首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In vitro experiments have demonstrated that exogenous phospholipid transfer protein (PLTP), i.e. purified PLTP added to macrophage cultures, influences ABCA1-mediated cholesterol efflux from macrophages to HDL. To investigate whether PLTP produced by the macrophages (i.e., endogenous PLTP) is also part of this process, we used peritoneal macrophages derived from PLTP-knockout (KO) and wild-type (WT) mice. The macrophages were transformed to foam cells by cholesterol loading, and this resulted in the upregulation of ABCA1. Such macrophage foam cells from PLTP-KO mice released less cholesterol to lipid-free apolipoprotein A-I (apoA-I) and to HDL than did the corresponding WT foam cells. Also, when plasma from either WT or PLTP-KO mice was used as an acceptor, cholesterol efflux from PLTP-KO foam cells was less efficient than that from WT foam cells. After cAMP treatment, which upregulated the expression of ABCA1, cholesterol efflux from PLTP-KO foam cells to apoA-I increased markedly and reached a level similar to that observed in cAMP-treated WT foam cells, restoring the decreased cholesterol efflux associated with PLTP deficiency. These results indicate that endogenous PLTP produced by macrophages contributes to the optimal function of the ABCA1-mediated cholesterol efflux-promoting machinery in these cells. Whether macrophage PLTP acts at the plasma membrane or intracellularly or shuttles between these compartments needs further study.  相似文献   

3.
The accumulation of lipoprotein cholesterol in theartery wall is thought to be an important factor in thedevelopment of atherosclerosis. After retentionand modi-fication in arteries, atherogenic lipoproteins are taken upby macrophages, bringing about macrophage-derived foamcells. High-density lipoprotein (HDL) plays a role in trans-porting cholesterol from peripheral tissues to the liver.The elevated level of HDL is associated with a decreasein atherosclerosis and the apolipoproteins to remo…  相似文献   

4.
Our objective was to evaluate the associations of individual apolipoprotein A-I (apoA-I)-containing HDL subpopulation levels with ABCA1- and scavenger receptor class B type I (SR-BI)-mediated cellular cholesterol efflux. HDL subpopulations were measured by nondenaturing two-dimensional gel electrophoresis from 105 male subjects selected with various levels of apoA-I in pre-beta-1, alpha-1, and alpha-3 HDL particles. ApoB-containing lipoprotein-depleted serum was incubated with [(3)H]cholesterol-labeled cells to measure efflux. The difference in efflux between control and ABCA1-upregulated J774 macrophages was taken as a measure of ABCA1-mediated efflux. SR-BI-mediated efflux was determined using cholesterol-labeled Fu5AH hepatoma cells. Fractional efflux values obtained from these two cell systems were correlated with the levels of individual HDL subpopulations. A multivariate analysis showed that two HDL subspecies correlated significantly with ABCA1-mediated efflux: small, lipid-poor pre-beta-1 particles (P=0.0022) and intermediate-sized alpha-2 particles (P=0.0477). With regard to SR-BI-mediated efflux, multivariate analysis revealed significant correlations with alpha-2 (P=0.0004), alpha-1 (P=0.0030), pre-beta-1 (P=0.0056), and alpha-3 (P=0.0127) HDL particles. These data demonstrate that the small, lipid-poor pre-beta-1 HDL has the strongest association with ABCA1-mediated cholesterol even in the presence of all other HDL subpopulations. Cholesterol efflux via the SR-BI pathway is associated with several HDL subpopulations with different apolipoprotein composition, lipid content, and size.  相似文献   

5.
Moderate alcohol consumption increases HDL cholesterol, which is involved in reverse cholesterol transport (RCT). The aim of this study was to investigate the effect of moderate alcohol consumption on cholesterol efflux, using J774 mouse macrophages and Fu5AH cells, and on other parameters in the RCT pathway. Twenty-three healthy men (45-65 years) participated in a randomized, partially diet-controlled, crossover trial. They consumed four glasses of whisky (40 g of alcohol) or water daily for 17 days. After 17 days of whisky consumption, serum capacity to induce ABCA1-dependent cholesterol efflux from J774 mouse macrophages was increased by 17.5% (P = 0.027) compared with water consumption. Plasma capacity to induce cholesterol efflux from Fu5AH cells increased by 4.6% (P = 0.002). Prebeta-HDL, apolipoprotein A-I (apoA-I), and lipoprotein A-I:A-II also increased by 31.6, 6.2, and 5.7% (P < 0.05), respectively, after whisky consumption compared with water consumption. Changes of cAMP-stimulated cholesterol efflux correlated (r = 0.65, P < 0.05) with changes of apoA-I but not with changes of prebeta-HDL (r = 0.30, P = 0.18). Cholesterol efflux capacities from serum of lean men were higher than those from overweight men. In conclusion, this study shows that moderate alcohol consumption increases the capacity of serum to induce cholesterol efflux from J774 mouse macrophages, which may be mediated by ABCA1.  相似文献   

