首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The evolution of sex determination has long fascinated biologists, as it has paramount consequences for the evolution of a multitude of traits, from sex allocation to speciation and extinction. Explaining the diversity of sex-determining systems found in vertebrates (genotypic or GSD and temperature-dependent or TSD) requires a comprehensive and integrative examination from both a functional and an evolutionary perspective. Particularly revealing is the examination of the gene network that regulates gonadogenesis. Here, I review some advances in this field and propose some additional hypotheses about the composition of the gene network underlying sexual development, the functional links among some of its elements and their evolution in turtles. I focus on several pending questions about: (1) What renders TSD systems thermo-sensitive? (2) Is there one developmentally conserved or multiple TSD mechanisms? (3) Have evolutionarily derived GSD species lost all ancestral thermal-sensitivity? New data are presented on embryonic expression of Dax1 (the dosage-sensitive sex-reversal adrenal hypoplasia congenital on the X chromosome gene in the turtles Chrysemys picta (TSD) and Apalone mutica (GSD). No differential Dax1 expression was detected in C. picta at any of the stages examined, consistent with reports on two other TSD turtles and alligators. Notably, significantly higher Dax1 expression was found at 30°C than at 25°C at stage 15 in A. mutica (GSD), likely caused by Wt1's identical expression pattern previously reported. Because Sf1 is an immediate downstream target of Dax1 and its expression is not affected by temperature, it is proposed that Sf1 renders Dax1's differential signal ineffective to induce biased sex ratios in A. mutica, as previously proposed for Wt1's thermosensitive expression. Thus, it is hypothesized that Sf1 plays a major role in the lack of response of sex ratio to temperature of A. mutica, and may function as a sex-determining gene in this GSD species. These and previous data permit formulating several mechanistic hypotheses: (1) the postulation of Wt1 as a candidate thermal master switch alone, or in combination with Sf1, in the TSD turtle C. picta; (2) the proposition of Sf1 as a sex-determining gene in the GSD turtle A. mutica; and (3) the hypothesis that differing patterns of gene expression among TSD taxa reflect multiple traits from a developmental perspective. Moreover, the recent finding of relic differential Wt1 expression in A. mutica and the results for Dax1 in this species provide empirical evidence that GSD taxa can harbor thermal sensitivity at the level of gene expression, potentially co-optable during TSD evolution.  相似文献   

2.
The evolution of sex determination remains one of the most fascinating enigmas in biology. Transitions between genotypic sex determination (GSD) and temperature‐dependent sex determination (TSD) have occurred multiple times during vertebrate evolution, however, the molecular basis and consequences of these transitions in closely related taxa remain unresolved. Here I address a critical question: Do species with GSD derived from ancestors possessing TSD retain any ancestral thermal sensitivity in the developmental pathways underlying gonadal differentiation? Results from an expression study of a gene involved in early gonadogenesis in GSD (Apalone mutica) and TSD (Chrysemys picta) turtles, support the hypothesis that Wt1 in A. mutica displays such a relic thermal sensitivity. This retention is likely enabled by Sf1, a gene immediately downstream from Wt1 whose expression is independent of temperature in this species. My results constitute the first empirical evidence of a GSD vertebrate exhibiting thermal sensitivity in the expression of a gene regulating gonadogenesis. This novel finding reveals an undocumented source of raw material for future evolutionary change that may exist in other GSD taxa, and one that enhances the evolutionary potential of the gene networks underlying sexual differentiation and contributes to the astonishing ability of sex‐determining mechanisms.  相似文献   

3.
4.
Although the role of aromatase in many estrogen-dependent reproductive and metabolic functions is well documented in vertebrates, its involvement in the ovarian development of species exhibiting temperature-dependent sex determination (TSD) is incompletely understood. This is partly due to the conflicting temporal and spatial pattern of aromatase expression and activity across taxa. To help resolve this ongoing debate, we compared for the first time the embryological ontogeny of aromatase expression in turtles possessing genotypic sex determination (GSD) (Apalone mutica) and TSD (Chrysemys picta) incubated under identical conditions. As anticipated, we found no significant thermal differences in aromatase expression at any stage examined (prior to until the end of the thermosensitive period) in A. mutica. Surprisingly, the same was true for C. picta. When placed in a phylogenetic context, our results suggest that aromatase expression is evolutionarily plastic with respect to sex determination in reptiles, and that differences between reptilian TSD and GSD are not aromatase-driven. Further research across TSD and GSD species is warranted to fully decipher the evolution of functional differences among sex-determining mechanisms.  相似文献   

