首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The apolipoprotein C-II gene from a patient with a deficiency of apoC-II was cloned and sequenced. A single base deletion of a guanosine at position 2943 in exon three of the gene of the proband was identified by sequence analysis. This point mutation results in a shift of the reading frame and introduces a premature termination codon (TGA) at a position in the gene immediately following amino acid 17 of the mature C-II apolipoprotein. This single base deletion results in the loss of a normally occurring HphI restriction enzyme site in the apoC-II gene. Amplification of the mutant DNA sequence by the polymerase chain reaction and restriction enzyme digestion with HphI established that the patient is a homozygote for the base deletion. No apoC-II was detectable in the patient's plasma by two-dimensional gel electrophoresis and immunoblotting. We propose that the guanosine deletion is the primary genetic defect in this kindred leading to premature termination and formation of a nonfunctional truncated 17-amino acid C-II apolipoprotein which ultimately results in apoC-II deficiency.  相似文献   

2.
Analysis of the apoC-II gene in apoC-II deficient patients   总被引:7,自引:0,他引:7  
Apolipoprotein C-II (apoC-II), a 79 amino acid protein, is a cofactor for lipoprotein lipase, the enzyme which catalyzes the lipolysis of triglycerides on plasma chylomicrons and VLDL. Patients with apoC-II deficiency have marked elevations in plasma triglycerides, chylomicrons, VLDL, and a type I hyperlipoproteinemia. In order to evaluate the molecular defect in apoC-II deficiency, genomic DNA was analyzed using Southern Blot from 2 independent apoC-II deficient patients and compared to normal controls. Restriction digests of genomic DNA were performed with five different enzymes and the restriction fragments analyzed utilizing a 354 base pair nick-translated apoC-II probe for hybridization following Southern blotting. The restriction fragments varied from 0.8 to 21 Kb, and the pattern with normal DNA was identical to that of the two apoC-II deficient patients. The present study reveals that the apoC-II gene is present in patients with apoC-II deficiency. In addition, no insertional or deletional polymorphism was detected in the apoC-II gene of apoC-II deficient patients.  相似文献   

3.
Apolipoprotein (apo) C-II deficiency is characterized by elevated plasma triglycerides, chylomicrons, and very low density lipoproteins, as well as reduced levels of low density and high density lipoproteins. A subject with apoC-II deficiency has been identified with an apoC-II plasma level of less than 0.05 mg/dl. The plasma apoC-II in the proband was immunochemically similar to apoC-II in normal subjects when analyzed by Ouchterlony immunodiffusion, however the apoC-II had an apparently lower molecular weight and higher pI when analyzed by two-dimensional gel electrophoresis. This apoC-II variant, designated apoC-IIBethesda, was not affected by neuraminidase treatment or reduction. Two-dimensional gel electrophoresis of the plasma of the mother of the proband revealed both normal apoC-II and apoC-IIBethesda, whereas analysis of the father and two siblings revealed apoC-II of normal electrophoretic mobility. These results were interpreted as indicating that the proband was a compound heterozygote with one allele for apoC-IIBethesda inherited from the mother and an allele coding for an abnormality which results in the virtual or complete absence of plasma apoC-II from the father. This proband represents the first example of a compound heterozygote for an apolipoprotein defect associated with a dyslipoproteinemia.  相似文献   

4.
We have identified the genetic defect that leads to a deficiency of apoC-II in the proband from the Paris kindred. Analysis of the apoC-IIParis DNA by Southern blot hybridization revealed no major gene rearrangements, but sequencing of polymerase chain reaction-amplified apoC-IIParis DNA revealed an A to G transition that changed the initiation AUG (methionine) codon to GUG (valine). Potential initiation of translation at the closest inframe methionine codon eliminates the entire signal peptide and the first 8 amino-terminal residues of apoC-II which would prevent apoC-II secretion into plasma. In agreement with this, no apoC-II was detected in the patient's plasma by radioimmunoassay or by two-dimensional gel electrophoresis and immunoblotting. Direct sequencing of amplified patient DNA from 12 different polymerase chain reaction samples demonstrated the presence of the A to G substitution in all, indicating that the proband is a homozygote for the defect. We propose that in the apoC-IIParis gene, a mutation in the initiation methionine codon prevents the normal initiation of apolipoprotein synthesis and leads to a deficiency of apoC-II. This initiation methionine mutation represents a new type of molecular defect that can result in Type I hyperlipoproteinemia.  相似文献   

