首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In vertebrates, variability at genes of the Major Histocompatibility Complex (MHC) represents an important adaptation for pathogen resistance, whereby high allelic diversity confers resistance to a greater number of pathogens. Pathogens can maintain diversifying selection pressure on their host's immune system that can vary in intensity based on pathogen richness, pathogen virulence, and length of the cohabitation period, which tend to increase with temperature. In this study, we tested the hypothesis that genetic diversity of MHC increases with temperature along a latitudinal gradient in response to pathogen selective pressure in the wild. A total of 1549 Atlantic salmon from 34 rivers were sampled between 46 degrees N and 58 degrees N in Eastern Canada. The results supported our working hypothesis. In contrast to the overall pattern observed at microsatellites, MHC class II allelic diversity increased with temperature, thus creating a latitudinal gradient. The observed temperature gradient was more pronounced for MHC amino acids of the peptide-binding region (PBR), a region that specifically binds to pathogens, than for the non-PBR. For the subset of rivers analyzed for bacterial diversity, MHC amino acid diversity of the PBR also increased significantly with bacterial diversity in each river. A comparison of the relative influence of temperature and bacterial diversity revealed that the latter could have a predominant role on MHC PBR variability. However, temperature was also identified as an important selective agent maintaining MHC diversity in the wild. Based on the bacteria results and given the putative role of temperature in shaping large-scale patterns of pathogen diversity and virulence, bacterial diversity is a plausible selection mechanism explaining the observed association between temperature and MHC variability. Therefore, we propose that genetic diversity at MHC class II represents local adaptation to cope with pathogen diversity in rivers associated with different thermal regimes. This study illuminates the link between selection pressure from the environment, host immune adaptation, and the large-scale genetic population structure for a nonmodel vertebrate in the wild.  相似文献   

2.
3.
The genetic basis of resistance to pathogens is well studied in crops, yet our understanding of the evolution of this trait in natural populations will be improved by determining how resistance is inherited in a wide range of plant-pathogen interactions. Here, we examined resistance to Coleosporium ipomoeae, a common fungal rust pathogen of Ipomoea purpurea. Natural populations across North Carolina, South Carolina, and Georgia (USA) were surveyed for the presence of C. ipomoeae and seeds were collected. A combination of crosses and controlled infections was then used to determine the genetic basis of qualitative resistance. In one population studied in detail, complete resistance to natural infection and a bulk collection of C. ipomoeae is conferred by a single locus (Rci1), where resistance is dominant to susceptibility. Allelic, major-gene resistance to this same bulk collection of C. ipomoeae appears to also occur in nine other natural populations. The prevalence of this resistance phenotype in natural populations suggests that the evolution of resistance to C. ipomoeae in I. purpurea may be dominated by genes of large phenotypic effect.  相似文献   

4.
We examined patterns of variation and the extent of local adaptation in the interaction between the highly selfing annual weed Arabidopsis thaliana and its foliar bacterial pathogen Pseudomonas viridiflava by cross-infecting 23 bacterial isolates with 35 plant lines collected from six fallow or cultivated fields in the Midwest, USA. We used two measures of resistance and virulence: bacterial count in the leaf and symptom development four days after infection. We found variation in resistance in A. thaliana and virulence in P. viridiflava, as well as a significant difference in symptoms between two distinct genetic clades within P. viridiflava. We also observed that both resistance and plant development rate varied with field type of origin (cultivated or fallow), possibly through age-related resistance, a developmentally regulated general form of resistance. Finally, we did not observe local adaptation by host or pathogen, rather we found patterns of variation across populations that depended in part on P. viridiflava clade. These data suggest that the interaction between A. thaliana and P. viridiflava varies across space and is mediated by the selection regime of the host populations and differential performance of the P. viridiflava clades. This is one of a very limited number of studies examining a bacterial pathogen of wild plant populations and one of a few studies to examine patterns of variation in a plant-pathogen association that is not a highly specialized gene-for-gene interaction.  相似文献   