6.
Matrix metalloproteinases (MMPs) have been suggested to function in remodeling of the arterial wall, but no information is available on their possible role in early atherogenesis, when cholesterol accumulates in the cells of the arterial intima, forming foam cells. Here, we incubated the major component responsible for efflux of cholesterol from foam cells, high density lipoprotein 3 (HDL(3)), with MMP-1, -3, -7, -9, or -12 at 37 degrees C before adding it to cholesterol-loaded human monocyte-derived macrophages. After incubation with MMP-3, -7, or -12, the ability of HDL(3) to induce the high affinity component of cholesterol efflux from the macrophage foam cells was strongly reduced, whereas preincubation with MMP-1 reduced cholesterol efflux only slightly and preincubation with MMP-9 had no effect. These differential effects of the various MMPs were reflected in their differential abilities to degrade the small pre-beta migrating particles present in the HDL(3) fraction. NH(2)-terminal sequence and mass spectrometric analyses of the apolipoprotein (apo) A-I fragments generated by MMPs revealed that those MMPs that strongly reduced cholesterol efflux (MMPs-3, -7, and -12) cleaved the COOH-terminal region of apoA-I and produced a major fragment of about 22 kDa, whereas MMPs-1 and -9, which had little and no effect on cholesterol efflux, degraded apoA-I only slightly and not at all, respectively. These results show, for the first time, that some members of the MMP family can degrade the apoA-I of HDL(3), so blocking cholesterol efflux from macrophage foam cells. This expansion of the substrate repertoire of MMPs to include apoA suggests that these proteinases are directly involved in the accumulation of cholesterol in atherosclerotic lesions.  相似文献   

7.
High LDL-cholesterol (LDL-C) characterizes familial hypercholesterolemia (FH) and familial combined hyperlipidemia (FCH). LDL-apheresis, used in these patients to reduce LDL-C levels, has been shown to also affect HDL levels and composition. We studied LDL-apheresis effects on six FH and nine FCH subjects' serum capacity to modulate cellular cholesterol efflux, an index of HDL functionality, and to load macrophages with cholesterol. Serum cholesterol efflux capacity (CEC) and macrophage cholesterol loading capacity (CLC) were measured before, immediately after, and two days after LDL-apheresis. The procedure reduced total cholesterol (TC), LDL-C, and apoB plasma levels (-69%, -80% and -74%, respectively), parameters only partially restored two days later. HDL-C and apoA-I plasma levels, reduced after LDL-apheresis (-27% and -16%, respectively), were restored to almost normal levels two days later. LDL-apheresis reduced serum aqueous diffusion (AD) CEC, SR-BI-CEC, and ABCA1-CEC. AD and SR-BI were fully restored whereas ABCA1-CEC remained low two days later. Sera immediately and two days after LDL-apheresis had a lower CLC than pre-LDL-apheresis sera. In conclusion, LDL-apheresis transiently reduces HDL-C levels and serum CEC, but it also reduces also serum capacity to deliver cholesterol to macrophages. Despite a potentially negative effect on HDL levels and composition, LDL-apheresis may counteract foam cells formation.  相似文献   

