dexamethasone, then challenged with the bacterium Serratia marcescens. Preparations treated with dexamethasone yielded fewer hemocyte microaggregations than untreated, control preparations. Furthermore, the influence of dexamethasone was reversed by amending experimental (dexamethasone-treated) preparations with the eicosanoid biosynthesis precursor, arachidonic acid. Palmitic acid, which is not a substrate for eicosanoid biosynthesis, did not reverse the influence of dexamethasone on the microaggregation reaction. The influence of dexamethasone was also reversed by adding filtered media from challenged hemocyte preparations to dexamethasone-treated preparations. Finally, most hemocyte preparations treated with selected eicosanoid biosynthesis inhibitors formed fewer hemocyte microaggregations than control preparations. The 5- and 12-lipoxygenase inhibitor, esculetin, did not influence the formation of hemocyte microaggregations in this system. These results are consistent with similar investigations performed in vivo, and we infer that hemocytes are responsible for forming and secreting eicosanoids, which subsequently initiate nodulation by mediating hemocyte microaggregation.  相似文献   

4.
Eicosanoid actions in insect cellular immune functions   总被引:1,自引:0,他引:1  
Insects are more or less constantly challenged with a daunting array of pathogenic organisms, including viruses, bacteria, fungi, protozoans as well as various metazoan parasites and parasitoids. At the first level of defense, the pathogens are rebuffed by physical barriers, including the cuticle and peritrophic membrane. Upon breaching these barriers, pathogens meet with an arsenal of robust and efficacious immune defense mechanisms. Two general categories of defenses are typically recognized, humoral defenses and hemocytic or cellular defenses. The former involves induced synthesis of various antibacterial proteins and peptides, such as cecropins and lysozyme. Cellular defense mechanisms are characterized by direct interactions between circulating hemocytes and the invaders. These include phagocytosis, microaggregation, nodulation, and encapsulation. Microaggregation is a step in the nodulation process, which is responsible for clearing the bulk of bacterial infections from circulation. Coordinated cellular actions lead to encapsulation of invaders, such as parasitoid eggs, that are very much larger than individual hemocytes. While the defense mechanisms are broadly appreciated, less is known about the biochemical signals responsible for mediating and coordinating the cellular actions. We now know eicosanoids mediate phagocytosis, microaggregation, and nodulation reactions to immune challenge, as well as cell spreading, a specific step in nodulation. We have several goals in this mini review. We provide a brief background on cellular immunity, outline eicosanoid biosynthesis, and review eicosanoid actions in cellular immunity in insects. Recent work indicates some pathogens have usurped eicosanoid‐mediated immunity; they disable insect immunity by inhibiting eicosanoid biosynthesis. We interpret these findings and their significance with respect to the biological control of insects. We also present preliminary work designed to test hypotheses on how eicosanoids exert their actions. We address shortcomings in our knowledge on eicosanoids in insect biology.  相似文献   

5.
Nodulation is the first, and quantitatively predominant, cellular defense reaction to bacterial infection in insects and other invertebrates. Inhibition of eicosanoid biosynthesis in true armyworms, Pseudaletia unipuncta, and black cutworms, Agrotis ipsilon, immediately prior to intrahemocoelic injections with heat-killed preparations of the bacterium, Serratia marcescens, severely impaired the nodulation response. Five eicosanoid biosynthesis inhibitors, including dexamethasone (a phospholipase A(2) inhibitor), indomethacin, ibuprofen (cyclooxygenase inhibitors), phenidone (dual lipoxygenase/cyclooxygenase inhibitor) and eicosatetraynoic acid (an arachidonic acid analog that inhibits all arachidonic acid metabolism) severely reduced nodulation in infected insects. The dexamethasone effects were reversed by treating true armyworms with arachidonic acid immediately after infection. In addition to these pharmacological findings, we demonstrate that an eicosanoid biosynthesis system is present in these insects. Arachidonic acid is present in fat body phospholipids at about 0.4% of total phospholipid fatty acids. Fat body expressed a phospholipase A(2) that can hydrolyze arachidonic acid from the sn-2 position of cellular phospholipids. Fat body preparations were competent to biosynthesize prostaglandins, of which PGE(2) was the major product. These findings support the hypothesis that eicosanoids mediate cellular immune reactions in insects.  相似文献   

