首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The arrest of rolling leukocytes on various target vascular beds is mediated by specialized leukocyte integrins and their endothelial immunoglobulin superfamily (IgSF) ligands. These integrins are kept in largely inactive states and undergo in situ activation upon leukocyte-endothelial contact by both biochemical and mechanical signals from flow-derived shear forces. In vivo and in vitro studies suggest that leukocyte integrin activation involves conformational alterations through inside-out signaling followed by ligand-induced rearrangements accelerated by external forces. This activation process takes place within fractions of seconds by in situ signals transduced to the rolling leukocyte as it encounters specialized endothelial-displayed chemoattractants, collectively termed arrest chemokines. In neutrophils, selectin rolling engagements trigger intermediate affinity integrins to support reversible adhesions before chemokine-triggered arrest. Different leukocyte subsets appear to use different modalities of integrin activation during rolling and arrest at distinct endothelial sites.  相似文献   

2.
Activated T cells migrate from the blood into nonlymphoid tissues through a multistep process that involves cell rolling, arrest, and transmigration. P-Selectin glycoprotein ligand-1 (PSGL-1) is a major ligand for P-selectin expressed on subsets of activated T cells such as Th1 cells and mediates cell rolling on vascular endothelium. Rolling cells are arrested through a firm adhesion step mediated by integrins. Although chemokines presented on the endothelium trigger integrin activation, a second mechanism has been proposed where signaling via rolling receptors directly activates integrins. In this study, we show that Ab-mediated cross-linking of the PSGL-1 on Th1 cells enhances LFA-1-dependent cell binding to ICAM-1. PSGL-1 cross-linking did not enhance soluble ICAM-1 binding but induced clustering of LFA-1 on the cell surface, suggesting that an increase in LFA-1 avidity may account for the enhanced binding to ICAM-1. Combined stimulation by PSGL-1 cross-linking and the Th1-stimulating chemokine CXCL10 or CCL5 showed a more than additive effect on LFA-1-mediated Th1 cell adhesion as well as on LFA-1 redistribution on the cell surface. Moreover, PSGL-1-mediated rolling on P-selectin enhanced the Th1 cell accumulation on ICAM-1 under flow conditions. PSGL-1 cross-linking induced activation of protein kinase C isoforms, and the increased Th1 cell adhesion observed under flow and also static conditions was strongly inhibited by calphostin C, implicating protein kinase C in the intracellular signaling in PSGL-1-mediated LFA-1 activation. These results support the idea that PSGL-1-mediated rolling interactions induce intracellular signals leading to integrin activation, facilitating Th1 cell arrest and subsequent migration into target tissues.  相似文献   

3.
BACKGROUND AIMS. Intravenously applied mesenchymal stromal cells (MSC) are under investigation for numerous clinical indications. However, their capacity to activate shear stress-dependent adhesion to endothelial ligands is incompletely characterized. METHODS. Parallel-plate flow chambers were used to induce firm adhesion of MSC to integrin ligand vascular cell adhesion molecule (VCAM)-1. Human MSC were stimulated by chemokine (C-C motif) ligand (CCL15)/macrophage inflammatory protein (MIP-5), CCL19/MIP-3β chemokine (C-X-C motif) ligand (CXCL8)/interleukin (IL)-8, CXCL12/ stromal derived factor (SDF-1) or CXCL13/B lymphocyte chemoattractant (BLC). RESULTS. Two MSC isolates responded to three chemokines (either to CCL15, CCL19 and CXCL13, or to CCL19, CXCL12 and CXCL13), two isolates responded to two chemokines (to CCL15 and CCL19, or to CCL19 and CXCL13), and one isolate responded to CCL19 only. In contrast, all tested MSC isolates responded to selectins (P-selectin and E-selectin) or integrin ligand VCAM-1, as visualized by a velocity reduction under flow. CONCLUSIONS. Inter-individual variability of chemokine-induced integrin activation should be considered when evaluating human MSC as cellular therapies.  相似文献   