5.
Vertebrate sex‐determining mechanisms (SDMs) are triggered by the genotype (GSD), by temperature (TSD), or occasionally, by both. The causes and consequences of SDM diversity remain enigmatic. Theory predicts SDM effects on species diversification, and life‐span effects on SDM evolutionary turnover. Yet, evidence is conflicting in clades with labile SDMs, such as reptiles. Here, we investigate whether SDM is associated with diversification in turtles and lizards, and whether alterative factors, such as lifespan's effect on transition rates, could explain the relative prevalence of SDMs in turtles and lizards (including and excluding snakes). We assembled a comprehensive dataset of SDM states for squamates and turtles and leveraged large phylogenies for these two groups. We found no evidence that SDMs affect turtle, squamate, or lizard diversification. However, SDM transition rates differ between groups. In lizards TSD‐to‐GSD surpass GSD‐to‐TSD transitions, explaining the predominance of GSD lizards in nature. SDM transitions are fewer in turtles and the rates are similar to each other (TSD‐to‐GSD equals GSD‐to‐TSD), which, coupled with TSD ancestry, could explain TSD's predominance in turtles. These contrasting patterns can be explained by differences in life history. Namely, our data support the notion that in general, shorter lizard lifespan renders TSD detrimental favoring GSD evolution in squamates, whereas turtle longevity permits TSD retention. Thus, based on the macro‐evolutionary evidence we uncovered, we hypothesize that turtles and lizards followed different evolutionary trajectories with respect to SDM, likely mediated by differences in lifespan. Combined, our findings revealed a complex evolutionary interplay between SDMs and life histories that warrants further research that should make use of expanded datasets on unexamined taxa to enable more conclusive analyses.  相似文献   

6.
7.
At present, most turtles, all crocodilians, and several lizards are known to have temperature-dependent sex determination (TSD). Due to the dependence of sex determination on incubation temperature, the long-term survival of TSD species may be jeopardized by global climate changes. The current study was designed to assess the degree to which this concern is justified by examining nest-site selection in two species of Pattern II TSD geckos (Eublepharis macularius and Hemitheconyx caudicinctus) and comparing these preferences with those of a species with genotypic sex determination (GSD) (Coleonyx mitratus). Temperature preferences for nest sites were found to be both species-specific and female-specific. While H. caudicinctus females selected a mean nest-site temperature (32.4°) very close to the upper pivotal temperature (32°C) for the species, E. macularius females selected a mean nest-site temperature (28.7°C) well below this species' lower pivotal temperature (30.5°C). Thus, the resultant sex ratios are expected to differ between these two TSD species. Additionally, nest-site temperatures for the GSD species were significantly more variable (SE=+0.37) than were temperatures for either of the TSD species (E. macularius SE=±0.10; H. caudicinctus SE =+ 0.17), diereby further demonstrating temperature preferences within the TSD species.  相似文献   