6.
7.
Nodulation is the first, and qualitatively predominant, cellular defense reaction to bacterial infections in insects. We tested the hypothesis that eicosanoids also mediate nodulation reactions to bacterial challenge in adults of a social insect, the honey bee, Apis mellifera. Treating newly-emerged experimental bees with the eicosanoid biosynthesis inhibitor, dexamethasone, impaired nodulation reactions to bacterial infections, and the influence of dexamethasone was reversed by treating infected insects with arachidonic acid, an eicosanoid precursor. Several other eicosanoid biosynthesis inhibitors, including the cyclooxygenase inhibitor, indomethacin, and the dual cyclooxygenase/lipoxygenase inhibitor, phenidone, also impaired the ability of experimental honeybees to form nodules in reaction to bacterial challenge. The influence of phenidone on nodulation was expressed in a dose-dependent manner. However, in experiments with older honey bees foragers, similar bacterial challenge did not evoke nodulation reactions. We infer from our results that while eicosanoids mediate cellular immune responses to bacterial infections in newly emerged honey bees, and more broadly, in most insect species, nodulation reactions to bacterial challenge probably do not occur in all phases of insect life cycles.  相似文献   

8.
The entomopathogenic bacterium, Xenorhabdus nematophila, induces immunodepression in target insects and finally leads to lethal septicemia of the infected hosts. A hypothesis has been raised that the bacteria inhibit eicosanoid-biosynthesis pathway to interrupt immune signaling of the infected hosts. Here, we show direct evidence that X. nematophila inhibits the activity of phospholipase A2 (PLA2), the initial step in the eicosanoid-biosynthesis pathway. Inhibition of PLA2 was dependent on both incubation time with X. nematophila and the bacterial concentration in in vitro PLA2 preparations of Manduca sexta hemocytes. While living bacteria inhibited PLA2 activity, heat-killed X. nematophila rather increased PLA2 activity. X. nematophila secreted PLA2 inhibitor(s) which were detected in the organic, but not aqueous, extract of the bacterial culture medium. The PLA2 inhibitory activity of the organic extract was lost after heat treatment. These results clearly indicate that X. nematophila inhibits PLA2 activity, and thereby inhibits eicosanoid biosynthesis which leads to immunodepression of the infected hosts.  相似文献   

9.
Nodulation is the temporally and quantitatively most important cellular defense reaction to bacterial infections in insects. Inhibition of eicosanoid biosynthesis in adults of the cricket, Gryllus assimilis, immediately prior to intrahemocoelic injections of the bacterium, Serratia marcescens, sharply reduced the nodulation response. Separate treatments with specific inhibitors of phospholipase A(2), cyclooxygenase, and lipoxygenase reduced nodulation, supporting our view that nodule formation is a complex process involving lipoxygenase and cyclooxygenase products. The inhibitory influence of dexamethasone was apparent within 2h of injection, and nodulation was significantly reduced, relative to control crickets, over 22h. The dexamethasone effects were reversed by treating bacteria-injected insects with the eicosanoid-precursor polyunsaturated fatty acid, arachidonic acid. Low levels of arachidonic acid were detected in fat body phospholipids, and fat body preparations were shown to be competent to biosynthesize eicosanoids from exogenous radioactive arachidonic acid. These findings in a hemimetabolous insect broaden our hypothesis that eicosanoids mediate cellular immune reactions to bacterial infections in most, if not all, insects.  相似文献   

10.
We report on a secretory phospholipase A2 (sPLA2) associated with membrane-enriched fractions prepared from hemocytes of the tobacco hornworms, Manduca sexta. Virtually no PLA2 activity was detected in serum of immunologically naive or bacterially challenged hornworms. PLA2 activity was detected in cytosolic and membrane-enriched fractions prepared from hemocytes. PLA2 activity in the cytosolic fraction (1.2 pmol/mg/h) was approximately 4-fold greater than in the membrane-enriched fraction. The cytosol-associated PLA2 activity was strongly inhibited in reactions conducted in the presence of the specific cytosolic PLA2 inhibitor methylarachidonyl fluorophosphate (MAFP) but not in the presence of the sPLA2 inhibitor p-bromophenacyl bromide (BPB). Conversely, the membrane-associated PLA2 activity was inhibited in reactions conducted in the presence of BPB but not in the presence of MAFP. While the cytosol-associated PLA2 was independent of calcium, the membrane-associated sPLA2 required calcium for full catalytic activity. Hornworms treated with either BPB, MAFP or the glucocorticosteroid dexamethasone were severely impaired (by 50 to 80% relative to controls) in their ability to form nodules in reaction to bacterial challenge. However, the immune-impairing influence of the inhibitors was reversed by treating larvae with arachidonic acid, a precursor for eicosanoid biosynthesis. We infer that the biological significance of the sPLA2 (as well as the previously characterized cytosolic PLA2) relates to hydrolysis of polyunsaturated fatty acids from cellular phospholipids. Moreover, this enzyme may be the target of immunity-impairing factors from the bacterium Xenorhabdus nematophila. The fatty acids serve as precursors for the generation of eicosanoids responsible for mediating and coordinating cellular immune reactions to infection.  相似文献   