5.
Although disease-resistance polymorphisms are common in natural plant populations, the mechanisms responsible for this variation are not well understood. Theoretical models predict that balancing selection can maintain polymorphism within a population if the fitness effects of a resistance allele vary from a net cost to a net benefit, depending upon the extent of pathogen damage. However, there have been a few attempts to determine how commonly this mechanism operates in natural plant-pathogen interactions. Ipomoea purpurea populations are often polymorphic for resistance and susceptibility alleles at a locus that influences resistance to the fungal pathogen, Coleosporium ipomoeae. We measured the fitness effects of resistance over three consecutive years at natural and manipulated levels of damage to characterize the type of selection acting on this locus. Costs of resistance varied in magnitude from undetectable to 15.5%, whereas benefits of resistance sometimes equaled, but never exceeded, these costs. In the absence of net benefits of resistance at natural or elevated levels of disease, we conclude that selection within individual populations of I. purpurea probably does not account completely for maintenance of this polymorphism. Rather, the persistence of this polymorphism is probably best explained by a combination of variable selection and meta-population processes.  相似文献   

6.
Because most species are collections of genetically variable populations distributed to habitats differing in their abiotic/biotic environmental factors and community composition, the pattern and strength of natural selection imposed by species on each other's traits are also expected to be highly spatially variable. Here, we used genomic and quantitative genetic approaches to understand how spatially variable selection operates on the genetic basis of plant defenses to herbivores. To this end, an F2 progeny was generated by crossing Datura stramonium (Solanaceae) parents from two populations differing in their level of chemical defense. This F2 progeny was reciprocally transplanted into the parental plants’ habitats and by measuring the identity by descent (IBD) relationship of each F2 plant to each parent, we were able to elucidate how spatially variable selection imposed by herbivores operated on the genetic background (IBD) of resistance to herbivory, promoting local adaptation. The results highlight that plants possessing the highest total alkaloid concentrations (sum of all alkaloid classes) were not the most well-defended or fit. Instead, specific alkaloids and their linked loci/alleles were favored by selection imposed by different herbivores. This has led to population differentiation in plant defenses and thus, to local adaptation driven by plant-herbivore interactions.  相似文献   

7.
During infection, plant pathogens secrete effector proteins to facilitate colonization. In comparison with our knowledge of bacterial effectors, the current understanding of how fungal effectors function is limited. In this study, we show that the effector AvrL567-A from the flax rust fungus Melampsora lini interacts with a flax cytosolic cytokinin oxidase, LuCKX1.1, using both yeast two-hybrid and in planta bimolecular fluorescence assays. Purified LuCKX1.1 protein shows catalytic activity against both N6-(Δ2-isopentenyl)-adenine (2iP) and trans-zeatin (tZ) substrates. Incubation of LuCKX1.1 with AvrL567-A results in increased catalytic activity against both substrates. The crystal structure of LuCKX1.1 and docking studies with AvrL567-A indicate that the AvrL567 binding site involves a flexible surface-exposed region that surrounds the cytokinin substrate access site, which may explain its effect in modulating LuCKX1.1 activity. Expression of AvrL567-A in transgenic flax plants gave rise to an epinastic leaf phenotype consistent with hormonal effects, although no difference in overall cytokinin levels was observed. We propose that, during infection, plant pathogens may differentially modify the levels of extracellular and intracellular cytokinins.  相似文献   

8.
Abstract.— Coevolution may lead to local adaptation of parasites to their sympatric hosts. Locally adapted parasites are, on average, more infectious to sympatric hosts than to allopatric hosts of the same species or their fitness on the sympatric hosts is superior to that on allopatric hosts. We tested local adaptation of a hemiparasitic plant, Rhinanthus serotinus (Scrophulariaceae), to its host plant, the grass Agrostis capillaris . Using a reciprocal cross-infection experiment, we exposed host plants from four sites to hemiparasites originating from the same four sites in a common environment. The parasites were equally able to establish haustorial connections to sympatric and allopatric hosts, and their performance was similar on both host types. Therefore, these results do not indicate local adaptation of the parasites to their sympatric hosts. However, the parasite populations differed in average biomass and number of flowers per plant and in their effect on host biomass. These results indicate that the virulence of the parasite varied among populations, suggesting genetic variation. Theoretical models suggest that local adaptation is likely to be detected if the host and the parasite have different evolutionary potentials, different migration rates, and the parasite is highly virulent. In the interaction between R. serotinus and A. capillaris all the theoretical prerequisites for local adaptation may not be fulfilled.  相似文献   