4.
Integrins are heterodimeric adhesion receptors that regulate immune cell adhesion. Integrin-dependent adhesion is controlled by multiple conformational states that include states with different affinity to the ligand, states with various degrees of molecule unbending, and others. Affinity change and molecule unbending play major roles in the regulation of cell adhesion. The relationship between different conformational states of the integrin is unclear. Here we have used conformationally sensitive antibodies and a small LDV-containing ligand to study the role of the inside-out signaling through formyl peptide receptor and CXCR4 in the regulation of α4β1 integrin conformation. We found that in the absence of ligand, activation by formyl peptide or SDF-1 did not result in a significant exposure of HUTS-21 epitope. Occupancy of the ligand binding pocket without cell activation was sufficient to induce epitope exposure. EC50 for HUTS-21 binding in the presence of LDV was identical to a previously reported ligand equilibrium dissociation constant at rest and after activation. Furthermore, the rate of HUTS-21 binding was also related to the VLA-4 activation state even at saturating ligand concentration. We propose that the unbending of the integrin molecule after guanine nucleotide-binding protein-coupled receptor-induced signaling accounts for the enhanced rate of HUTS-21 binding. Taken together, current results support the existence of multiple conformational states independently regulated by both inside-out signaling and ligand binding. Our data suggest that VLA-4 integrin hybrid domain movement does not depend on the affinity state of the ligand binding pocket.In the bloodstream circulating leukocytes respond to inflammatory signals by rapid changes of cell adhesive properties. These include cell tethering, rolling, arrest, and firm adhesion, all of which are well described steps of leukocyte recruitment to the sites of inflammation (1). Leukocyte arrest and firm adhesion are mediated exclusively by integrin receptors (2). At the same time integrins can also mediate tethering and rolling (3). These largely diverse cell adhesive properties are achieved by sophisticated conformational regulation; multiple states of the same molecule with different affinity for its ligand and different degrees of molecular unbending are attributed to various types of “cellular behavior.” It is proposed that the low affinity bent state translates into a non-adhesive resting cell, the low affinity unbent or extended state of integrin results in cell rolling, and the high affinity state promotes cell arrest (4, 5). However, the exact sequence of conformational events and the relationship between integrin conformational and functional activity remain key questions (6).Integrin conformation is regulated through G-protein-coupled receptors by a signaling pathway which is initiated by ligand binding to a GPCR,3 propagated inside the cell, and results in the binding of signaling proteins (such as talin and others) to cytoplasmic domains of integrin subunits. This binding leads to a separation of the integrin cytoplasmic domains and inside-out activation (6). Chemokines (chemotactic cytokines) as well as “classical” chemoattractants (such as formyl peptide) preferentially signal through heterotrimeric G-proteins coupled to the Gαi subunit (1). Activation by these ligands results in up-regulation of integrin affinity and/or conformational unbending (extension) of the integrin molecule. These conformational changes lead to cell arrest and firm adhesion. G-protein receptors coupled to Gαs-coupled subunit (adenylyl cyclase/cAMP signaling pathway) can actively down-regulate the affinity state of the ligand binding pocket without changing integrin conformational unbending. This provides an anti-adhesive signal and results in cell de-adhesion (7). Thus, interaction of multiple G-protein-coupled receptors on a single cell creates a plethora of conformational states. Understanding of the relationship between inside-out signaling through GPCRs and integrin conformational regulation will provide valuable insight into the dynamic regulation of cell adhesion.One technique to study conformational changes of integrins uses conformationally sensitive mAbs that bind to epitopes which are hidden in one conformation and exposed under certain conditions. Lately, it has been accepted that integrins exhibit two major conformations, resting and activated. A number of mAbs for “activated” integrins have been described, and the epitopes have been mapped. Together with mapping of these epitopes into three-dimensional structures of integrin (8), epitope exposure can provide helpful information about integrin conformational changes upon signaling. Moreover, because integrin inside-out activation through different signaling pathways can result in different activation states, the use of previously mapped mAbs can help dissect conformational changes upon activation.Although it is clear that inside-out activation results in a conformational rearrangement of the integrin molecule, the relationship between affinity state of the ligand binding pocket and overall molecule conformation is still debated. Currently, two contrasting models of integrin inside-out integrin activation are described. The “switchblade” model implies that an open head structure with swung-out β-hybrid domain represents the high (or at least intermediate) affinity state. A feature of this model is that integrin extension provides space for hybrid domain swing. The “deadbolt” model proposes that the movement of β-hybrid domain is not related to the inside-out signal. Ligand binding by itself can provide the energy for the hybrid domain swing out (for details, see Ref. 9 and references therein). Because these two models assign different roles to the hybrid domain motion, we evaluated the exposure of VLA-4 hybrid domain epitopes upon activation through two Gαi-coupled GPCRs (FPR and CXCR4) and ligand binding using the conformationally sensitive HUTS-21 mAb with an epitope mapped to the hybrid domain of β1-integrin (10).We found that contrary to previous reports, where these mAbs were reported to bind or used for the detection of activated integrin (1013), formyl peptide or SDF-1 treatment alone did not result in any significant exposure of HUTS-21 epitope despite the fact that the VLA-4 affinity up-regulation was detected in parallel on the same batch of cells. Quantitative analysis of mAb binding in real time on live cells suggests that for both the low (resting) and high affinity (induced by inside-out pathway) states, occupancy of the ligand binding pocket rather than inside-out signaling by itself causes the conformational change. Thus, these data support the idea that the hybrid domain movement, which results in the exposure of the mAb epitope, and the high affinity state of the binding pocket are regulated separately and independently of each other, a feature of the deadbolt model of inside-out activation.  相似文献   