11.
Nodulation is the first and quantitatively most important cellular defense reaction to bacterial infections in insects. Treating adults of the 17-year periodical cicadas, Magicicada septendecim and M. cassini, with eicosanoid biosynthesis inhibitors immediately prior to intrahemocoelic injections of the bacterium, Serratia marcescens, sharply reduced the nodulation response to bacterial challenges. Separate treatments with specific inhibitors of phospholipase A(2), cyclooxygenase, and lipoxygenase reduced nodulation, supporting our view that nodule formation is a multi-step process in which individual steps are separately mediated by lipoxygenase and cyclooxygenase products. The inhibitory influence of dexamethasone was apparent by 2 h after injection, and nodulation was significantly reduced, relative to control insects, over the following 14 h. The dexamethasone effects were reversed by treating bacteria-challenged insects with the eicosanoid-precursor polyunsaturated fatty acid, arachidonic acid. Low levels of arachidonic acid were detected in fat body phospholipids. These findings in adults of an exopterygote insect species with an unusual life history pattern broaden our hypothesis that eicosanoids mediate cellular immune reactions to bacterial infections in most, if not all, insects.  相似文献   

12.
Nodulation is the predominant insect cellular immune response to bacterial and fungal infections and it can also be induced by some viral infections. Treating seventh instar larvae of greater wax moth Galleria mellonella with Bovine herpes simplex virus-1 (BHSV-1) induced nodulation reactions in a dose-dependent manner. Because eicosanoids mediate nodulation reactions to bacterial and fungal infection, we hypothesized that eicosanoids also mediate nodulation reactions to viral challenge. To test this idea, we injected G. mellonella larvae with indomethacin, a nonsteroidal anti-inflammatory drug immediately prior to intrahemocoelic injection of BHSV-1. Relative to vehicle-treated controls, indomethacin-treated larvae produced significantly reduced numbers of nodules following viral infection (down from approximately 190 nodules/larva to <50 nodules/larva). In addition to injection treatments, increasing dietary indomethacin dosages (from 0.01% to 1%) were associated with decreasing nodulation (by 10-fold) and phenoloxidase activity (by 3-fold) reactions to BHSV-1 injection. We infer from these findings that cyclooxygenase products, prostaglandins, mediate nodulation response to viral infection in G. mellonella.  相似文献   

13.
Nodulation is the temporally and quantitatively most important cellular defense response to bacterial, fungal and some viral infections in insects. We tested the hypothesis that prostaglandins and other eicosanoids are responsible for mediating nodulation reactions to bacterial infection in larvae of the blowfly Chrysomya megacephala. Third-instar larvae treated with Ureaplasma urealyticum formed nodules in a challenge dose-dependent manner. Nodulation was evoked shortly after injection and reached a maximum of approximately 25 nodules/larva within 8 h. Larvae treated with the glucocorticoid, dexamethasone and the cyclooxygenase inhibitors, indomethacin and piroxicam were impaired in their ability to form nodules following U. urealyticum infection. The number of nodules decreased with increasing doses of piroxicam. Contrarily, treating larvae with the lipooxygenase inhibitor, esculetin, and the dual cyclooxygenase/lipooxygenase inhibitor, phenidone did not influence nodulation reactions to infection. Supplying dexamethasone-treated larvae with the eicosanoid precursor, arachidonic acid, reversed the inhibitory effect of dexamethasone on nodulation. We infer from these results that eicosanoids mediate nodulation reactions to infection of a bacterial species that lacks cell walls in larvae of the blowfly, C. megacephala.  相似文献   