8.
Sex-determining mechanisms in reptiles can be divided into two convenient classifications: genotypic (GSD) and environmental (ESD). While a number of types of GSD have been identified in a wide variety of reptilian taxa, the expression of ESD in the form of temperature-dependent sex determination (TSD) in three of the five major reptilian lineages has drawn considerable attention to this area of research. Increasing interest in sex-determining mechanisms in reptiles has resulted in many data, but much of this information is scattered throughout the literature and consequently difficult to interpret. It is known, however, that distinct sex chromosomes are absent in the tuatara and crocodilians, rare in amphisbaenians (worm lizards) and turtles, and common in lizards and snakes (but less than 20% of all species of living reptiles have been karyotyped). With less than 2 percent of all reptilian species examined, TSD apparently is absent in the tuatara, amphisbaenians and snakes; rare in lizards, frequent in turtles, and ubiquitous in crocodilians. Despite considerable inter- and intraspecific variation in the threshold temperature (temperature producing a 1:1 sex ratio) of gonadal sex determination, this variation cannot confidently be assigned a genetic basis owing to uncontrolled environmental factors or to differences in experimental protocol among studies. Laboratory studies have identified the critical period of development during which gonadal sex determination occurs for at least a dozen species. There are striking similarities in this period among the major taxa with TSD. Examination of TSD in the field indicates that sex ratios of hatchlings are affected by location of the nests, because some nests produce both sexes whereas the majority produce only one sex. Still, more information is needed on how TSD operates under natural conditions in order to fully understand its ecological and conservation implications. TSD may be the ancestral sex-determining condition in reptiles, but this result remains tentative. Physiological investigations of TSD have clarified the roles of steroid hormones, various enzymes, and H-Y antigen in sexual differentiation, whereas molecular studies have identified several plausible candidates for sex-determining genes in species with TSD. This area of research promises to elucidate the mechanism of TSD in reptiles and will have obvious implications for understanding the basis of sex determination in other vertebrates. Experimental and comparative investigations of the potential adaptive significance of TSD appear equally promising, although much work remains to be performed. The distribution of TSD within and among the major reptilian lineages may be related to the life span of individuals of a species and to the biogeography of these species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Temperature‐dependent sex determination (TSD) is the predominant form of environmental sex determination (ESD) in reptiles, but the adaptive significance of TSD in this group remains unclear. Additionally, the viability of species with TSD may be compromised as climate gets warmer. We simulated population responses in a turtle with TSD to increasing nest temperatures and compared the results to those of a virtual population with genotypic sex determination (GSD) and fixed sex ratios. Then, we assessed the effectiveness of TSD as a mechanism to maintain populations under climate change scenarios. TSD populations were more resilient to increased nest temperatures and mitigated the negative effects of high temperatures by increasing production of female offspring and therefore, future fecundity. That buffered the negative effect of temperature on the population growth. TSD provides an evolutionary advantage to sea turtles. However, this mechanism was only effective over a range of temperatures and will become inefficient as temperatures rise to levels projected by current climate change models. Projected global warming threatens survival of sea turtles, and the IPCC high gas concentration scenario may result in extirpation of the studied population in 50 years.  相似文献   

10.
Sex determination and differentiation in reptiles is complex. Temperature-dependent sex determination (TSD), genetic sex determination (GSD) and the interaction of both environmental and genetic cues (sex reversal) can drive the development of sexual phenotypes. The jacky dragon (Amphibolurus muricatus) is an attractive model species for the study of gene–environment interactions because it displays a form of Type II TSD, where female-biased sex ratios are observed at extreme incubation temperatures and approximately 50 : 50 sex ratios occur at intermediate temperatures. This response to temperature has been proposed to occur due to underlying sex determining loci, the influence of which is overridden at extreme temperatures. Thus, sex reversal at extreme temperatures is predicted to produce the female-biased sex ratios observed in A. muricatus. The occurrence of ovotestes during development is a cellular marker of temperature sex reversal in a closely related species Pogona vitticeps. Here, we present the first developmental data for A. muricatus, and show that ovotestes occur at frequencies consistent with a mode of sex determination that is intermediate between GSD and TSD. This is the first evidence suggestive of underlying unidentified sex determining loci in a species that has long been used as a model for TSD.  相似文献   

11.
Under temperature-dependent sex determination (TSD), temperatures experienced by embryos during development determine the sex of the offspring. Consequently, populations of organisms with TSD have the potential to be strongly impacted by climatic warming that could bias offspring sex ratio, a fundamental demographic parameter involved in population dynamics. Moreover, many taxa with TSD are imperiled, so research on this phenomenon, particularly long-term field study, has assumed great urgency. Recently, turtles with TSD have joined the diverse list of taxa that have demonstrated population-level changes in breeding phenology in response to recent climate change. This raises the possibility that any adverse impacts of climate change on populations may be alleviated by individual plasticity in nesting phenology. Here, we examine data from a long-term study on a population of painted turtles (Chrysemys picta) to determine whether changes in phenology are due to individual plasticity and whether individual plasticity in the timing of nesting has the capacity to offset the sex ratio effects of a rise in climatic temperature. We find that individual females show plasticity in the date of first nesting each year, and that this plasticity depends on the climate from the previous winter. First nesting date is not repeatable within individuals, suggesting that it would not respond to selection. Sex ratios of hatchlings within a nest declined nonsignificantly over the nesting season. However, small increases in summer temperature had a much stronger effect on nest sex ratios than did laying nests earlier in the season. For this and other reasons, it seems unlikely that individual plasticity in the timing of nesting will offset the effects of climate change on sex ratios in this population, and we hypothesize that this conclusion applies to other populations with TSD.  相似文献   