9.
10.
11.
Theory predicts that the direction of local adaptation depends on the relative migration rates of hosts and parasites. Here we measured relative migration rates and tested for local adaptation in the interaction between a tree hole mosquito (Ochlerotatus sierrensis) and a protozoan parasite (Lambornella clarki). We found strong support for the hypothesis that the host migrates more than its parasite. Hosts colonized artificial tree holes in the field at a much higher rate than the parasite. Field releases of the parasite demonstrated that it colonizes and persists in natural tree holes where it was previously absent, suggesting that parasite distribution is limited by its migratory ability. Although the host migrates more than its parasite, we found no evidence for local adaptation by hosts and some evidence for local adaptation by parasites. Other life history traits of the host and parasite may also influence patterns in local adaptation, particularly parasite virulence and host dormancy.  相似文献   

12.
Disentangling evolutionary forces that may interact to determine the patterns of genetic differentiation within and among wild populations is a major challenge in evolutionary biology. The objective of this study was to assess the genetic structure and the potential influence of several ecological variables on the extent of genetic differentiation at multiple spatial scales in a widely distributed species, the Atlantic salmon, Salmo salar . A total of 2775 anadromous fish were sampled from 51 rivers along the North American Atlantic coast and were genotyped using 13 microsatellites. A Bayesian analysis clustered these populations into seven genetically and geographically distinct groups, characterized by different environmental and ecological factors, mainly temperature. These groups were also characterized by different extent of genetic differentiation among populations. Dispersal was relatively high and of the same magnitude within compared to among regional groups, which contrasted with the maintenance of a regional genetic structure. However, genetic differentiation was lower among populations exchanging similar rates of local as opposed to inter-regional migrants, over the same geographical scale. This raised the hypothesis that gene flow could be constrained by local adaptation at the regional scale. Both coastal distance and temperature regime were found to influence the observed genetic structure according to landscape genetic analyses. The influence of other factors such as latitude, river length and altitude, migration tactic, and stocking was not significant at any spatial scale. Overall, these results suggested that the interaction between gene flow and thermal regime adaptation mainly explained the hierarchical genetic structure observed among Atlantic salmon populations.  相似文献   

13.
Ecologists have long sought mechanistic explanations for the patterns of plant distribution and endemism associated with serpentine soils. We conducted the first empirical test of the serpentine pathogen refuge hypothesis, which posits that the low levels of calcium found in serpentine soils provide associated plants with a refuge from attack by pathogens. We measured the range of soil calcium concentrations experienced by 16 wild population of California dwarf flax (Hesperolinon californicum) and experimentally recreated part of this range in the greenhouse by soaking serpentine soils in calcium chloride solutions of varying molarity. When flax plants grown in these soils were inoculated with spores of the rust fungus Melampsora lini we found a significant negative relationship between infection rates and soil calcium concentrations. This result refutes the pathogen refuge hypothesis and suggests that serpentine plants, by virtue of their association with low calcium soils, may be highly vulnerable to attack by pathogens. This interaction between plant nutrition and disease may in part explain demographic patterns associated with serpentine plant populations and suggests scenarios for the evolution of life history traits and the distribution of genetic resistance to infection in serpentine plant communities.  相似文献   

14.
Outcrossing by hosts may offer protection from natural enemies adapted to parental genotypes by creating diverse progeny that differ from their parents through genetic recombination. However, past experimental work addressing the relationship between mating system and disease in offspring has given conflicting results, suggesting that outcrossing might also cause the dissolution of resistant genotypes. To determine if selfed progeny are more susceptible to disease caused by the heteroecious rust, Puccinia recondita, or if selfing preserves existing resistant genotypes, we used a factorial design to compare levels of infection of selfed and outcrossed progeny of Impatiens capensis, a woodland annual with a mixed mating system. We compared the level of host infection when exposed to three pathogen sources in the field: the sympatric rust population, and two allopatric rust populations. Outcrossed progeny exposed to sympatric rust had higher infection scores than selfed progeny exposed to the same rust, suggesting that outcrossing breaks up resistant genotypes. In addition, there was a trend for the rust to be more infective on sympatric rather than allopatric hosts. We also examined whether rust infection differentially alters the fitness of selfed and outcrossed progeny. Outcrossed plants that escaped infection had higher fitness, as measured by fruit production, than selfed plants, but there was no difference in fitness between infected selfed and infected outcrossed plants. Thus, outcrossing was advantageous in the absence of disease, but there was no fitness difference between selfed and outcrossed progeny in the presence of disease. In sum, our results indicate that interactions with pathogens can eliminate or reverse the advantage of outcrossing.  相似文献   