5.
The chemical mismatch method has been utilized to screen for mutations in the apoC-II gene of a patient with familial chylomicronemia and apoC-II deficiency. Cleavage of heteroduplexes formed between normal and patient DNA strands with hydroxylamine and osmium tetroxide readily localized a mutation near base 2660 of the mutant apoC-II. Sequence analysis of PCR amplified patient DNA in the mismatched region localized by this method identified the substitution of a thymidine (T) for a cytosine (C) at base 2668 in exon 2 of the patient's gene within a CpG dinucleotide. The C to T transition in the apoC-IIParis2 gene leads to the introduction of a premature termination codon (TGA) at a position corresponding to amino acid-19 of the signal peptide of apoC-II and the formation of a new Nla III restriction enzyme site absent in the normal apoC-II gene. Consistent with the history of consanguinity in this kindred, amplification of DNA isolated from the proband's parents by the polymerase chain reaction and digestion with Nla III established that the proband is a true homozygote for this genetic defect. Analysis of the patient's plasma by two-dimensional gel electrophoresis and immunoblotting failed to detect any plasma apoC-II. Thus, we have identified a novel mutation in the apoC-II gene of a patient with apoC-II deficiency from a Paris kindred presenting with severe hypertriglyceridemia and chylomicronemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Apolipoprotein C-II (apoC-II) plays a critical role in the metabolism of plasma lipoproteins as an activator for lipoprotein lipase. Human apoC-II consists of 79 amino acid residues (pro-apoC-II). A minor fraction is converted to a mature form by cleavage at the site QQDE releasing the 6 amino-terminal residues. We have cloned and sequenced the cDNA for rat apoC-II from a liver cDNA library using human apoC-II cDNA as a probe. The cDNA encodes a protein of 97 amino acid residues including a signal peptide of 22 amino acid residues. There is approximately 60% similarity between the deduced amino acid sequence of rat apoC-II and other apoC-II sequences presently known (human, monkey, dog, cow, and guinea pig). Compared to these, rat apoC-II is one residue shorter at the carboxyl terminus. Furthermore, there is a deletion of 3 amino acid residues (PQQ) in the highly conserved cleavage site where processing from pro- to mature apoC-II occurs in other species. Accordingly, rat apoC-II isolated from plasma was mainly in the pro-form. Northern blot analyses indicated that rat apoC-II is expressed both in liver and in small intestine.  相似文献   

7.
Recent data suggest that mutant immunoreactive forms of apolipoprotein C-II (apoC-II) can be detected in the plasma of patients with the apoC-II deficiency syndrome. We studied the possible presence of apoC-II mutants in the plasma of two patients with apoC-II deficiency by immunological means. The patients were hypertriglyceridemic, and apoC-II was undetectable in plasma as determined by radial immunodiffusion, electroimmunoassay, and immunonephelometry. Furthermore, apoC-II was undetectable either by electrophoresis or by immunoblotting in the plasma of the probands, while apoC-II was present in the plasma of their parents, although at less than half-normal concentration. Immunochemical localization of apoC-II, however, showed that the apoprotein could be detected within the enterocytes obtained from the intestinal mucosa of the patients. From these data we conclude that the patients synthesize apoC-II, at least in the intestine.  相似文献   

8.
We previously reported an efficient proteomic approach to identify matrix metalloproteinase (MMP) substrates from complex protein mixture. Using the proteomic approach, apolipoprotein C-II (apoC-II), which is a cofactor of lipoprotein lipase (LPL) and a component of very-low density lipoprotein and chylomicron, has been identified as a putative MMP-14 substrate. Cleavage of apoC-II, with various MMPs, demonstrated that apoC-II is cleaved most efficiently by MMP-14, and also by MMP-7, among the tested MMPs. The 79-amino acid residue apoC-II was cleaved between Asn35 and Leu36 by MMP-14, and between Phe14 and Leu15 and between Asn35 and Leu36 by MMP-7. Cleavage of apoC-II by MMP-14 markedly decreased LPL activity and would thus impair hydrolysis of triglycerides in plasma and transfer of fatty acids to tissues. Our result suggests that cleavage of apoC-II by MMPs would be important for development of pathophysiological situations of apoC-II deficiency such as atherosclerosis.  相似文献   