5.
6.
We hypothesized that there are clinically relevant differences in eosinophil integrin expression and activation in patients with asthma. To evaluate this, surface densities and activation states of integrins on eosinophils in blood and bronchoalveolar lavage (BAL) of 19 asthmatic subjects were studied before and 48 h after segmental Ag challenge. At 48 h, there was increased expression of alpha(D) and the N29 epitope of activated beta(1) integrins on blood eosinophils and of alpha(M), beta(2), and the mAb24 epitope of activated beta(2) integrins on airway eosinophils. Changes correlated with the late-phase fall in forced expiratory volume in 1 s (FEV(1)) after whole-lung inhalation of the Ag that was subsequently used in segmental challenge and were greater in subjects defined as dual responders. Increased surface densities of alpha(M) and beta(2) and activation of beta(2) on airway eosinophils correlated with the concentration of IL-5 in BAL fluid. Activation of beta(1) and beta(2) on airway eosinophils correlated with eosinophil percentage in BAL. Thus, eosinophils respond to an allergic stimulus by activation of integrins in a sequence that likely promotes eosinophilic inflammation of the airway. Before challenge, beta(1) and beta(2) integrins of circulating eosinophils are in low-activation conformations and alpha(D)beta(2) surface expression is low. After Ag challenge, circulating eosinophils adopt a phenotype with activated beta(1) integrins and up-regulated alpha(D)beta(2), changes that are predicted to facilitate eosinophil arrest on VCAM-1 in bronchial vessels. Finally, eosinophils present in IL-5-rich airway fluid have a hyperadhesive phenotype associated with increased surface expression of alpha(M)beta(2) and activation of beta(2) integrins.  相似文献   

7.
Although much progress has been made in understanding the molecular mechanisms underlying agonist-induced "inside-out" activation of integrins, little is known about how basal levels of integrin function are maintained. This is particularly important for nonactivated eosinophils, where intermediate activation of alpha(4)beta(1) integrin supports recruitment to endothelial cells under flow conditions. Depletion of intracellular Ca(2+) and pharmacological inhibition of phospholipase C (but not other intracellular signaling molecules, including PI3K, ERK1/2, p38 MAPK, and tyrosine kinase activity) abrogated basal alpha(4) integrin activity in nonactivated eosinophils. Basal alpha(4) integrin activation was associated with activation of the small GTPase Rap1, a known regulator of agonist-induced integrin function. Basal Rap activation was dependent upon phospholipase C, but not intracellular Ca(2+). However, depletion of intracellular Ca(2+) in CD34(+) hematopoietic progenitor cells abolished RapV12-mediated induction of alpha(4) integrin activity. Thus, residual Rap activity or constitutively active Rap activity in Ca(2+)-depleted cells is not sufficient to induce alpha(4) integrin activation. These data suggest that activation of functional alpha(4) integrin activity in resting eosinophils is mediated by Rap1 provided that the intracellular-free Ca(2+) is at a normal homeostatic concentration.  相似文献   