8.
Phytosterol supplements lower low-density lipoprotein (LDL) cholesterol, but accumulate in vascular lesions of patients and limit the anti-atherosclerotic effects of LDL lowering in apolipoprotein E (Apo E)-deficient mice, suggesting that the cholesterol-lowering benefit of phytosterol supplementation may not be fully realized. Individual phytosterols have cell-type specific effects that may be either beneficial or deleterious with respect to atherosclerosis, but little is known concerning their effects on macrophage function. The effects of phytosterols on ABCA1 and ABCG1 abundance, cholesterol efflux and inflammatory cytokine secretion were determined in cultured macrophage foam cells. Among the commonly consumed phytosterols, stigmasterol increased expression of ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein (Apo) AI and high-density lipoprotein (HDL). Campesterol and sitosterol had no effect on ABCA1 or ABCG1 levels. Sitosterol had no effect on cholesterol efflux to Apo AI or HDL, whereas campesterol had a modest but significant reduction in cholesterol efflux to HDL in THP-1 macrophages. Whereas stigmasterol blunted aggregated LDL (agLDL) induced increases in tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β secretion, sitosterol exacerbated these effects. The presence of campesterol had no effect on agLDL-induced inflammatory cytokine secretion from THP-1 macrophages. In conclusion, the presence of stigmasterol in modified lipoproteins promoted cholesterol efflux and suppressed inflammatory cytokine secretion in response to lipid loading in macrophage foam cells. While campesterol was largely inert, the presence of sitosterol increased the proinflammatory cytokine secretion.  相似文献   

9.
10.
HDL and its major component, apolipoprotein A-I (apoA-I), play a central role in reverse cholesterol transport. We recently reported the involvement of a glycosylphosphatidylinositol anchor (GPI anchor) in the binding of HDL and apoA-I on human macrophages, and purified an 80 kDa HDL/apoA-I binding protein. In the present study, we characterized the GPI-anchored HDL/apoA-I binding protein from macrophages. The HDL/apoA-I binding protein was purified from macrophages and digested with endopeptidase, and the resultant fragments were sequenced. Cholesterol efflux, flow cytometry, immunoblotting, and immunohistochemical analyses were performed to characterize the HDL/apoA-I binding protein. Two parts of seven amino acid sequences completely matched those of moesin. Flow cytometry, immunoblotting, and immunohistochemistry using anti-moesin antibody showed that the HDL/apoA-I binding protein was N-glycosylated and expressed on the cell surface. It was termed moesin-like protein. Treatment of macrophages with anti-moesin antibody blocked the binding of HDL/apoA-I and suppressed cholesterol efflux. The moesin-like protein was exclusively expressed on macrophages and was upregulated by cholesterol loading and cell differentiation. Our results indicate that the moesin-like HDL/apoA-I binding protein is specifically expressed on the surface of human macrophages and promotes cholesterol efflux from macrophages.-Matsuyama, A, N. Sakai, H. Hiraoka, K-i. Hirano, and S. Yamashita. Cell surface-expressed moesin-like HDL/apoA-I binding protein promotes cholesterol efflux from human macrophages.  相似文献   

11.
A unique property of the extracellular matrix of J774 and THP-1 cells has been identified, which contributes to the ability of these cells to promote cholesterol efflux. We demonstrate high level apolipoprotein (apo) A-I binding to macrophage cells (THP-1 and J774) and to their extracellular matrix (ECM). However, high level apoA-I binding is not observed on fibroblasts, HepG2 cells, or U937 cells (a macrophage cell line that does not efflux cholesterol to apoA-I or bind apoA-I on their respective ECM). Binding to the ECM of THP-1 or J774 macrophages depends on the presence of apoA-I C-terminal helices and is markedly reduced with a mutant lacking residues 187-243 (apoA-I Delta(187-243)), suggesting that the hydrophobic C terminus forms a hydrophobic interaction with the ECM. ApoA-I binding is lost upon trypsin treatment or with Triton X-100, a preparation method that de-lipidates the ECM. However, binding is recovered with re-lipidation, and is preserved with ECM prepared using cytochalasin B, which conserves the endogenous phospholipid levels of the ECM. We also demonstrate that specific cholesterol efflux to apoA-I is much reduced in cells released from their native ECM, but fully restored when ECM-depleted cells are added back to ECM in the presence of apoA-I. The apoA-I-mediated efflux is deficient in plated or suspension U937 macrophages, but is restored to high levels when the suspension U937 cells are reconstituted with the ECM of J774 cells. The ECM-dependent activity was much reduced in the presence of glyburide, indicating participation of ABCA1 (ATP-binding cassette transporter 1) in the efflux mechanism. These studies establish a novel binding site for apoA-I on the macrophage ECM that may function together with ABCA1 in promoting cholesterol efflux.  相似文献   