14.
Hemocyte migration toward infection and wound sites is an essential component of insect defense reactions, although the biochemical signal mechanisms responsible for mediating migration in insect cells are not well understood. Here we report on the outcomes of experiments designed to test the hypotheses that (1) insect hemocytes are able to detect and migrate toward a source of N-formyl-Met-Leu-Phe (fMLP), the major chemotactic peptide from Escherichia coli and (2) that pharmaceutical modulation of eicosanoid biosynthesis inhibits hemocyte migration. We used primary hemocyte cultures prepared from fifth-instar tobacco hornworms, Manduca sexta in Boyden chambers to assess hemocyte migration toward buffer (negative control) and toward buffer amended with fMLP (positive control). Approximately 42% of negative control hemocytes migrated toward buffer and about 64% of positive control hemocytes migrated toward fMLP. Hemocyte migration was inhibited (by >40%) by treating hornworms with pharmaceutical modulators of cycloxygenase (COX), lipoxygenase and phospholipase A2 (PLA2) before preparing primary hemocyte cultures. The influence of the COX inhibitor, indomethacin, and the glucocorticoid, dexamethasone, which leads to inhibition of PLA2, was expressed in a dose-dependent way. The influence of dexamethasone was reversed by injecting arachidonic acid (precursor to eicosanoid biosynthesis) into hornworms before preparing primary hemocyte cultures. The saturated fatty acid, palmitic acid, did not reverse the inhibitor effect. These findings support both our hypotheses, first that insect hemocytes can detect and respond to fMLP, and second, that insect hemocyte migration is mediated by eicosanoids.  相似文献   

15.
Nodulation is the predominant cellular immune reaction to bacterial infection in insects. Nodulation is a complex process involving an unknown number of discrete cellular actions. Currently, there is only limited information on the signal transduction mechanisms that result in nodulation. In older larvae of the tobacco hornworm, Manduca sexta, and of the tenebrionid beetle, Zophobas atratus, eicosanoids are involved in one or more steps in the overall process, and treating these insects with inhibitors of eicosanoid biosynthesis prior to bacterial infection severely impairs their ability to form nodules. In this paper we address more detailed questions on eicosanoid-mediated nodulation. The nodulation reaction to bacterial infection occurs in all larval stages we examined, specifically, second, third, and fourth instars of M. sexta. In both species, the number of nodules formed in response to bacterial infection is related in an exponential way to the number of bacterial cells in the infection. Nodulation is also not related to larval size. We also found that nodulation intensity varies according to the species of infecting bacteria.  相似文献   

16.
The insect parasitic nematodes Heterorhabditis spp. are mutualistically associated with entomopathogenic bacteria, Photorhabdus spp. A novel association has been detected between H. megidis isolate EU17 and the endospore-forming bacterium Paenibacillus nematophilus. P. nematophilus sporangia adhere to infective juveniles (IJs) of H. megidis and develop in insect hosts along with the nematodes and their symbiont. We tested the effects of P. nematophilus on H. megidis. The yield and quality (size, energy reserves, and storage survival) of IJs were not affected by co-culture in insects with P. nematophilus. Dispersal of IJs in sand and on agar was inhibited by adhering P. nematophilus sporangia: fewer than 2% of IJs with P. nematophilus sporangia reached the bottom of a sand column, compared to 30% of the control treatment. Sporangia significantly reduced infectivity of H. megidis for wax moth larvae in sand, but not in a close contact (filter paper) assay. The results suggest that P. nematophilus may reduce the transmission potential of H. megidis through impeding the motility of IJs.  相似文献   

17.
Haemolymph of non-vaccinated Galleria mellonella larvae contains two proteins, LBP-1 (17.2kDa) and LBP-2 (26.0kDa) that:bond to the surfaces of the insect pathogenic bacteria, Xenorhabdus nematophilus;prevented lipid A-binding dye attaching to the lipid A of X. nematophilus endotoxin; andreduced endotoxin activity on the haemocytes.Protein LBP-1 also blocked the inhibition of prophenoloxidase activation by the endotoxins. It is proposed that proteins LBP-1 and LBP-2 are part of the containment responses of the insects to bacteria.  相似文献   