15.
The butterfly Boloria aquilonaris is a specialist of oligotrophic ecosystems. Population viability analysis predicted the species to be stable in Belgium and to collapse in the Netherlands with reduced host plant quality expected to drive species decline in the latter. We tested this hypothesis by rearing B. aquilonaris caterpillars from Belgian and Dutch sites on host plants (the cranberry, Vaccinium oxycoccos). Dutch plant quality was lower than Belgian one conferring lower caterpillar growth rate and survival. Reintroduction and/or supplementation may be necessary to ensure the viability of the species in the Netherlands, but some traits may have been selected solely in Dutch caterpillars to cope with gradual changes in host plant quality. To test this hypothesis, the performance of Belgian and Dutch caterpillars fed with plants from both countries were compared. Dutch caterpillars performed well on both plant qualities, whereas Belgian caterpillars could not switch to lower quality plants. This can be considered as an environmentally induced plastic response of caterpillars and/or a local adaptation to plant quality, which precludes the use of Belgian individuals as a unique solution for strengthening Dutch populations. More generally, these results stress that the relevance of local adaptation in selecting source populations for relocation may be as important as restoring habitat quality.  相似文献   

16.
The traditional view of the species as the fundamental unit of evolution has been challenged by observations that in heterogeneous environments, gene flow may be too restricted to overcome the effects of local selection. Whether a species evolves as a cohesive unit depends critically on the dynamic balance between homogenizing gene flow among populations and potentially disruptive local adaptation. To examine this evolutionary balance between "global" gene flow and local selection, we studied northern Californian populations of Helianthus exilis, the serpentine sunflower, within a mosaic of contrasting serpentine and nonserpentine areas that differ considerably in soil chemistry and water availability. Local adaptation to riparian and serpentine habitats was studied in Helianthus exilis along with an analysis of gene flow patterns among populations within these habitats. Local adaptation was assessed in H. exilis during 2002 and 2003 using reciprocal transplant experiments at multiple locations within serpentine and riparian habitats. Effects of competition and germination date on the expression of local adaptation were also examined within the reciprocal transplant experiments. Local adaptation was detected in both years at the local site level and at the level of habitat. The analysis of the transplanted populations indicated that the patterns of selection differed considerably between riparian and serpentine sites. Differential survivorship occurred in serpentine habitats, whereas selection on reproductive output predominated in riparian habitats. Local adaptation was expressed only in the absence of competition. Local adaptation in terms of survivorship was most strongly expressed in treatments with delayed seed germination. Microsatellite markers were used to quantify population genetic parameters and examine the patterns of gene flow among sampled populations. Analysis of molecular markers revealed a system of population patches that freely exchange genes with each other. Strong selection seems to maintain ecotypic variation within this endemic sunflower species, while extensive gene flow among populations prevents local speciation between serpentine and riparian ecotypes.  相似文献   

17.
Clinal variation has been described in many invertebrates including drosophilids but usually over broad geographical gradients. Here we describe clinal variation in the rainforest species Drosophila birchii from Queensland, Australia, and potential confounding effects of laboratory adaptation. Clinal variation was detected for starvation and development time, but not for size or resistance to temperature extremes. Starvation resistance was higher at southern locations. Wing shape components were not associated with latitude although they did differ among populations. Time in laboratory culture did not influence wing size or heat knockdown resistance, but increased starvation resistance and decreased recovery time following a cold shock. Laboratory culture also increased development time and altered wing shape. The results indicate that clinal patterns can be detected in Drosophila over a relatively narrow geographical area. Laboratory adaptation is unlikely to have confounded the detection of geographical patterns.  相似文献   

