首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. During incubation at 1° in saline medium buffered either with phosphate or bicarbonate, slices of Morris hepatoma 3924A, and of a chemically induced tumour of rat mammary gland, lost K+ and gained Na+, Ca2+ and water.

2. Upon subsequent incubation at 38° in oxygenated medium, these changes were partially reversed. In the hepatoma, the reaccumulation of K+ was equally efficient in phosphate or bicarbonate medium, and in the presence and absence of glucose. Ca2+ was extruded in bicarbonate, but not in phosphate medium, and its extrusion was reduced in the presence of glucose.

3. When respiration was inhibited in the presence of glucose, K+ transport by the hepatoma continued to an extent which varied with the glycolytic activity of the slices, suggesting that the rate of ATP synthesis was a limiting factor under these conditions.

4. In the absence of glucose, the transport of Na+ and K+ was completely stopped by respiratory inhibition. However, more than 50% of the O2 uptake had to be inhibited before any effect on transport was observed, suggesting that the rate of synthesis of ATP from endogenous respiration is in excess of that required to maintain transport.

5. Inhibition of transport by ouabain was accompanied by a 30% fall in the rate of endogenous respiration, and by a fall of 33% in the rate of glycolysis in the presence of cyanide plus glucose.

6. Comparison of the minimum rates of respiration and of glycolysis (in the presence of glucose plus cyanide) required to maintain the maximal extent of K+ transport in the hepatoma slices, suggests that ATP derived from oxidative phosphorylation or from anaerobic glycolysis is equally efficient as a source of energy for ion transport.  相似文献   


2.
1. Under the appropriate conditions intact yeast and mammalian mitochondria exhibit a heretofore unobserved sensitivity to the polyene antibiotic, filipin. The activity of the “filipin complex” (Filipins I, II, III and IV) is shown to be primarily due to the component designated Filipin II.

2. Yeast mitochondria treated with filipin complex, or purified Filipin II, exhibit “uncoupled” succinate oxidation and inhibited -ketoglutarate oxidation. Maximum filipin effect is observed at a concentration of 4 mM Filipin II. Rat-liver mitochondria are more sensitive to filipin than yeast mitochondria, and respiratory inhibition is observed regardless of substrate.

3. In liver mitochondria filipin-inhibited respiration is not relieved by Mg2+, K+, Ca2+ or 2,4-dinitrophenol, but is reversed by cytochrome c.

4. It is proposed that filipin treatment leads to altered membrane permeability and that respiratory inhibition is due to a loss of endogenous respiratory cofactors or an inactivation of primary dehydrogenases. The filipin-uncoupled yeast respiration may likewise be attributed to an altered phosphate permeability of the yeast mitochondrial membranes.  相似文献   


3.
At pH 7, addition of glucose under anaerobic conditions to a suspension of the yeast Saccharomyces cerevisiae causes both a transient hyperpolarization and a transient net efflux of K+ from the cells. Hyperpolarization shows a peak at about 3 min and a net K+ efflux at 4–5 min. An additional transient hyperpolarization and net K+ efflux are found after 60–80 and 100 min, respectively. Addition of 2-deoxyglucose instead of glucose does not lead to hyperpolarization of the cells or K+ efflux. At low pH, neither transient hyperpolarization nor a transient K+ efflux are found. With ethanol as substrate and applying aerobic conditions, both a transient hyperpolarization and a transient K+ efflux are found at pH 7. The fluorescent probe 2-(dimethylaminostyryl)-1-ethylpyridinium appears to be useful for probing changes in the membrane potential of S. cerevisiae. It is hypothesized that the hyperpolarization of the cells is due to opening of K+ channels in the plasma membrane. Accordingly, the hyperpolarization of the cells at pH 7 is almost completely abolished by 1.25 mM K+, whereas the same amount of Na+ does not reduce the hyperpolarization  相似文献   

4.
The effects of K+ channel modulators, tetraethylammonium, 4-aminopyridine and diazoxide, and high extracellular K+ on cell growth and agonist-induced intracellular Ca2+ mobilization were investigated. Two human brain tumour cell lines, U-373 MG astrocytoma and SK-N-MC neuroblastoma, were used as model cellular systems. K+ channel modulators and increased extracellular K+ concentration inhibited tumour cell growth in a dose-related fashion in both cell lines. In addition, agonist (carbachol or serum)-induced intracellular Ca2+ mobilization was also blocked by the pretreatment of growth-inhibitory concentrations of K+ channel modulators and high extracellular K+. Thus, these results suggest that K+ channel modulators are effective inhibitors of brain tumour cell growth and that their growth regulation may be due to the interference with the intracellular Ca2+ signalling mechanisms.  相似文献   

5.
Shigeru Itoh 《BBA》1980,593(2):212-223
1. Electrogenic steps in photosynthetic cyclic electron transport in chromatophore membrane of Chromatium vinosum were studied by measuring absorption changes of added merocyanin dye and of intrinsic carotenoid.