12.
Most turtle species possess temperature-dependent sex determination (TSD), but genotypic sex determination (GSD) has evolved multiple times independently from the TSD ancestral condition. GSD in animals typically involves sex chromosomes, yet the sex chromosome system of only 9 out of 18 known GSD turtles has been characterized. Here, we combine comparative genome hybridization (CGH) and BAC clone fluorescent in situ hybridization (BAC FISH) to identify a macro-chromosome XX/XY system in the GSD wood turtle Glyptemys insculpta (GIN), the youngest known sex chromosomes in chelonians (8–20 My old). Comparative analyses show that GIN-X/Y is homologous to chromosome 4 of Chrysemys picta (CPI) painted turtles, chromosome 5 of Gallus gallus chicken, and thus to the X/Y sex chromosomes of Siebenrockiella crassicollis black marsh turtles. We tentatively assign the gene content of the mapped BACs from CPI chromosome 4 (CPI-4) to GIN-X/Y. Chromosomal rearrangements were detected in G. insculpta sex chromosome pair that co-localize with the male-specific region of GIN-Y and encompass a gene involved in sexual development (Wt1—a putative master gene in TSD turtles). Such inversions may have mediated the divergence of G. insculpta sex chromosome pair and facilitated GSD evolution in this turtle. Our results illuminate the structure, origin, and evolution of sex chromosomes in G. insculpta and reveal the first case of convergent co-option of an autosomal pair as sex chromosomes within chelonians.  相似文献   

13.
It is hypothesized on the basis of sex determination theory that species exhibiting genetic sex determination (GSD) may undergo sexual differentiation earlier in development than species with environmental sex determination (ESD). Most turtle species exhibit a form of ESD known as temperature-dependent sex determination (TSD), and in such species the chronology of sex differentiation is well studied. Apalone spinifera is a species of softshell turtle (Trionychidae) that exhibits GSD. We studied sexual differentiation in this species in order to facilitate comparison to TSD species. Eggs were incubated at two different temperatures and embryos were harvested at various stages of mid to late development. Gonad length was measured with image analysis software, then prepared histologically. Indifferent gonads have differentiated in stage 19 embryos. Histological details of gonadogenesis follow the same pattern as described for other reptiles. Regression of the male paramesonephric duct closely follows testicular differentiation. Gonad lengths are longer at the warmer incubation temperature, and ovaries are generally longer than testes at each stage and for each temperature. Although sexual differentiation takes place at about the same stage as in other turtles with TSD (18-20), in A. spinifera this differentiation is irreversible at this stage, while in some of the TSD species sex is reversible until about stage 22. This immutable, definitive sexual differentiation may support the hypothesis of an accelerated chronology of sex differentiation for this species. We also note that sexual dichromatism at hatching is known in this species and may provide additional evidence of early differentiation. J. Exp. Zool. 290:190-200, 2001.  相似文献   

