首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse fibroblasts in which the mthfd2 gene encoding mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase (NMDMC) was previously inactivated were infected with retroviral expression constructs of dehydrogenase/cyclohydrolase cDNA. Cellular fractionation confirmed that the expressed proteins were properly targeted to the mitochondria. Expression of the NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase enzyme in mitochondria corrected the glycine auxotrophy of the null mutant cells. A construct in which the cyclohydrolase activity of NMDMC was inactivated by point mutation also rescued the glycine auxotrophy, although poorly. This suggests that the cyclohydrolase activity is also required to ensure optimal production of 10-formyltetrahydrofolate. The expression of the NADP-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase-synthetase in the mitochondria also reversed the glycine requirement of the null cells demonstrating that the use of the NAD cofactor is not absolutely essential to maintain the flux of one-carbon metabolites. All rescued cells demonstrated a decrease in the ratio of incorporation of exogenous formate to serine in standardized radiolabeling studies. This ratio, which is approximately 2.5 for nmdmc(-/-) cells and 0.3 for the wild type cells under the conditions used, is a qualitative indicator of the ability of the mitochondria of the cells to generate formate.  相似文献   

2.
Deletion of the gene encoding NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase (NMDMC) in mice was demonstrated previously to result in failure to establish definitive erythropoiesis in the developing liver. We examined the expression pattern of nmdmc to look for evidence that would support a tissue specific role for this activity. However, whole mount in situ hybridization revealed ubiquitous expression of nmdmc in the tissues of E9.5 and E10.5 embryos suggesting a broader role. Analysis of chimeras demonstrated that nmdmc-/- cells can survive in liver and other tissues of chimeras establishing that the null defect can be rescued by metabolites supplied by surrounding normal cells. Both the expression pattern and metabolite rescue support the proposal that mitochondrial NMDMC provides one-carbon units for purine synthesis during embryogenesis. The elevated expression of NMDMC in tumour cells, but not in surrounding normal cells, is predicted to result in significant differences in folate-mediated support for purine synthesis in the two cell types.  相似文献   

3.
4.
The Mthfd1 gene encoding the cytoplasmic methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase enzyme (DCS) was inactivated in embryonic stem cells. The null embryonic stem cells were used to generate spontaneously immortalized fibroblast cell lines that exhibit the expected purine auxotrophy. Elimination of these cytoplasmic activities allowed for the accurate assessment of similar activities encoded by other genes in these cells. A low level of 10-formyltetrahydrofolate synthetase was detected and was shown to be localized to mitochondria. However, NADP-dependent methylenetetrahydrofolate dehydrogenase activity was not detected. Northern blot analysis suggests that a recently identified mitochondrial DCS (Prasannan, P., Pike, S., Peng, K., Shane, B., and Appling, D. R. (2003) J. Biol. Chem. 278, 43178-43187) is responsible for the synthetase activity. The lack of NADP-dependent dehydrogenase activity suggests that this RNA may encode a monofunctional synthetase. Moreover, examination of the primary structure of this novel protein revealed mutations in key residues required for dehydrogenase and cyclohydrolase activities. This monofunctional synthetase completes the pathway for the production of formate from formyltetrahydrofolate in the mitochondria in our model of mammalian one-carbon folate metabolism in embryonic and transformed cells.  相似文献   

5.
In eukaryotes, folate metabolism is compartmentalized between the cytoplasm and organelles. The folate pathways of mitochondria are adapted to serve the metabolism of the organism. In yeast, mitochondria support cytoplasmic purine synthesis through the generation of formate. This pathway is important but not essential for survival, consistent with the flexibility of yeast metabolism. In plants, the mitochondrial pathways support photorespiration by generating serine from glycine. This pathway is essential under photosynthetic conditions and the enzyme expression varies with photosynthetic activity. In mammals, the expression of the mitochondrial enzymes varies in tissues and during development. In embryos, mitochondria supply formate and glycine for purine synthesis, a process essential for survival; in adult tissues, flux through mitochondria can favor serine production. The differences in the folate pathways of mitochondria depending on species, tissues and developmental stages, profoundly alter the nature of their metabolic contribution.  相似文献   