8.
BACKGROUND: beta2 integrins mediate many aspects of the inflammatory and immune responses, including adhesion of leukocytes to the endothelium, complement-mediated phagocytosis in macrophages and neutrophils, and antigen-specific conjugate formation between cytotoxic T cells and their targets. A variety of inflammatory mediators, such as tumor necrosis factor-alpha (TNF-alpha), platelet-activating factor (PAF), and lipopolysaccharide (LPS) and other bacterial products induce the functional activation of beta2 integrins, but the signaling events that link membrane receptors to integrin activation are poorly understood. RESULTS: We report here that expression of the constitutively active small GTPases Rap1 or R-ras, but not Ras or RalA, is sufficient for functional activation of alphaMbeta2, the complement receptor 3 (CR3), in macrophages, allowing phagocytosis of C3bi-opsonized targets. Inhibition of Rap1, but not other Ras-like or Rho-like small GTPases, abolishes activation of alphaMbeta2 induced by phorbol esters, LPS, TNF-alpha or PAF. Finally, Rap1 activation specifically controls the binding properties of alphaMbeta2 towards its physiological ligand, namely the complement-opsonized phagocytic targets. CONCLUSIONS: In macrophages, the Rap1 GTPase regulates activation of the alphaMbeta2 integrin in response to a wide variety of inflammatory mediators.  相似文献   

9.
Chemokines coordinate many aspects of leukocyte migration. As chemoattractants they play an important role in the innate and acquired immune response. There is good experimental evidence that N-terminal truncation by secreted or cell surface proteases is a way of modulating chemokine action. The localization of CD26/dipeptidyl peptidase IV on cell surfaces and in biological fluids, its primary specificity, and the type of naturally occurring truncated chemokines are consistent with such a function. We determined the steady-state catalytic parameters for a relevant selection of chemokines (CCL3b, CCL5, CCL11, CCL22, CXCL9, CXCL10, CXCL11, and CXCL12) previously reported to alter their chemotactic behavior due to CD26/dipeptidyl peptidase IV-catalyzed truncation. The results reveal a striking selectivity for stromal cell-derived factor-1alpha (CXCL12) and macrophage-derived chemokine (CCL22). The kinetic parameters support the hypothesis that CD26/dipeptidyl peptidase IV contributes to the degradation of certain chemokines in vivo. The data not only provide insight into the selectivity of the enzyme for specific chemokines, but they also contribute to the general understanding of CD26/dipeptidyl peptidase IV secondary substrate specificity.  相似文献   

10.
Leukocyte arrest during cytokine-dependent inflammation in vivo   总被引:11,自引:0,他引:11  
Leukocyte rolling along the walls of inflamed venules precedes their adhesion during inflammation. Rolling leukocytes are thought to arrest by engaging beta2 integrins following cellular activation. In vitro studies suggest that chemoattractants may instantaneously activate and arrest rolling leukocytes. However, how leukocytes stop rolling and become adherent in inflamed venules in vivo has remained rather mysterious. In this paper we use a novel method of tracking individual leukocytes through the microcirculation to show that rolling neutrophils become progressively activated while rolling down the venular tree. On average, leukocytes in wild-type mice roll for 86 s (and cover 270 microm) before becoming adherent with an efficiency around 90%. These rolling leukocytes exhibit a gradual beta2 integrin-dependent decrease in rolling velocity that correlates with an increase in intracellular free calcium concentration before arrest. Similar tracking analyses in gene-targeted mice demonstrate that the arrest of rolling leukocytes is very rare when beta2 integrins are absent or blocked by a mAb. Arrest is approximately 50% less efficient in the absence of E-selectin. These data suggest a model of leukocyte recruitment in which beta2 integrins play a critical role in stabilizing leukocyte rolling during a protracted cellular activation period before arrest and firm adhesion.  相似文献   