18.
Laine AL 《Ecology letters》2008,11(4):327-337
There have been numerous investigations of parasite local adaptation, a phenomenon important from the perspectives of both basic and applied evolutionary ecology. Recent work has demonstrated that temperature has striking effects on parasite performance by mediating trade-offs in parasite life history and through genotype × environment interactions. To test whether parasite local adaptation is mediated by temperature, I measured the performance of sympatric populations against allopatric populations of a fungal pathogen, Podosphaera plantaginis , on its host Plantago lanceolata , across a temperature gradient. I used data on parasite life history and epidemiology to derive fitness estimates to measure local adaptation. The results demonstrate unambiguously that trajectories of host–parasite co-evolution are tightly coupled with parasite adaptation to the abiotic habitat, as the strength, and even direction, of local adaptation varied with temperature. Patterns of local adaptation further depended on how parasite fitness was estimated, highlighting the importance of choosing relevant fitness measures in studies of local adaptation.  相似文献   

19.
为鉴定引起广西种植区白及锈病的病原菌种类且筛选抗锈病的白及资源,该研究对白及锈病病原菌进行分离,并采用形态学和分子生物学的方法对病原菌进行鉴定,同时通过人工接种病原菌法对23份白及进行锈病抗性评价以及筛选抗锈病的白及资源。结果表明:(1)从白及感病叶片中分离的锈病病原菌X2夏孢子呈金黄色,卵圆形或椭圆形,大小为(21.43~30.95)μm ×(13.10~19.05)μm; 冬孢子呈橘红色、红褐色,倒卵形或棍棒状,大小为(17.25~30)μm ×(5.5~6.65)μm。(2)把菌株X2全长689 bp的ITS序列(OQ826009)与GenBank 已登陆的序列进行相似性分析发现,菌株X2与Coleosporium sp.(KY783686.1)匹配度最高,序列一致性为95.86%,但系统发育树表明,X2与Coleosporium bletiae(MN108161.1,OP363680.1)聚为一类群; 结合形态学和分子生物学的方法,鉴定菌株X2为Coleosporium bletiae。(3)人工接种菌株X2 14 d后,23份白及的病情指数范围在0~70.7之间,并根据病情指数将 23 份白及划分为 6 个抗性等级,即表现为免疫的白及1份,病情指数为0; 表现为高抗的白及4份,病情指数为1.7~4.7; 表现为抗病的白及6份,病情指数为5.6~9.4; 表现为中抗的白及5份,病情指数为12.7~18.3; 表现为感病的白及5份,病情指数为32.0~49.1; 表现为高感的白及2份,病情指数为62.2~70.7。综上认为,表现为免疫和高抗的5份白及(分别来自云南红河、广西恭城、广西百色、贵州遵义、湖北宜昌)病情指数低、抗锈病能力强,可推广应用或作为培育抗锈病优良种质的亲本材料。该研究结果为后续开展白及锈病的有效防治与致病机理研究提供了支撑。  相似文献   

20.
Explicit understanding of the spatial scale of evolutionary processes is required in order to set targets for their effective conservation. Here, we explore the spatial context of neutral and adaptive divergence in the species-rich Knersvlakte region of South Africa. Specifically, we aimed to assess the importance of erosional drainage basins as spatial units of evolutionary process. We used amplified fragment length polymorphism (AFLP) and reciprocal transplants to investigate genetic differentiation in Argyroderma pearsonii, sampled from sparse and dense quartz habitats within each of three drainage basins. This design allowed assessment of differentiation at two distinct spatial scales; between habitats within basins, and between basins. We found near-perfect concordance between genetic clusters and basin occupancy, suggesting restricted interbasin gene flow. In addition, transplants reveal adaptive divergence between basins on the dense quartz habitat. We have shown that neutral and adaptive differentiation occurs between basins, but not between habitats within basins, suggesting that conservation plans aimed at conserving multiple interconnected drainage basins will capture an important axis of evolutionary process on the Knersvlakte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号