6.
The insect cell line derived from Spodoptera frugiperda (Sf9) does not express the activities of the trifunctional NADP-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase. The lack of synthetase activity was confirmed by the inability to incorporate radiolabeled formate into nucleotides. The cells express, instead, a Mg2+ and NAD-dependent bifunctional methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase with properties similar to the enzyme found in the mitochondria of transformed mammalian cells. In contrast, the enzyme in Sf9 cells is localized in the cytoplasm. Nutritional studies in defined medium with dialyzed serum demonstrated that the Sf9 cell does not required added purines or pyrimidines for growth. It is auxotrophic for cysteine and glycine; this latter requirement is probably due to the absence of mitochondrial serine hydroxymethyltransferase. Incorporation of labeled glycine and serine into DNA indicates that only serine is a source of one-carbon units. These results suggest that the mitochondria in Sf9 cells do not play a major role in folate-mediated metabolism.  相似文献   

7.
We present in vitro evidence for a novel intercompartmental pathway in which folate-mediated reactions in mitochondria generate one-carbon units for utilization in cytoplasmic processes. Rat liver mitochondria are shown to contain the enzymatic activities for catabolism of serine or sarcosine to produce formate. Intact mitochondria rapidly convert the 3-carbon of serine or the N-methyl group of sarcosine to formate, which exits the mitochondria. Labeled formate is incorporated into purine by a cytoplasmic purine synthesizing system only after activation to 10-formyl-THF via the ATP-dependent 10-formyl-THF synthetase reaction. In a coupled system where one-carbon donors are catabolized by mitochondria before addition to the cytoplasmic purine synthesizing system, incorporation into purine shows a marked dependence on ATP. These observations demonstrate that mitochondria can metabolize one-carbon donors via THF-dependent reactions to the level of formate which then exits mitochondria for utilization in the cytoplasm. The proposed pathway is discussed in relation to genetic evidence for its operation in vivo as well as compartmentation of folate coenzymes and their one-carbon units.  相似文献   

8.
Deficiency of the apoptosome component Apaf1 leads to accumulation of supernumerary brain cells in mouse embryos. We observed that neural precursor cells (NPCs) in Apaf1(-/-) embryos escape programmed cell death, proliferate and retain their potential to differentiate. To evaluate the circumstances of Apaf1(-/-) NPC survival and investigate their fate under neurodegenerative conditions, we established cell lines of embryonic origin (ETNA). We found that Apaf1(-/-) NPCs resist common apoptotic stimuli and neurodegenerative inducers such as amyloid-beta peptide (typical of Alzheimer's disease) and mutant G93A superoxide dismutase 1 (typical of familial amyotrophic lateral sclerosis). Similar results were obtained in Apaf1(-/-) primary cells. When death is prevented by Apaf1 deficiency, cytochrome c is released from mitochondria and rapidly degraded by the proteasome, but mitochondria remain intact. Under these conditions, neither activation by cleavage of initiator caspases nor release of alternative apoptotic inducers from mitochondria takes place. In addition, NPCs can still differentiate, as revealed by neurite outgrowth and expression of differentiation markers. Our findings imply that the mitochondrion/apoptosome pathway is the main route of proneural and neural cells to death and that its inhibition prevents them from dismantling in neurodegenerative conditions. Indeed, the ETNA cell model is ideally suited for exploring the potential of novel cell therapies for the treatment of human neurodegenerations.  相似文献   