2. The change in dye absorbance was linear with the membrane potential change induced either by light excitation or by application of diffusion potential by adding valinomycin in the presence of K+ concentration gradient.

3. It was estimated that chromatophore membrane became 40–60 mV and 110–170 mV inside positive upon single and multiple excitations with single-turnover flashes, respectively, from the responses of the dye and the carotenoid.

4. Electron transfers between cytochrome c-555 or c-552 and reaction center bacteriochlorophyll dimer (BChl2) and between BChl2 and the primary electron acceptor were concluded to be electrogenic from the redox titration of the dye response.

5. No dye response which corresponded to the change of redox level of cytochrome b was observed in the titration curve. Addition of antimycin A slightly decreased the dye response.

6. The dye response was decreased under phosphorylating conditions.

7. From the results obtained localization of the electron transfer components in chromatophore membrane is discussed.  相似文献   


6.
The store-mediated Ca2+ entry was detected in single and cluster of rat submandibular acinar cells by measuring the Ca2+ activated ionic membrane currents. In the cells where intracellular Ca2+ was partly depleted by stimulation with submaximal concentration of acetylcholine (ACh) under a Ca2+-free extracellular condition, an employment of external Ca2+ in the absence of ACh caused a sustained increase of the K+ current without affecting the Cl current. A renewed ACh challenge without external Ca2+ caused repetitive spikes of both K+ and Cl currents due to the Ca2+ release. SK & F 96365 inhibited the generation of the sustained K+ current and refilling of the Ca2+ store following the Ca2+ readmission. It is suggested that the Ca2+ enters the cell through the store-mediated pathway near the K+ channels and is taken up by the store. Thus, only Ca2+ released from the store can activate both the K+ and Cl currents.  相似文献   

7.
《BBA》1968,162(4):581-595
1. The possibility of the replacement of G-actin-bound calcium by various bivalent cations has been investigated. After the reaction with all cations studied, with the exception of Cu2+, action remains active, i.e., contains bound ATP and polymerizes in 0.1 M KCl.

2. The amount of G-actin-bound calcium, as well as the sum of bivalent cation after replacement, not removable by short-time Dowex-50 treatment, accounts to about 1 mole per 50000 g of G-actin.

3. The rate of exchange is of the same order for bivalent cations studied, including calcium.

4. G-actin-bound Ca2+ is fully replaced, besides free Ca2+, by free Mn2+ and Cd2+. The replacement with Mg2+, Co2+, Ni2+ and Zn2+ is not complete, and there is practically no reaction with Ba2+ and Sr2+.

5. Assuming the affinity constant of Ca2+ as 1, the following affinity constants for other bivalent cations were obtained: Mn2+, 0.90; Cd2+, 1.07; Mg2+, 0.27; Zn2+, 0.22; Co2+, 0.18; Ni2+, 0.08.

6. The results obtained show that there exists a close correlation between the ionic radius of a particular bivalent cation, and its ability to replace bound Ca2+.  相似文献   


8.
Markus Hoth 《FEBS letters》1996,390(3):285-288
Highly Ca2+ selective Ca2+ channels activated by store depletion have been recently described in several cell types and have been termed CRAC channels (for calcium release-activated calcium). The present study shows that following store depletion in mast and RBL-1 cells, monovalent outward currents could be recorded if the internal solution contained K+ but not Cs+. The activation of the outward K+ current correlated with the activation of ICRAC, in both time and amplitude, suggesting that the K+ current might be carried by CRAC channels. The amplitude of the outward current was increased if external Ca2+ was reduced or replaced by external Ba2+. The outward K+ conductance might have a physiological role in maintaining the driving force for Ca2+ entry during the activation of CRAC channels.  相似文献   

9.
1. Ethylenediaminetetraacetate (EDTA) markedly activates the accumulation of Na+ and Li+ and the swelling which accompanies the ion uptake by isolated heart mitochondria. This activation is reflected in the removal of limited amounts of endogenous Mg2+ and extensive loss of K+. The removal of these cations requires the presence of Na+, a source of energy, and a permeant anion as well as EDTA. The effects of EDTA on the activation of Na+ uptake and cation removal are duplicated by chelators with a high affinity for Mg2+, but not by ethyleneglycol-bis-(β-aminoethylether)-N, N′-tetraacetic acid. Mg2+ at concentrations 5 to 6 times less than EDTA prevents both activation of Na+ uptake and cation removal.