18.
Fifth instar Acheta domesticus nymphs exhibited a decline in total hemocyte counts during the first hour of exposure to dead Xenorhabdus nematophilus; the bacterial level in the hemolymph also declined during this time. Thereafter bacterial numbers in the hemolymph increased as the level of damaged hemocytes increased. The bacteria lowered phenoloxidase activity in vivo by initially reducing the number of hemocytes containing prophenoloxidase and later by inhibiting enzyme activation. Preincubating X. nematophilus in hemolymph with active phenoloxidase in vitro accelerated the removal of the bacteria from the hemolymph in vivo which may be due to modification of the bacterial surface by serine proteases. Lysozyme activity increased in bacteria-injected insects in parallel with an increase in counts of damaged hemocytes; most of the enzyme was located in hemocytes. Lipopolysaccharides of X. nematophilus caused changes in hemocyte counts and phenoloxidase and lysozyme levels comparable to whole bacteria. Lipopolysaccharides also slowed the removal rate of the bacteria from, and accelerated bacterial emergence into, the hemolymph.  相似文献   

19.
Studies on the interaction of the insect pathogenic bacterium, Xenorhabdus nematophilus (Enterobacteriaceae), with its nematode and insect hosts would be greatly assisted if a luminescent phenotype were generated that would allow the detection of viable bacteria in vivo without the necessity for disruption of the cellular interactions. The plasmid, pMGM221, containing the luminescence gene (luxCDABE) of Vibrio harveyi was introduced into different strains (DD136 and 19061) and phases (one and two) of X. nematophilus by triparental mating. For reproducible and efficient conjugation, it was necessary to use older cultures (96-160 h) in the stationary phase of X. nematophilus for mating with relatively small differences (<2-fold) in transconjugant yield for the different strains and phases of X. nematophilus. All transconjugants emitted high levels of light with optimum bioluminescence at 27 degrees C in Luria broth at pH 8.0 containing 20 g/L NaCl; pH, osmolarity, and temperature conditions were similar to those encountered by the bacteria in the hemolymph of the larvae of Galleria mellonella. Plasmids were detected in the transconjugants after 6 months of subculturing the bacteria without antibiotic selection. Aside from light emission, luminescent transconjugants had the same physiological properties as the nonluminescent parental strains, including identical rates of growth, production of exoenzymes, removal from and subsequent emergence into the insect's hemolymph, bacterial-induced hemocyte damage, suppression of prophenoloxidase activation, and the ability to kill G. mellonella larvae. Light-emitting larvae could readily be detected by eye in a dark room, and all bacteria reisolated from dead larvae were luminescent. These properties validate the use of luminescent X. nematophilus not only as a means of following bacterial host interactions, but also as a potential agent to follow the infection and death of the insect population.  相似文献   

20.
Photorhabdus and Xenorhabdus are two genera of entomopathogenic bacteria having a mutualistic relationship with their respective nematode hosts, Heterorhabditis and Steinernema. One of the pathogenic mechanisms of these bacteria includes host immunodepression, which leads to lethal septicemia. It has been known that X. nematophila inhibits phospholipase A2 (PLA2) to induce host immunodepression. Here, we tested the hypothesis of PLA2 inhibition using another bacterial species involved in other genera. P. temperata subsp. temperata is the intestinal symbiont of an entomopathogenic nematode, H. megidis. The bacteria caused potent pathogenicity in a dose-dependent manner against the fifth instar larvae of a test target insect, Spodoptera exigua, as early as 24 h after the intra-hemocoelic injection. In response to the live bacterial injection, hemocyte nodulation (a cellular immune response) and prophenoloxidase (pPO) activation were inhibited, while the injection of heat-killed bacteria significantly induced both immune reactions. The immunodepression induced by the live bacteria was reversed by the addition of arachidonic acid, the catalytic product of phospholipase A2. In contrast, the addition of dexamethasone, a specific PLA2 inhibitor to the heat-killed bacterial treatment, inhibited both immune capacities. In addition to a previously known PLA2 inhibitory action of X. nematophila, the inhibition of P. temperata temperata on PLA2 suggests that bacteria symbiotic to entomopathogenic nematodes share a common pathogenic target to result in an immunodepressive state of the infected insects. To prove this generalized hypothesis, we used other bacterial species (X. bovienni, X. poinarii, and P. luminescens) involved in these two genera. All our experiments clearly showed that these other bacteria also share their inhibitory action against PLA2 to induce host immunodepression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号