11.
Chemokines presented on endothelial tissues instantaneously trigger LFA-1-mediated arrest on ICAM-1 via rapid inside-out and outside-in (ligand-driven) LFA-1 activation. The GTPase RhoA was previously implicated in CCL21-triggered LFA-1 affinity triggering in murine T lymphocytes and in LFA-1-dependent adhesion strengthening to ICAM-1 on Peyer's patch high endothelial venules stabilized over periods of at least 10 s. In this study, we show that a specific RhoA 23/40 effector region is vital for the initial LFA-1-dependent adhesions of lymphocytes on high endothelial venules lasting 1-3 s. Blocking the RhoA 23/40 region in human T lymphocytes in vitro also impaired the subsecond CXCL12-triggered LFA-1-mediated T cell arrest on ICAM-1 by eliminating the rapid induction of an extended LFA-1 conformational state. However, the inflammatory chemokine CXCL9 triggered robust LFA-1-mediated T lymphocyte adhesion to ICAM-1 at subsecond contacts independently of the RhoA 23/40 region. CXCL9 did not induce conformational changes in the LFA-1 ectodomain, suggesting that particular chemokines can activate LFA-1 through outside-in post ligand binding stabilization changes. Like CXCL9, the potent diacylglycerol-dependent protein kinase C agonist PMA was found to trigger LFA-1 adhesiveness to ICAM-1 also without inducing integrin extension or an a priori clustering and independently of the RhoA 23/40 region. Our results collectively suggest that the 23/40 region of RhoA regulates chemokine-induced inside-out LFA-1 extension before ligand binding, but is not required for a variety of chemokine and non-chemokine signals that rapidly strengthen LFA-1-ICAM-1 bonds without an a priori induction of high-affinity extended LFA-1 conformations.  相似文献   

12.
CXCL13/CXCR5 and CCL19/CCR7 play a quite important role in normal physiological conditions, but the functions of both chemokine/receptor pairs in pathophysiological events are not well-investigated. We have investigated expression and functions of CXCL13/CXCR5 and CCL19/CCR7 in CD23+CD5+ and CD23+CD5- B cells from cord blood (CB) and patients with B cell lineage acute or chronic lymphocytic leukemia (B-ALL or B-CLL). CXCR5 and CCR7 are selectively expressed on B-ALL, B-CLL, and CB CD23+CD5+ B cells at high frequency, but not on CD23+CD5- B cells. Although no significant chemotactic responsiveness was observed, CXCL13 and CCL19 cooperatively induce significant resistance to TNF-alpha-mediated apoptosis in B-ALL and B-CLL CD23+CD5+ B cells, but not in the cells from CB. B-ALL and B-CLL CD23+CD5+ B cells express elevated levels of paternally expressed gene 10 (PEG10). CXCL13 and CCL19 together significantly up-regulate PEG10 expression in the same cells. We have found that CXCL13 and CCL19 together by means of activation of CXCR5 and CCR7 up-regulate PEG10 expression and function, subsequently stabilize caspase-3 and caspase-8 in B-ALL and B-CLL CD23+CD5+ B cells, and further rescue the cells from TNF-alpha-mediated apoptosis. Therefore, we suggest that normal lymphocytes, especially naive B and T cells, use CXCL13/CXCR5 and CCL19/CCR7 for migration, homing, maturation, and cell homeostasis as well as secondary lymphoid tissues organogenesis. In addition, certain malignant cells take advantages of CXCL13/CXCR5 and CCL19/CCR7 for infiltration, resistance to apoptosis, and inappropriate proliferation.  相似文献   

13.
Activated chemokine receptor initiates inside-out signaling to transiently trigger activation of integrins, a process involving multiple components that have not been fully characterized. Here we report that GM-CSF/IL-3/IL-5 receptor common beta-chain-associated protein (CBAP) is required to optimize this inside-out signaling and activation of integrins. First, knockdown of CBAP expression in human Jurkat T cells caused attenuated CXC chemokine ligand-12 (CXCL12)-induced cell migration and integrin α4β1- and αLβ2-mediated cell adhesion in vitro, which could be rescued sufficiently upon expression of murine CBAP proteins. Freshly isolated CBAP-deficient primary T cells also exhibited diminution of chemotaxis toward CC chemokine ligand-21 (CCL21) and CXCL12, and these chemokines-induced T-cell adhesions in vitro. Adoptive transfer of isolated naive T cells demonstrated that CBAP deficiency significantly reduced lymph node homing ability in vivo. Finally, migration of T cell-receptor–activated T cells induced by inflammatory chemokines was also attenuated in CBAP-deficient cells. Further analyses revealed that CBAP constitutively associated with both integrin β1 and ZAP70 and that CBAP is required for chemokine-induced initial binding of the talin-Vav1 complex to integrin β1 and to facilitate subsequent ZAP70-mediated dissociation of the talin-Vav1 complex and Vav1 phosphorylation. Within such an integrin signaling complex, CBAP likely functions as an adaptor and ultimately leads to activation of both integrin α4β1 and Rac1. Taken together, our data suggest that CBAP indeed can function as a novel signaling component within the ZAP70/Vav1/talin complex and plays an important role in regulating chemokine-promoted T-cell trafficking.  相似文献   