12.
In atherosclerosis, accumulation of cholesterol in macrophages may partially depend on its defective removal by high-density lipoproteins (HDL). We studied the proteolytic effect of cathepsins F, S, and K on HDL(3) and on lipid-free apoA-I, and its consequence on their function as inductors of cholesterol efflux from cholesterol-filled mouse peritoneal macrophages in vitro. Incubation of HDL(3) with cathepsin F or S, but not with cathepsin K, led to rapid loss of prebeta-HDL, and reduced cholesterol efflux by 50% in only 1min. Cathepsins F or K partially degraded lipid-free apoA-I and reduced its ability to induce cholesterol efflux, whereas cathepsin S totally degraded apoA-I, leading to complete loss of apoA-I cholesterol acceptor function. These results suggest that cathepsin-secreting cells induce rapid depletion of lipid-poor (prebeta-HDL) and lipid-free apoA-I and inhibit cellular cholesterol efflux, so tending to promote the formation and maintenance of foam cells in atherosclerotic lesions.  相似文献   

13.
An important event in cholesterol metabolism is the efflux of cellular cholesterol by apolipoprotein A-I (apoA-I), the major protein of high density lipoproteins (HDL). Lipid-free apoA-I is the preferred substrate for ATP-binding cassette A1, which promotes cholesterol efflux from macrophage foam cells in the arterial wall. However, the vast majority of apoA-I in plasma is associated with HDL, and the mechanisms for the generation of lipid-free apoA-I remain poorly understood. In the current study, we used fluorescently labeled apoA-I that exhibits a distinct fluorescence emission spectrum when in different states of lipid association to establish the kinetics of apoA-I transition between the lipid-associated and lipid-free states. This approach characterized the spontaneous and rapid exchange of apoA-I between the lipid-associated and lipid-free states. In contrast, the kinetics of apoA-I exchange were significantly reduced when apoA-I on HDL was cross-linked with a bi-functional reagent or oxidized by myeloperoxidase. Our observations support the hypothesis that oxidative damage to apoA-I by myeloperoxidase limits the ability of apoA-I to be liberated in a lipid-free form from HDL. This impairment of apoA-I exchange reaction may be a trait of dysfunctional HDL contributing to reduced ATP-binding cassette A1-mediated cholesterol efflux and atherosclerosis.  相似文献   

14.
The contribution of the amphipathic alpha-helices of apoA-I toward lipid efflux from human skin fibroblasts and macrophage was examined. Four apoA-I mutants were designed, each by deletion of a pair of predicted adjacent helices. Three mutants lacked two consecutive central alpha-helices [Delta(100-143), Delta(122-165), and Delta(144-186)], whereas the final mutant lacked the C-terminal domain [Delta(187-243)]. When compared to recombinant wild-type apoA-I and mutants with central domain deletions, Delta(187-243) exhibited a marked reduction in its ability to promote either cholesterol or phospholipid efflux from THP-1 macrophages. This mutant also demonstrated a decreased ability to bind lipids and to form lipoprotein complexes. In contrast, the four mutants and apoA-I equally supported cholesterol efflux from fibroblasts, albeit with a reduced capacity when compared to macrophages. Delta(187-243) bound poorly to the macrophage cell surface when compared to apoA-I, and competitive binding studies with the central domain and C-terminal deletions mutants showed that only Delta(187-243) did not compete effectively with [(125)I]apoA-I. Omission of PMA during cholesterol loading enhanced cholesterol efflux to both apoA-I (1.5-fold) and the C-terminal deletion mutant (2.5-fold). Inclusion of the Sandoz ACAT inhibitor (58-035) during loading and, in the absence of PMA, increased and equalized cholesterol efflux to apoA-I and Delta(187-243). Surprisingly, omission of PMA during cholesterol loading had minimal effects on the binding of apoA-I or Delta(187-243) to the THP-1 cell surface. Overall, these results show that cholesterol efflux from cells such as fibroblasts does not require any specific sequence between residues 100 and 243 of apoA-I. In contrast, optimal cholesterol efflux in macrophages requires binding of the C-terminal domain of apoA-I to a cell surface-binding site and the subsequent translocation of intracellular cholesterol to an efflux-competent pool.  相似文献   