2. EDTA does not appear to be bound by heart mitochondria. At neutral pH the chelator penetrates into the mitochondrial water volume to the same extent as sucrose and mannitol. At pH 8.1 where the removal of mitochondrial Mg2+ by EDTA is more effective, EDTA penetrates virtually the entire water volume. This penetration requires the presence of a source of energy, a transported cation such as Na+, and a permeant anion. It appears possible that the oscillations in ion uptake and swelling observed in the presence of EDTA at pH 8.1 may be related to the presence of the chelator in the interior compartment under these conditions.  相似文献   


10.
A spontaneous efflux of choline originating from the cytoplasmic free choline compartment and, partly, from metabolized form was measured from neurons and glial cells in culture. The efflux was stimulated by an excess of K+ and by the absence of Ca2+ ions from the incubation medium in both types of culture. The two effects did not appear to be synergistic.

The stimulation produced by an excess of K+ (100 mM) was blocked in neurons by 0.5 μM BaCl2 and in glia cells by 0.1 μM BaCl2 (in the presence of 30 mM K+). The stimulation produced by the absence of Ca2+ instead was not blocked by Ba2+ ions in either of the two types of culture. The results suggest that the stimulation induced by K+ (high concentration and long time of incubation) might be of biochemical rather than physiological nature and that choline may be driven out of the cells in correlation with the K+ gradient. The greater sensitivity of glial cells to K+ ions may also suggest a supportive role of these cells with respect to neurons, as they seem capable of furnishing choline for neuronal needs during depolarization.  相似文献   


11.
以冰叶日中花(Mesembryanthemum crystallinum L.)实生苗为材料,经NaCl、NaCl+ CaCl_2、NaCl+LaCl_3处理后,利用电感耦合等离子发射光谱仪检测叶、茎、根中Na~+、K~+、Ca~(2+)、Mg~(2+)含量,计算K~+/Na~+、Ca~(2+)/Na~+和Mg~(2+)/Na~+比值,利用非损伤微测技术测定根尖Na~+流和K~+流,研究盐胁迫下钙在维持离子平衡中的作用。结果显示,NaCl处理后,冰叶日中花各器官中Na~+含量增加,K~+、Ca~(2+)、Mg~(2+)含量降低,离子比值降低;CaCl_2处理降低了Na~+含量,提高了K~+、Ca~(2+)、Mg~(2+)含量,离子比值升高,而LaCl_3处理后的结果相反。经NaCl处理24 h后,冰叶日中花根尖Na~+和K~+明显外流,加入CaCl_2后,Na~+外流速度显著增加,K~+外流速度受到抑制,而加入LaCl_3后则降低了Na~+的外流速度,促进了K~+的外流。研究结果表明冰叶日中花受到盐胁迫后,钙参与了促进根部Na~+外排、抑制K~+外流的过程,进而保持各器官中较低的Na~+含量,表明钙在维持和调控离子平衡中起到重要作用。  相似文献   

12.
A large number of studies indicate that K+-induced contractions of smooth muscle depend on extracellular calcium. If these contractions depend exclusively on extracellular calcium then contractile responses to 140 mM K+, which are larger than the response to 35 mM K+, should be associated with a larger influx of 45Ca. This is not the case in the vas deferens from reserpine pretreated rats. During a 2 min interval, 45Ca influx induced by 140 mMK+ was identical to that produced by 35 mM K+. This suggests that a second mechanism may be involved in responses to high K+. Indeed, 140 mM K+ caused an approximately 300% increase above control in the formation of inositol trisphosphate (IP3) in tissues prelabelled with 3H-myoionositol whereas 35 mM K+ did not increase IP3. IP3 is thought to cause the release of calcium from internal stores which is consistent with our finding of an increase in 45Ca efflux into calcium-free medium from tissues prelabelled with 45Ca and stimulated with 140 mM K+. Stimulation with 35 mM K+ did not influence 45Ca efflux. We conclude that in the rat vas deferens high K+ promotes tension development by smooth muscle by a dual mechanism: influx of extracellular calcium and release of calcium from internal stores via a IP3 mechanism.  相似文献   

13.
1. The alteration of the Ca2+ requirements of the ATPase activity of fibrils from rabbits and crabs at varying ionic strength, pH and concentration of MgATP (i.e. MgATP2− + MgHATP) was investigated.