14.
Chemokines are attractants and regulators of cell activation. Several CXC family chemokine members induce angiogenesis and promote tumor growth. In contrast, the only CC chemokine, reported to play a direct role in angiogenesis is monocyte-chemotactic protein-1. Here we report that another CC chemokine, eotaxin (also known as CCL11), also induced chemotaxis of human microvascular endothelial cells. CCL11-induced chemotactic responses were comparable with those induced by monocyte-chemotactic protein-1 (CCL2), but lower than those induced by stroma-derived factor-1alpha (CXCL12) and IL-8 (CXCL8). The chemotactic activity was consistent with the expression of CCR3, the receptor for CCL11, on human microvascular endothelial cells and was inhibited by mAbs to either human CCL11 or human CCR3. CCL11 also induced the formation of blood vessels in vivo as assessed by the chick chorioallantoic membrane and Matrigel plug assays. The angiogenic response induced by CCL11 was about one-half of that induced by basic fibroblast factor, and it was accompanied by an inflammatory infiltrate, which consisted predominantly of eosinophils. Because the rat aortic sprouting assay, which is not infiltrated by eosinophils, yielded a positive response to CCL11, this angiogenic response appears to be direct and is not mediated by eosinophil products. This suggests that CCL11 may contribute to angiogenesis in conditions characterized by increased CCL11 production and eosinophil infiltration such as Hodgkin's lymphoma, nasal polyposis, endometriosis, and allergic diathesis.  相似文献   

15.
CCR3 is responsible for tissue infiltration of eosinophils, basophils, mast cells, and Th2 cells, particularly in allergic diseases. In this context, CCR3 has emerged as a target for the treatment of allergic asthma. It is well known that the N-terminal domain of chemokines is crucial for receptor binding and, in particular, its activation. Based on this background, we investigated a number of N-terminally truncated or modified peptides derived from the chemokine CCL14/hemofiltrate CC chemokine-1 for their ability to modulate the activity of CCR3. Among 10 derivatives tested, n-nonanoyl (NNY)-CCL14[10-74] (NNY-CCL14) was the most potent at evoking the release of reactive oxygen species and inducing chemotaxis of human eosinophils. In contrast, NNY-CCL14 has inactivating properties on human eosinophils, because it is able to induce internalization of CCR3 and to desensitize CCR3-mediated intracellular calcium release and chemotaxis. In contrast to naturally occurring CCL11, NNY-CCL14 is resistant to degradation by CD26/dipeptidyl peptidase IV. Because inhibition of chemokine receptors through internalization is a reasonable therapeutic strategy being pursued for HIV infection, we tested a potential inhibitory effect of NNY-CCL14 in two murine models of allergic airway inflammation. In both OVA- and Aspergillus fumigatus-sensitized mice, i.v. treatment with NNY-CCL14 resulted in a significant reduction of eosinophils in the airways. Moreover, airway hyper-responsiveness was shown to be reduced by NNY-CCL14 in the OVA model. It therefore appears that an i.v. administered agonist internalizing and thereby inhibiting CCR3, such as NNY-CCL14, has the potential to alleviate CCR3-mediated diseases.  相似文献   