14.
Selection is expected to maintain primary sex ratios at an evolutionary equilibrium. In organisms with temperature-dependent sex determination (TSD), targets of sex-ratio selection include the thermal sensitivity of the sex-determining pathway (hereafter, sex determination threshold) and nest-site choice. However, offspring sex may be canalized for nests located in thermally extreme environments; thus, genetic variance for the sex determination threshold is not expressed and is invisible to direct selection. The concept of 'effective heritability' accounts for this dependence and provides a more realistic prediction of the expected evolutionary response to selection in the wild. Past estimates of effective heritability of the sex determination threshold, which were derived from laboratory data, suggested that the potential for the sex determination threshold to evolve in the wild was extremely low. We re-evaluated original estimates of this parameter by analysing field-collected measures of nest temperatures, vegetation cover and clutch sex ratios from nests in a population of painted turtles (Chrysemys picta). We coupled these data with measurements of broad-sense heritability of the sex determination threshold in C. picta, using an experiment that splits clutches of eggs between a constant temperature (i.e. typical laboratory incubation) and a daily fluctuating temperature (i.e. similar to natural nests) with the same mean. We found that (i) the effective heritability of the sex determination threshold appears to have been historically underestimated and the effective heritability of nest-site choice has been overestimated and (ii) significant family-by-incubation treatment interaction exists for sex for C. picta between constant- and fluctuating-temperature regimes. Our results suggest that the thermal sensitivity of the sex-determining pathway may play a larger, more complex role in the microevolution of TSD than traditionally thought.  相似文献   

15.
Although sex determination starts in the gonads, this may not be the case for species with temperature sex determination (TSD). Since temperature affects the whole embryo, extragonadal thermosensitive cells may produce factors that induce gonadal sex determination as a secondary event. To establish if gonads of a species with TSD respond directly to temperature, pairs of gonads were cultured, one at female-promoting temperature (FPT) and the contralateral at male-promoting temperature (MPT). Histological and immunohistochemical detection of SOX9 revealed that the response to temperature of isolated gonads was similar to that of the gonads of whole embryos. While gonads cultured at MPT maintained SOX9 expression, it was downregulated in gonads at FPT. Downregulation of SOX9 took longer in gonads cultured at stage 23 than in gonads cultured at stage 24, suggesting that a developmental clock was already established at the onset of culture. To find out if sex commitment occurs in vitro, gonads were switched from FPT to MPT at different days. Results showed that the ovarian pathway was established after 4 days of culture. The present demonstration that gonads have an autonomous temperature detector that regulates SOX9 expression provides a useful starting point from which the molecular pathways underlying TSD can be elucidated.  相似文献   

16.

Background

In gonochoristic vertebrates, sex determination mechanisms can be classified as genotypic (GSD) or temperature-dependent (TSD). Some cases of TSD in fish have been questioned, but the prevalent view is that TSD is very common in this group of animals, with three different response patterns to temperature.

Methodology/Principal Findings

We analyzed field and laboratory data for the 59 fish species where TSD has been explicitly or implicitly claimed so far. For each species, we compiled data on the presence or absence of sex chromosomes and determined if the sex ratio response was obtained within temperatures that the species experiences in the wild. If so, we studied whether this response was statistically significant. We found evidence that many cases of observed sex ratio shifts in response to temperature reveal thermal alterations of an otherwise predominately GSD mechanism rather than the presence of TSD. We also show that in those fish species that actually have TSD, sex ratio response to increasing temperatures invariably results in highly male-biased sex ratios, and that even small changes of just 1–2°C can significantly alter the sex ratio from 1∶1 (males∶females) up to 3∶1 in both freshwater and marine species.

Conclusions/Significance

We demonstrate that TSD in fish is far less widespread than currently believed, suggesting that TSD is clearly the exception in fish sex determination. Further, species with TSD exhibit only one general sex ratio response pattern to temperature. However, the viability of some fish populations with TSD can be compromised through alterations in their sex ratios as a response to temperature fluctuations of the magnitude predicted by climate change.  相似文献   

17.
Theoretical models identify maternal behavior as critical for the maintenance and evolution of sex ratios in organisms with environmental sex determination (ESD). Maternal choice of nest site is generally thought to respond more rapidly to sex ratio selection than environmental sensitivity of offspring sex (threshold temperatures) in reptiles with temperature-dependent sex determination (TSD, a form of ESD). However, knowledge of the evolutionary potential for either of these traits in a field setting is limited. I developed a simulation model using local climate data and observed levels of phenotypic variation for nest-site choice and threshold temperatures in painted turtles (Chrysemys picta) with TSD. Both nest-site choice and threshold temperatures, and hence sex ratios, evolved slowly to simulated climate change scenarios. In contrast to expectations from previous models, nest-site choice evolved more slowly than threshold temperatures because of large climatic effects on nest temperatures and indirect selection on maternally expressed traits. A variant of the model, assuming inheritance of nest-site choice through natal imprinting, demonstrated that natal imprinting inhibited adaptive responses in female nest-site choice to climate change. These results predict that females have relatively low potential to adaptively adjust sex ratios through nest-site choice.  相似文献   