2. Under physiological conditions, it was found that the ATPase activity of rabbit and crab fibrils after an initial increase decreased steeply when the Ca2+ concentration is raised above 1×10−4 M. This is a primary effect of the over-optimal Ca2+ concentration and not a secondary one caused by the influence of accompanying ions.

3. The Ca2+ requirements for ATP splitting by rabbit fibrils remain constant at an ionic strength from 0.1 to 0.2 and for a MgATP concentration in the range from 0.5 to 10 mM. At I = 0.05 it is about 5 times smaller than at 0.1. When the pH is decreased from 8 to 7, the Ca2+ requirements are increased some 10 times but only 3 times when the pH is varied between 7 and 6.

4. In crab fibrils, there is no alteration of the Ca2+ requirements when the ionic strength is varied between 0.05 and 0.2, but a reduction of the pH from 8.0 to 6.0 raises the Ca2+ requirements for half activation and for threshold by a factor of 10. Changing the MgATP concentration increases the Ca2+ requirements only in the range from 1 to 5 mM, while the concentration required in 0.5 mM is identical with that at 1 mM, and 10 mM corresponds to 5 mM.

5. It can be deduced from the experimental results that at a pH above 6.0 maximal activation is always obtained if the Ca2+ concentration is 5×10−5 M. By contrast, relaxation is only achieved when the Ca2+ concentration is below 1×10−7 M for pH 7.0 and I > 0.1 or below 1×10−8 for pH > 7.0 or I < 0.1.

6. To achieve complete relaxation, an ethyleneglycoldiaminotetraacetate (EGTA) concentration of 1 mM is sufficient, even when there is a large degree of contamination by Ca2+ as long as the pH stays above 6.5.  相似文献   


14.
Euryhaline crustaceans tolerate exposure to a wide range of dilute media, using compensatory, ion regulatory mechanisms. However, data on molecular interactions occurring at cationic sites on the crustacean gill (Na+,K+)-ATPase, a key enzyme in this hyperosmoregulatory process, are unavailable. We report that Na+ binding at the activating site leads to cooperative, heterotropic interactions that are insensitive to K+. The binding of K+ ions to their high affinity sites displaces Na+ ions from their sites. The increase in Na+ ion concentrations increases heterotropic interactions with the K+ ions, with no changes in K0.5 for K+ ion activation at the extracellular sites. Differently from mammalian (Na+,K+)-ATPases, that from C. danae exhibits additional NH4+ ion binding sites that synergistically activate the enzyme at saturating concentrations of Na+ and K+ ions. NH4+ binding is cooperative, and heterotropic NH4+ ion interactions are insensitive to Na+ ions, but Na+ ions displace NH4+ ions from their sites. NH4+ ions also displace Na+ ions from their sites. Mg2+ ions modulate enzyme stimulation by NH4+ ions, displacing NH4+ ion from its sites. These interactions may modulate NH4+ ion excretion and Na+ ion uptake by the gill epithelium in euryhaline crustaceans that confront hyposmotic media.  相似文献   

15.
Na+-dependent uptake of excitatory neurotransmitter glutamate in astrocytes increases cell energy demands primarily due to the elevated ATP consumption by glutamine synthetase and Na+, K+-ATPase. The major pool of GLAST/EAAT1, the only glutamate transporter subtype expressed by human fetal astrocytes in undifferentiated cultures, was restricted to the cytoplasmic compartment. Elevated glutamate concentrations (up to 50 μM) stimulated both glutamate uptake and Na+, K+-ATPase activity and concomitantly increased cell surface expression of GLAST and FXYD2/γ subunit of Na+, K+-ATPase. Intracellular accumulation of glutamate or its metabolites per se was not responsible for these changes since metabolically inert transport substrate, d-aspartate, exerted the same effect. Nanomolar concentrations of TFB-TBOA, a novel nontransportable inhibitor of glutamate carriers, almost completely reversed the action of glutamate or d-aspartate. In the same conditions (i.e. block of glutamate transport) monensin, a potent Na+ ionophore, had no significant effect neither on the activation of Na+, K+-ATPase nor on the cell surface expression of γ subunit or GLAST. In order to elucidate the roles of γ subunit in the glutamate uptake-dependent trafficking events or the activation of the astroglial sodium pump, in some cultures γ subunit/FXYD2 was effectively knocked down using siRNA silencing. Unlike the blocking effect of TFB-TBOA, the down-regulation of γ subunit had no effect neither on the trafficking nor activity of GLAST. However, the loss of γ subunit effectively abolished the glutamate uptake-dependent activation of Na+, K+-ATPase. Following withdrawal of siRNA from cultures, the expression levels of γ subunit and the sensitivity of Na+, K+-ATPase to glutamate/aspartate uptake have been concurrently restored. Thus, the activity of GLAST directs FXYD2 protein/γ subunit to the cell surface, that, in turn, leads to the activation of the astroglial sodium pump, presumably due to the modulatory effect of γ subunit on the kinetic parameters of catalytic subunit(s) of Na+, K+-ATPase.  相似文献   