16.
We analyzed the modulation of human B cell chemotaxis by the gp120 proteins of various HIV-1 strains. X4 and X4/R5 gp120 inhibited B cell chemotaxis toward CXCL12, CCL20, and CCL21 by 40-50%, whereas R5 gp120 decreased inhibition by 20%. This gp120-induced inhibition was strictly dependent on CXCR4 or CCR5 and lipid rafts but not on CD4 or V(H)3-expressing BCR. Inhibition did not impair the expression or ligand-induced internalization of CCR6 and CCR7. Our data suggest that gp120/CXCR4 and gp120/CCR5 interactions lead to the cross-desensitization of CCR6 and CCR7 because gp120 does not bind CCR6 and CCR7. Unlike CXCL12, gp120 did not induce the activation of phospholipase Cbeta3 and PI3K downstream from CXCR4, whereas p38 MAPK activation was observed. Similar results were obtained if gp120-treated cells were triggered by CCL21 and CCL20. Our results are consistent with a blockade restricted to signaling pathways using phosphatidylinositol-4,5-bisphosphate as a substrate. X4 and X4/R5 gp120 induced the cleavage of CD62 ligand by a mechanism dependent on matrix metalloproteinase 1 and 3, CD4, CXCR4, Galpha(i), and p38 MAPK, whereas R5 gp120 did not. X4 and X4/R5 gp120 also induced the relocalization of cytoplasmic CD95 to the membrane and a 23% increase in CD95-mediated apoptosis. No such effects were observed with R5 gp120. The gp120-induced decrease in B cell chemotaxis and CD62 ligand expression, and increase in CD95-mediated B cell apoptosis probably have major deleterious effects on B cell responsiveness during HIV infection and in vaccination trials.  相似文献   

17.
Wong CK  Leung KM  Qiu HN  Chow JY  Choi AO  Lam CW 《PloS one》2012,7(1):e29815

Background

IL-31 is a pruritogenic cytokine, and IL-33 is an alarmin for damaging inflammation. They together relate to the pathogenesis of atopic dermatitis (AD). Eosinophil infiltration into the inner dermal compartment is a predominant pathological feature of AD. We herein investigated the in vitro inflammatory effects of IL-31 and IL-33 on the activation of human eosinophils and dermal fibroblasts.

Methodology/Principal Findings

Receptors, adhesion molecules and signaling molecules were assessed by Western blot or flow cytometry. Chemokines and cytokine were quantitated by multiplex assay. Functional IL-31 receptor component IL-31RA, OSMR-β and IL-33 receptor component ST2 were constitutively expressed on the surface of eosinophils. Co-culture of eosinophils and fibroblasts significantly induced pro-inflammatory cytokine IL-6 and AD-related chemokines CXCL1, CXCL10, CCL2 and CCL5. Such inductions were further enhanced with IL-31 and IL-33 stimulation. IL-31 and IL-33 could significantly provoke the release of CXCL8 from eosinophils and fibroblasts, respectively, which was further enhanced upon co-culture. In co-culture, eosinophils and fibroblasts were the main source for the release of CCL5, and IL-6, CXCL1, CXCL8, CXCL10 and CCL2, respectively. Direct interaction between eosinophils and fibroblasts was required for CXCL1, CXCL10, CXCL8 and CCL5 release. Cell surface expression of intercellular adhesion molecule-1 on eosinophils and fibroblasts was up-regulated in co-culture upon IL-31 and IL-33 stimulation. The interaction between eosinophils and fibroblasts under IL-31 and IL-33 stimulation differentially activated extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, nuclear factor-κB and phosphatidylinositol 3-kinase–Akt pathways. Using specific signaling molecule inhibitors, the differential induction of IL-31 and IL-33-mediated release of cytokines and chemokines such as IL-6 and CXCL8 from co-culture should be related to their distinct activation profile of intracellular signaling pathways.