18.
Temperature sex-reversal in amphibians and reptiles   总被引:5,自引:0,他引:5  
The sexual differentiation of gonads has been shown to be temperature-sensitive in many species of amphibians and reptiles. In two close species of salamanders, Pleurodeles poireti and P. waltl, both displaying a ZZ/ZW mechanism of genotypic sex determination (GSD), the rearing of larvae at high temperatures (30 degrees-32 degrees C) produces opposite effects: ZZ genotypic males of Pleurodeles poireti become phenotypic females whereas ZW genotypic females of P. waltl become phenotypic males. Sex-reversal of these individuals has been irrefutably demonstrated through genetic, cytogenetic, enzymatic and immunological studies. In many turtles, both sexes differentiate only within a critical range of temperature: above this range, all the individuals become phenotypic females, whereas below it, 100% become phenotypic males. The inverse occurs in some crocodiles and lizards. In many species of these three orders of reptiles, females are obtained at low and high temperatures, and males at intermediate ones. Preliminary studies in turtles (Emys orbicularis) indicate that within the critical range of temperature, sexual phenotype conforms with GSD, but that above and below this range, GSD is overriden. Temperature shifts during larval development in salamanders and during embryonic development in reptiles allowed the determination of thermosensitive stages for gonadal differentiation. Estrogens synthesized in the gonads at these stages appear to be involved in their sexual differentiation, higher levels being produced at feminizing temperatures than at masculinizing ones. The phenomenon of temperature sensitivity of gonadal differentiation occurs in species showing a very early stage in the evolution of sex chromosomes. Its adaptive value, chiefly in reptiles, remains an open question.  相似文献   

19.
The adaptive significance of temperature-dependent sex determination (TSD) in reptiles remains unknown decades after TSD was first identified in this group. Concurrently, there is growing concern about the effect that rising temperatures may have on species with TSD, potentially producing extremely biased sex ratios or offspring of only one sex. The current state-of the-art in TSD research on sea turtles is reviewed here and, against current paradigm, it is proposed that TSD provides an advantage under warming climates. By means of coadaptation between early survival and sex ratios, sea turtles are able to maintain populations. When offspring survival declines at high temperatures, the sex that increases future fecundity (females) is produced, increasing resilience to climate warming. TSD could have helped reptiles to survive mass extinctions in the past via this model. Flaws in research on sex determination in sea turtles are also identified and it is suggested that the development of new techniques will revolutionize the field.  相似文献   

20.
Sex‐determining mechanisms are broadly categorised as being based on either genetic or environmental factors. Vertebrate sex determination exhibits remarkable diversity but displays distinct phylogenetic patterns. While all eutherian mammals possess XY male heterogamety and female heterogamety (ZW) is ubiquitous in birds, poikilothermic vertebrates (fish, amphibians and reptiles) exhibit multiple genetic sex‐determination (GSD) systems as well as environmental sex determination (ESD). Temperature is the factor controlling ESD in reptiles and temperature‐dependent sex determination (TSD) in reptiles has become a focal point in the study of this phenomenon. Current patterns of climate change may cause detrimental skews in the population sex ratios of reptiles exhibiting TSD. Understanding the patterns of variation, both within and among populations and linking such patterns with the selection processes they are associated with, is the central challenge of research aimed at predicting the capacity of populations to adapt to novel conditions. Here we present a conceptual model that innovates by defining an individual reaction norm for sex determination as a range of incubation temperatures. By deconstructing individual reaction norms for TSD and revealing their underlying interacting elements, we offer a conceptual solution that explains how variation among individual reaction norms can be inferred from the pattern of population reaction norms. The model also links environmental variation with the different patterns of TSD and describes the processes from which they may arise. Specific climate scenarios are singled out as eco‐evolutionary traps that may lead to demographic extinction or a transition to either male or female heterogametic GSD. We describe how the conceptual principles can be applied to interpret TSD data and to explain the adaptive capacity of TSD to climate change as well as its limits and the potential applications for conservation and management programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号