9.
10.
1. Both normal cells and cells deficient in hypoxanthine-guanine phosphoribosyltransferase (HPRT) are able to produce adenine and guanine nucleotides from aminoimidazole carboxamide (AICA) or its ribonucleoside (AICAR), but not from formaminoimidazole carboxamide ribonucleoside (FAICAR). 2. The level of purine nucleotide production from AICA in HPRT- cells is at least equal to the production of purine nucleotides from hypoxanthine in normal cells. 3. The concentration of AICA or AICAR at which nucleotide production was half-maximal was between 30 and 100 microM in various cell lines. 4. Adenosine kinase is required to convert AICAR to its nucleotide; adenine phosphoribosyltransferase is required to convert AICA to its nucleotide. Cells lacking either of these enzymes are unable to produce purine nucleotides from the respective precursor. 5. Purine production from AICAR in HPRT- cells is not greatly increased by the addition of formate, folate or leucovorin.  相似文献   

11.
12.
Analysis of ocular retardation (or) and fidget (fi) genes expression in 18 day old embryos, 10 and 20 day old or/or C/C----+/+ c/c and fi/fi or/or C/C----+/+ +/+ c/c mice has shown that genes or and fi are active in developing retina and suppress cell proliferation. Structural defects of retina and decrease in the eye size in the chimaeras, compared to the normal embryos, were observed already in the presence of 13-16% of mutant cells. As the fraction of mutant cells increased, the degree of eye disturbances increased as well. In the fi/fi or/or----+/+ +/+ chimaeras structural defects of retina and decrease in the eye size are more pronounced than in the or/or----+/+ chimaeras, due to the synergetical effect of both mutant genes in the fi/fi or/or cell clones. In the ontogenesis of the or/or----+/+ chimaeras the development of the retinal photoreceptor layer is normalized due to the substitution of mutant cells for actively proliferating normal cells. No metabolic cooperation between the mutant and normal cells was observed in the developing retina of chimaeras.  相似文献   

13.
A mutant cell line was selected from wild type S49 lymphoblasts that expressed a novel high affinity purine base transport system not found in parental cells or any other mammalian cell line (Aronow, B., Toll, D., Patrick, J., Hollingsworth, P., McCartan, K., and Ullman, B. (1986) Mol. Cell. Biol. 6, 2957-2962). In order to determine whether this nucleobase transport system was bidirectional, mutant cell lines possessing this high affinity base transport capability were derived from a nucleoside transport-deficient derivative of an adenylosuccinate synthetase-deficient S49 cell line. The resulting progeny excreted significantly greater amounts of purine into the cell culture medium than parental cells. This purine was identified as hypoxanthine. These results demonstrate genetically that the high affinity purine base transport system can mediate both the influx and efflux of hypoxanthine.  相似文献   

14.
Alterations of inosinate branchpoint enzymes in cultured human lymphoblasts   总被引:2,自引:0,他引:2  
The specific activities of the three enzymes of the inosinate branchpoint are independently regulated when lymphoblasts are grown under various tissue culture conditions. In comparison to rapidly dividing cells, lymphoblasts at high cell density with no cellular division have decreased activity of the enzymes which commit inosinate to adenylate or guanylate, while cytoplasmic 5'-nucleotidase is relatively preserved. A linear relationship between inosinate dehydrogenase activity and growth rate (r = 0.92) exists in lymphoblasts with slowed growth rates. In contrast, in dividing cells adenylosuccinate synthetase and 5'-nucleotidase do not vary with growth rate. Adenylosuccinate synthetase and inosinate dehydrogenase activities appear to be related to the presence or rate of cellular division, as opposed to the presence or degree of neoplastic transformation. Lymphoblast lines with alterations of specific purine metabolic enzymes have characteristic alteration of the inosinate utilizing enzymes. Deficiencies of purine nucleoside phosphorylase or hypoxanthine phosphoribosyltransferase, abnormalities which render the cell unable to salvage purine effectively, are associated with depressed inosinate dehydrogenase activity. Insertion of the hypoxanthine phosphoribosyltransferase gene into hypoxanthine phosphoribosyltransferase-deficient cells normalizes inosinate dehydrogenase activity, while a hypoxanthine phosphoribosyltransferase-deficient mutant selected from a hypoxanthine phosphoribosyltransferase-containing line has depressed inosinate dehydrogenase activity. In contrast, overactivity of phosphoribosylpyrophosphate synthetase, with enhanced excretion of purines due to excessive production, is associated with elevated inosinate dehydrogenase activity. Inosinate dehydrogenase appears to be regulated according to the availability of purine nucleotides. Patients who overproduce uric acid and potentially have undescribed purine metabolic defects are now being screened for abnormalities in the inosinate branchpoint enzymes.  相似文献   