Conclusions/Significance

The above findings suggest a crucial immunopathological role of IL-31 and IL-33 in AD through the activation of eosinophils-fibroblasts interaction via differential intracellular signaling mechanisms.  相似文献   

18.
Strong evidence suggests that neutrophils may play an active role in acute and chronic inflammatory disorders, such as rheumatoid arthritis and atherosclerosis. Given the role of pro-inflammatory cytokine TNF-alpha in these inflammatory processes, we planned the present study to investigate the effect of short term incubation with TNF-alpha on neutrophil migration to CCL3, a chemokine produced in inflammatory sites and normally devoid of neutrophil chemotactic properties. We found that TNF-alpha primed neutrophils for migration to CCL3 via CCR5. TNF-alpha-induced migration was a consequence of the TNF-alpha-induced up-regulation of integrin CD11b/CD18 (Mac-1) on neutrophil surface. Furthermore, TNF-alpha activity was found to be strictly dependent on the activation of ERK 1/2 p44, cooperating with the intracellular pathways involving Src kinases, PI3K/Akt, p38 MAPK, well known as activated in response to classical chemoattractants (CXCL8) or priming agents (GM-CSF). On the contrary, the effect of TNF-alpha on neutrophil migration to CCL3 was not dependent on JNK 1/2. In conclusion, the present report shows that TNF-alpha unveils a previously unknown capacity of neutrophils to migrate to CCL3 through the intervention of Mac-1. TNF-alpha regulates Mac-1 up-regulation through signalling pathways, involving various kinases, but not JNK 1/2. Although highly speculative, ERK 1/2 p44 may represent a selective target for the pharmacologic manipulation of neutrophil-mediated adverse activities in TNF-alpha-mediated inflammatory states.  相似文献   

19.
Liver-expressed chemokine (LEC)/CCL16 is a human CC chemokine that is constitutively expressed by the liver parenchymal cells and present in the normal plasma at high concentrations. Previous studies have shown that CCL16 is a low-affinity ligand for CCR1, CCR2, CCR5, and CCR8 and attracts monocytes and T cells. Recently, a novel histamine receptor termed type 4 (H4) has been identified and shown to be selectively expressed by eosinophils and mast cells. In this study, we demonstrated that CCL16 induced pertussis toxin-sensitive calcium mobilization and chemotaxis in murine L1.2 cells expressing H4 but not those expressing histamine receptor type 1 (H1) or type 2 (H2). CCL16 bound to H4 with a K(d) of 17 nM. By RT-PCR, human and mouse eosinophils express H4 but not H3. Accordingly, CCL16 induced efficient migratory responses in human and mouse eosinophils. Furthermore, the responses of human and mouse eosinophils to CCL16 were effectively suppressed by thioperamide, an antagonist for H3 and H4. Intravenous injection of CCL16 into mice induced a rapid mobilization of eosinophils from bone marrow to peripheral blood, which was also suppressed by thioperamide. Collectively, CCL16 is a novel functional ligand for H4 and may have a role in trafficking of eosinophils.  相似文献   

20.
Endothelial and platelet P-selectin (CD62P) and leukocyte integrin αMβ2 (CD11bCD18, Mac-1) are cell adhesion molecules essential for host defense and innate immunity. Upon inflammatory challenges, P-selectin binds to PSGL-1 (P-selectin glycoprotein ligand-1, CD162) to mediate neutrophil rolling, during which integrins become activated by extracellular stimuli for their firm adhesion in a G-protein coupled receptor (GPCR)-dependent mechanism. Here we show that cross-linking of PSGL-1 by dimeric or multimeric forms of platelet P-selectin, P-selectin receptor-globulin, anti-PSGL-1 mAb and its F(ab’)2 induced adhesion of human neutrophils to fibrinogen (Fg) and intercellular cell adhesion molecule-1 (ICAM-1, CD54) and triggered a moderate clustering of αMβ2, but monomeric forms of soluble P-selectin and anti-PSGL-1 Fab did not. Interestingly, P-selectin did not induce a detectable interleukine-8 (IL-8) secretion (<0.1 ng/ml) in 30 minutes, whereas a high concentration of IL-8 (>50 ng/ml) was required to increase neutrophil adhesion to Fg. P-selectin-induced neutrophil adhesion was significantly inhibited by PP2 (a Src kinase inhibitor), but not by Pertussis toxin (PTX; a GPCR inhibitor). Activated platelets also increased neutrophil binding to fibrinogen and triggered tyrosine phosphorylation of cellular proteins. Our results indicate that P-selectin-induced integrin activation (Src kinase-dependent) is distinct from that elicited by cytokines, chemokines, chemoattractants (GPCR-dependent), suggesting that these two signal transduction pathways may cooperate for maximal activation of leukocyte integrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号