16.
《植物生态学报》2017,41(4):489
Aims Elaeagnus angustifolia is one of the most salt-tolerant species. The objective of this study was to understand the mechanisms of ion transporation in E. angustifolia exposed to different salt concentrations through manipulations of K+/Na+ homeostasis.
Methods Seedlings of two variants of the species, Yinchuan provenance (YC, salt-sensitive type) and the Alaer provenance (ALE, salt-tolerant type), were treated with three different NaCl application modes, and the ion fluxes in the apical regions were measured using non-invasive micro-test technology (NMT). In mode 1, Na+ and K+ fluxes were measured after 150 mmol·L-1 NaCl stress lasted for 24 h. In mode 2, K+ and H+ fluxes were quantified with a transient stimulation of NaCl solution. In mode 3, Amiloride (Na+/H+ antiporters inhibitor) and tetraethylammonium (TEA, K+ channel inhibitor) was used to treat apical regions of E. angustifolia seedlings after NaCl stress for 24 h, respectively.
Important findings Under NaCl stress for 24 h, net effluxes of Na+ and K+ were increased significantly. The net Na+ effluxes of YC provenance seedlings (720 pmol·cm-2•s-1) were lower than that of ALE provenance (912 pmol·cm-2·s-1), but the net K+ efflux was higher in YC provenance. Under the instantaneous NaCl stimulation, net K+ efflux was remarkably increased, with the net K+ efflux of YC provenance always higher than that of ALE provenance. Interestingly, H+ at the apical regions was found from influx to efflux, with the net H+ efflux of ALE provenance greater than that of the YC provenance. Under the NaCl and NaCl + Amiloride treatment, the net Na+ efflux of ALE provenance seedlings was higher than that of YC provenance, while the net K+ efflux was less in ALE provenance seedlings. On the other hand, the differences in net Na+ and K+ effluxes were insignificant between the two provenances under the control group and NaCl + TEA treatment. In conclusion, NaCl stress caused Na+ accumulation and K+ outflows of E. angustifolia seedlings; The E. angustifolia seedlings utilize Na+/H+ antiporters to reduce Na+ accumulation by excretion; and the maintenance of K+/Na+ homeostasis in salt-tolerant E. angustifolia provenance seedlings roots accounted for a greater Na+ extrusion and a lower K+ efflux under NaCl stress. Results from this study provide a theoretical basis for further exploring salt-tolerant E. angustifolia germplasm resource.  相似文献   

17.
以甜瓜品种‘羊角酥瓜’为试材,利用人工气候室控制环境条件(昼/夜25/18 ℃),研究盐胁迫条件下外源褪黑素(MT)和Ca2+对甜瓜幼苗根系和叶片中Cl-、Na+、K+、Mg2+、Ca2+离子含量,Na+/K+、 Na+/Ca2+、Na+/Mg2+值,以及H+-ATP酶活性、渗透调节物质积累和细胞膜质过氧化的影响.结果表明: 与对照相比,盐胁迫处理显著抑制甜瓜幼苗生长,增加根系和叶片中Cl-、Na+含量,降低K+、Mg2+、Ca2+含量.盐胁迫下,喷施外源MT或Ca2+处理均可以显著降低甜瓜根系和叶片中Cl-、Na+含量,提高K+、Mg2+、Ca2+含量,植株体内Na+/K+、Na+/Ca2+和 Na+/Mg2+值下降;同时也提高了根系和叶片H+-ATP酶活性及叶片渗透调节物质的含量,降低盐胁迫对细胞膜的伤害,表现在甜瓜叶片相对电导率和丙二醛含量降低.总之,在盐胁迫条件下,外源MT、Ca2+单独和复配处理均可通过提高H+-ATP酶活性来降低盐害离子的含量,改善甜瓜幼苗中的离子平衡,同时增加渗透调节物质的含量,降低膜质过氧化水平,从而增强其对盐胁迫的适应性,其中MT和Ca2+复配处理时的效果更好.复配外施 MT 和Ca2+在诱导甜瓜幼苗提高耐盐方面具有协同增效作用.  相似文献   