15.
The mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase (NMDMC) is believed to have evolved from a trifunctional NADP-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase-synthetase. It is unique in its absolute requirement for inorganic phosphate and magnesium ions to support dehydrogenase activity. To enable us to investigate the roles of these ions, a homology model of human NMDMC was constructed based on the structures of three homologous proteins. The model supports the hypothesis that the absolutely required Pi can bind in close proximity to the 2'-hydroxyl of NAD through interactions with Arg166 and Arg198. The characterization of mutants of Arg166, Asp190, and Arg198 show that Arg166 is primarily responsible for Pi binding, while Arg198 plays a secondary role, assisting in binding and properly orienting the ion in the cofactor binding site. Asp190 helps to properly position Arg166. Mutants of Asp133 suggest that the magnesium ion interacts with both Pi and the aspartate side chain and plays a role in positioning Pi and NAD. NMDMC uses Pi and magnesium to adapt an NADP binding site for NAD binding. This adaptation represents a novel variation of the classic Rossmann fold.  相似文献   

16.
Folate-mediated one-carbon metabolism is a metabolic network of interconnected pathways that is required for the de novo synthesis of three of the four DNA bases and the remethylation of homocysteine to methionine. Previous studies have indicated that the thymidylate synthesis and homocysteine remethylation pathways compete for a limiting pool of methylenetetrahydrofolate cofactors and that thymidylate biosynthesis is preserved in folate deficiency at the expense of homocysteine remethylation, but the mechanisms are unknown. Recently, it was shown that thymidylate synthesis occurs in the nucleus, whereas homocysteine remethylation occurs in the cytosol. In this study we demonstrate that methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), an enzyme that generates methylenetetrahydrofolate from formate, ATP, and NADPH, functions in the nucleus to support de novo thymidylate biosynthesis. MTHFD1 translocates to the nucleus in S-phase MCF-7 and HeLa cells. During folate deficiency mouse liver MTHFD1 levels are enriched in the nucleus >2-fold at the expense of levels in the cytosol. Furthermore, nuclear folate levels are resistant to folate depletion when total cellular folate levels are reduced by >50% in mouse liver. The enrichment of folate cofactors and MTHFD1 protein in the nucleus during folate deficiency in mouse liver and human cell lines accounts for previous metabolic studies that indicated 5,10-methylenetetrahydrofolate is preferentially directed toward de novo thymidylate biosynthesis at the expense of homocysteine remethylation during folate deficiency.  相似文献   

17.
Surveillance and repair of DNA damage are essential for maintaining the integrity of the genetic information that is needed for normal development. Several multienzyme pathways, including the excision repair of damaged or missing bases, carry out DNA repair in mammals. We determined the developmental role of the X-ray cross-complementing (Xrcc)-1 gene, which is central to base excision repair, by generating a targeted mutation in mice. Heterozygous matings produced Xrcc1-/- embryos at early developmental stages, but not Xrcc1-/- late-stage fetuses or pups. Histology showed that mutant (Xrcc1-/-) embryos arrested at embryonic day (E) 6.5 and by E7.5 were morphologically abnormal. The most severe abnormalities observed in mutant embryos were in embryonic tissues, which showed increased cell death in the epiblast and an altered morphology in the visceral embryonic endoderm. Extraembryonic tissues appeared relatively normal at E6.5-7.5. Even without exposure to DNA-damaging agents, mutant embryos showed increased levels of unrepaired DNA strand breaks in the egg cylinder compared with normal embryos. Xrcc1-/- cell lines derived from mutant embryos were hypersensitive to mutagen-induced DNA damage. Xrcc1 mutant embryos that were also made homozygous for a null mutation in Trp53 underwent developmental arrest after only slightly further development, thus revealing a Trp53-independent mechanism of embryo lethality. These results show that an intact base excision repair pathway is essential for normal early postimplantation mouse development and implicate an endogenous source of DNA damage in the lethal phenotype of embryos lacking this repair capacity.  相似文献   