15.
Oxidized forms of cholesterol (oxysterols) are present in atherosclerotic lesions and may play an active role in lesion development. For example, 7-ketocholesterol (7KC) inhibits cholesterol efflux from macrophage foam cells induced by apolipoprotein A-I (apoA-I). Such oxysterols may promote foam cell formation in atherosclerotic lesions by preventing effective clearance of excess cholesterol. ApoA-I also induces phospholipid (PL) export from foam cells and it has been suggested that cholesterol efflux is dependent upon PL association with the apolipoprotein. In the current study, the effect of oxysterol enrichment of foam cells on phospholipid efflux was measured. Export of cellular PL to apoA-I from 7KC-enriched foam cells was inhibited to the same extent as cholesterol, indicating that the reduced cholesterol export may be a consequence of a decline in the capacity of the foam cells to generate PL/apoA-I particles capable of accepting cellular cholesterol. Incubation of foam cells with pre-formed PL/apoA-I discs increased cholesterol export from 7KC-enriched cells to levels seen in 7KC-free cells. Foam cells produced by uptake of oxidized LDL, which contain similar amounts of 7KC plus other oxidation products, expressed a more profound inhibition of PL export to apoA-I. Cholesterol efflux from these cells improved only partially by provision of PL-containing acceptors. Efflux of 7KC from both foam cell types occurred to PL/apoA-I discs but was only minimal to lipid-free apoA-I, indicating that export of this oxysterol is more dependent than cholesterol upon the presence of extracellular phospholipid.  相似文献   

16.
Adenosine triphosphate-binding membrane cassette transporter A1 (ABCA1) and ABCG1 play a crucial role in macrophage cholesterol efflux, which is a novel therapeutic target for atherosclerosis. Advanced glycation end products (AGE) and their receptor RAGE axis is involved in accelerated atherosclerosis in diabetes as well. However, the role of AGE-RAGE axis in macrophage cholesterol efflux is not fully understood. We examined here whether AGE-RAGE axis could impair cholesterol efflux from human macrophage cells, THP-1 cells by suppressing ABCA1 and ABCG1 expression. We further investigated the effects of rosuvastatin on cholesterol efflux from AGE-exposed THP-1 cells. AGE increased reactive oxygen species generation in THP-1 cells, which was completely inhibited by rosuvastatin, anti-RAGE-antibody or diphenylene iodonium chloride (DPI), an inhibitor of NADPH oxidase. The antioxidative effect of rosuvastatin on AGE-exposed THP-1 cells was significantly prevented by geranylgeranyl pyrophosphate (GGPP). AGE decreased ABCA1 and ABCG1 mRNA levels, and subsequently reduced cholesterol efflux from THP-1 cells, which was prevented by GGPP. DPI mimicked the effects of rosuvastain. The results demonstrated that rosuvastatin could inhibit the AGE-induced reduction of THP-1 macrophage cholesterol efflux by suppressing NADPH oxidase activity via inhibition of geranylgeranylation of Rac-1. Our present study provides a novel beneficial aspect of rosuvastatin in diabetes; rosuvastain may prevent the development and progression of atherosclerosis in diabetes by not only reducing serum cholesterol level, but also by improving cholesterol efflux from foam cells of the arterial wall via blocking the harmful effects of AGE on macrophages.  相似文献   

17.
Mechanisms to increase plasma high-density lipoprotein (HDL) or to promote egress of cholesterol from cholesterol-loaded cells (e.g., foam cells from atherosclerotic lesions) remain an important target to regress heart disease. Reconstituted HDL (rHDL) serves as a valuable vehicle to promote cellular cholesterol efflux in vitro and in vivo. rHDL were prepared with wild type apolipoprotein (apo) A-I and the rare variant, apoA-I Milano (M), and each apolipoprotein was reconstituted with phosphatidylcholine (PC) or sphingomyelin (SM). The four distinct rHDL generated were incubated with CHO cells, J774 macrophages, and BHK cells in cellular cholesterol efflux assays. In each cell type, apoA-I(M) SM-rHDL promoted the greatest cholesterol efflux. In BHK cells, the cholesterol efflux capacities of all four distinct rHDL were greatly enhanced by increased expression of ABCG1. Efflux to PC-containing rHDL was stimulated by transfection of a nonfunctional ABCA1 mutant (W590S), suggesting that binding to ABCA1 represents a competing interaction. This interpretation was confirmed by binding experiments. The data show that cholesterol efflux activity is dependent upon the apoA-I protein employed, as well as the phospholipid constituent of the rHDL. Future studies designed to optimize the efflux capacity of therapeutic rHDL may improve the value of this emerging intervention strategy.  相似文献   