18.
Fluoxetine, a selective 5-HT uptake inhibitor, inhibited 15 mM K+-induced [3H] 5-HT release from rat spinal cord and cortical synaptosomes at concentrations > 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K+ used to depolarize the synaptosomes and the concentration of external Ca2+. Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of [3H] 5-HT release induced by the Ca2+-ionophore A 23187 or Ca2+-independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K+-induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca2+ channels and Ca2+ entry. Whereas fluoxetine and paroxetine inhibited binding of [3H] nitrendipine to the dihydropyridine-sensitive L-type Ca2+ channel, the less selective uptake inhibitors did not alter binding. The dihydropyridine antagonist nimodipine partially blocked fluoxetine-induced inhibition of release. Moreover enhanced K+-stimulated release due to the dihydropyridine agonist Bay K 8644 was reversed by fluoxetine. Fluoxetine also inhibited the K+-induced increase in intracellular free Ca2+ in fura-2 loaded synaptosomes. These data are consistent with the suggestion that fluoxetine inhibits K+-induced [3H] 5-HT release by antagonizing voltage-dependent Ca2+ entry into nerve terminals.  相似文献   

19.
以甜瓜品种‘羊角酥瓜’为试材,利用人工气候室控制环境条件(昼/夜25/18 ℃),研究盐胁迫条件下外源褪黑素(MT)和Ca2+对甜瓜幼苗根系和叶片中Cl-、Na+、K+、Mg2+、Ca2+离子含量,Na+/K+、 Na+/Ca2+、Na+/Mg2+值,以及H+-ATP酶活性、渗透调节物质积累和细胞膜质过氧化的影响.结果表明: 与对照相比,盐胁迫处理显著抑制甜瓜幼苗生长,增加根系和叶片中Cl-、Na+含量,降低K+、Mg2+、Ca2+含量.盐胁迫下,喷施外源MT或Ca2+处理均可以显著降低甜瓜根系和叶片中Cl-、Na+含量,提高K+、Mg2+、Ca2+含量,植株体内Na+/K+、Na+/Ca2+和 Na+/Mg2+值下降;同时也提高了根系和叶片H+-ATP酶活性及叶片渗透调节物质的含量,降低盐胁迫对细胞膜的伤害,表现在甜瓜叶片相对电导率和丙二醛含量降低.总之,在盐胁迫条件下,外源MT、Ca2+单独和复配处理均可通过提高H+-ATP酶活性来降低盐害离子的含量,改善甜瓜幼苗中的离子平衡,同时增加渗透调节物质的含量,降低膜质过氧化水平,从而增强其对盐胁迫的适应性,其中MT和Ca2+复配处理时的效果更好.复配外施 MT 和Ca2+在诱导甜瓜幼苗提高耐盐方面具有协同增效作用.  相似文献   

20.
D L Lewis  S R Ikeda  D Aryee  R H Joho 《FEBS letters》1991,290(1-2):17-21
Rat basophilic leukemia cells (RBL-2H3) have previously been shown to contain a single type of voltage-activated channel, namely an inwardly rectifying K+ channel, under normal recording conditions. Thus, RBL-2H3 cells seemed like a logical source of mRNA for the expression cloning of inwardly rectifying K+ channels. Injection of mRNA isolated from RBL-2H3 cells into Xenopus oocytes resulted in the expression of an inward current which (1) activated at potentials negative to the K+ equilibrium potential (EK), (2)decreased in slope conductance near EK, (3) was dependent on [K+]o and (4) was blocked by external Ba2+ and Cs+. These properties were similar to those of the inwardly rectifying K+ current recorded from RBL-2H3 cells using whole-cell voltage clamp. Injection of size-fractionated mRNA into Xenopus oocytes revealed that the current was most strongly expressed from the fraction containing mRNA of approximately 4–5 kb. Expression of this channel represents a starting point for the expression cloning of a novel class of K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号