18.
An enzyme activity not detected in normal cells is expressed in embryonic, undifferentiated, or transformed cells. Twenty-one established mammalian cell lines, both tumorigenic and nontumorigenic, were found to have an NAD-dependent methylenetetrahydrofolate dehydrogenase (Scrimgeour, K.G., and Huennekens, F.M. (1960) Biochem. Biophys. Res. Commun. 2, 230-233) in addition to the well-characterized NADP-specific activity. The NAD-dehydrogenase in cell extracts can be separated from the NADP activity by column chromatography. Normal adult tissues including brain, heart, skeletal muscle, liver, and kidney contain the NADP but not the NAD activity. Only normal tissues which contain differentiating cells such as bone marrow, thymus, spleen, and embryonic liver contain the NAD activity. The distribution of the NAD enzyme suggests that it could be useful as an oncodevelopmental marker. Its physiological role is unknown, but it is proposed that it promotes purine synthesis and perhaps contributes to the methionine dependence and rapid growth observed for many established lines.  相似文献   

19.
The cell homogenate and the soluble cell fraction of Wolinella succinogenes grown with formate and fumarate catalyzed the oxidation of benzyl viologen radical by methacrylate [apparent Km=0.23 mM, Vmax=1.0 U (mg cell protein) -1] or acrylate [apparent Km=0.50 mM, Vmax=0.77 U (mg cell protein) -1]. Crotonate did not serve as an oxidant. A mutant of W. succinogenes lacking the fccABC operon was unable to catalyze methacrylate or acrylate reduction. In contrast, the inactivation of fccC alone had no effect on these activities. Methacrylate reduction by benzyl viologen radical was not catalyzed by fumarate reductase isolated from the membrane of W. succinogenes. Cells grown with formate and fumarate did not catalyze methacrylate reduction by formate, and W. succinogenes did not grow with formate and methacrylate as catabolic substrates. The results suggest that the reduction of methacrylate or acrylate by benzyl viologen radical is most likely catalyzed either by the periplasmic flavoprotein FccA or by a complex consisting of FccA and the predicted c-type cytochrome FccB. The metabolic function of the fccABC operon remains unknown.  相似文献   

20.
Intramacrophage survival appears to be a pathogenic trait common to Salmonellae and definition of the metabolic requirements of Salmonella within macrophages might provide opportunities for novel therapeutic interventions. We show that loss of PurG function in Salmonella enterica serovar Typhimurium SL1344 leads to death of the bacterium in RAW264.7 cells, which was due to unavailability of purine nucleotides but not thiamine in the phagosome of RAW264.7 cells. Phagosomal escape of purG mutant restored growth, suggesting that the phagosomal environment, but not the cytosol, is toxic to Salmonella purine auxotrophs. NADPH oxidase inhibition restored the growth of purG mutant in RAW264.7 cells, implying that the Salmonella -containing vacuole acquires reactive oxygen species (ROS) that are lethal to purine auxotrophs. Under purine limiting conditions, purG mutant was unable to repair the damage caused by hydrogen peroxide or UV irradiation, suggesting that ROS-mediated DNA damage may have been responsible for the attenuated phenotype of purG mutant in RAW264.7 cells and in mice. These studies highlight the possibility of utilizing the Salmonella purine nucleotide biosynthetic pathway as a prospective therapeutic target and also underline the importance of metabolic pathways in assembling a comprehensive understanding of the host–pathogen interactions inside phagocytic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号