18.
In some settings increasing high density lipoprotein (HDL) levels has been associated with a reduction in experimental atherosclerosis. This has been most clearly seen in apolipoprotein A-I (apoA-I) transgenic mice or in animals infused with HDL or its apolipoproteins. A major mechanism by which these treatments are thought to delay progression or cause regression of atherosclerosis is by promoting efflux of cholesterol from macrophage foam cells. In addition, HDL has been described as having anti-inflammatory and other beneficial effects. Some recent research has linked anti-inflammatory effects to cholesterol efflux pathways but likely multiple mechanisms are involved. Macrophage cholesterol efflux may have a role in facilitating emigration of macrophages from lesions during regression. While macrophages can mediate cholesterol efflux by several pathways, studies in knockout mice or cells point to the importance of active efflux mediated by ATP binding cassette transporter (ABC) A1 and G1. In addition to traditional roles in macrophages, these transporters have been implicated in the control of hematopoietic stem cell proliferation, monocytosis and neutrophilia, as well as activation of monocytes and neutrophils. Thus, HDL and cholesterol efflux pathways may have important anti-atherogenic effects at all stages of the myeloid cell/monocyte/dendritic cell/macrophage lifecycle. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

19.
HDL particles may enter atherosclerotic lesions having an acidic intimal fluid. Therefore, we investigated whether acidic pH would affect their structural and functional properties. For this purpose, HDL(2) and HDL(3) subfractions were incubated for various periods of time at different pH values ranging from 5.5 to 7.5, after which their protein and lipid compositions, size, structure, and cholesterol efflux capacity were analyzed. Incubation of either subfraction at acidic pH induced unfolding of apolipoproteins, which was followed by release of lipid-poor apoA-I and ensuing fusion of the HDL particles. The acidic pH-modified HDL particles exhibited an enhanced ability to promote cholesterol efflux from cholesterol-laden primary human macrophages. Importantly, treatment of the acidic pH-modified HDL with the mast cell-derived protease chymase completely depleted the newly generated lipid-poor apoA-I, and prevented the acidic pH-dependent increase in cholesterol efflux. The above-found pH-dependent structural and functional changes were stronger in HDL(3) than in HDL(2). Spontaneous acidic pH-induced remodeling of mature spherical HDL particles increases HDL-induced cholesterol efflux from macrophage foam cells, and therefore may have atheroprotective effects.  相似文献   

20.
Defects in the gene encoding for the ATP binding cassette (ABC) transporter A1 (ABCA1) were shown to be one of the genetic causes for familial hypoalphalipoproteinemia (FHA). We investigated the role of ABCA1-mediated cholesterol efflux in Dutch subjects suffering from FHA. Eighty-eight subjects (mean HDL cholesterol levels 0.63 +/- 0.21 mmol/l) were enrolled. Fibroblasts were cultured and loaded with [3H]cholesterol. ABCA1 and non-ABCA1-mediated efflux was studied by using apolipoprotein A-I (apoA-I), HDL, and methyl-beta-cyclodextrin as acceptors. Efflux to apoA-I was decreased in four patients (4/88, 4.5%), and in all cases, a mutation in the ABCA1 gene was found. In the remaining 84 subjects, no correlation between efflux and apoA-I or HDL cholesterol was found. Efflux to both HDL and cyclodextrin, in contrast, did correlate with HDL cholesterol plasma levels (r = 0.34, P = 0.01; and r = 0.27, P = 0.008, respectively). The prevalence of defects in ABCA1-dependent cholesterol efflux in Dutch FHA patients is low. The significant correlation between plasma HDL cholesterol levels and methyl-beta-cyclodextrin-mediated efflux in the FHA patients with normal ABCA1 function suggests that non-ABCA1-mediated efflux might also be important for plasma HDL cholesterol levels in these individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号