9.
Lipid-loaded macrophage "foam cells" accumulate in the subendothelial space during the development of fatty streaks and atherosclerotic lesions. To better understand the consequences of such lipid loading, murine peritoneal macrophages were isolated and incubated with ligands for two nuclear receptors, liver X receptor (LXR) and retinoic acid receptor (RXR). Analysis of the expressed mRNAs using microarray technology led to the identification of four highly induced genes that encode apolipoproteins E, C-I, C-IV, and C-II. Northern blot analysis confirmed that the mRNA levels of these four genes were induced 2-14-fold in response to natural or synthetic ligands for LXR and/or RXR. The induction of all four mRNAs was greatly attenuated in peritoneal macrophages derived from LXRalpha/beta null mice. The two LXR response elements located within the multienhancers ME.1 and ME.2 were shown to be essential for the induction of apoC-II promoter-reporter genes by ligands for LXR and/or RXR. Finally, immunohistochemical studies demonstrate that apoC-II protein co-localizes with macrophages within murine arterial lesions. Taken together, these studies demonstrate that activated LXR induces the expression of the apoE/C-I/C-IV/C-II gene cluster in both human and murine macrophages. These results suggest an alternative mechanism by which lipids are removed from macrophage foam cells.  相似文献   

10.
11.
LPL and its specific physiological activator, apolipoprotein C-II (apoC-II), regulate the hydrolysis of triglycerides (TGs) from circulating TG-rich lipoproteins. Previously, we developed a skeletal muscle-specific LPL transgenic mouse that had lower plasma TG levels. ApoC-II transgenic mice develop hypertriglyceridemia attributed to delayed clearance. To investigate whether overexpression of LPL could correct this apoC-II-induced hypertriglyceridemia, mice with overexpression of human apoC-II (CII) were cross-bred with mice with two levels of muscle-specific human LPL overexpression (LPL-L or LPL-H). Plasma TG levels were 319 +/- 39 mg/dl in CII mice and 39 +/- 5 mg/dl in wild-type mice. Compared with CII mice, apoC-II transgenic mice with the higher level of LPL overexpression (CIILPL-H) had a 50% reduction in plasma TG levels (P = 0.013). Heart LPL activity was reduced by approximately 30% in mice with the human apoC-II transgene, which accompanied a more modest 10% decrease in total LPL protein. Overexpression of human LPL in skeletal muscle resulted in dose-dependent reduction of plasma TGs in apoC-II transgenic mice. Along with plasma apoC-II concentrations, heart and skeletal muscle LPL activities were predictors of plasma TGs. These data suggest that mice with the human apoC-II transgene may have alterations in the expression/activity of endogenous LPL in the heart. Furthermore, the decrease of LPL activity in the heart, along with the inhibitory effects of excess apoC-II, may contribute to the hypertriglyceridemia observed in apoC-II transgenic mice.  相似文献   

12.
13.
The DNA sequences of a Japanese and a Venezuelan apolipoprotein (apo) C-II deficiency allele, of a normal Japanese apo C-II gene, and of a chimpanzee apo C-II gene were amplified by PCR, and their nucleotide sequences were determined on multiple clones of the PCR products. The normal Japanese sequence is identical to--and the chimpanzee sequence differs by only three nucleotides from--a previously published normal Caucasian sequence. In contrast, the two human mutant sequences each differ from the normal apo C-II gene sequence by several nucleotides, including deletions. The data suggest that both mutant alleles arose greater than 500,000 years ago. It is shown that a defective allele can persist in a population for only a short time if a bottleneck occurs. Therefore, the antiquity of the two alleles suggests no severe bottleneck during human evolution. Moreover, the fact that one allele is from Japan and the other is from a Venezuelan Caucasian family is more consistent with the multiregional evolution model of modern human origins than with the complete replacement or "out of Africa" model.  相似文献   

14.
15.
Hypophosphatasia is a heritable disorder characterized by defective bone mineralization and a deficiency of liver/bone/kidney alkaline phosphatase (L/B/K ALP) activity in serum and tissues. Severe forms of the disease, which are generally lethal in infancy, are inherited in an autosomal recessive fashion. The gene defects that produce hypophosphatasia are poorly understood, but many are likely to occur at the L/B/K ALP locus. To investigate these gene defects, we analyzed L/B/K ALP DNA, RNA, and enzyme activity in cultured dermal fibroblasts from 14 patients with perinatal or infantile hypophosphatasia and from 12 normal individuals. Southern blot analyses of the L/B/K ALP genes from patients and controls revealed identical restriction patterns. Control fibroblast ALP activity correlated with the corresponding L/B/K ALP mRNA levels estimated by blot hybridization analysis and densitometry (r = .94, P less than .0001). In contrast, fibroblasts from the hypophosphatasia patients were deficient in ALP enzyme activity but expressed apparently full-sized L/B/K ALP mRNA at normal levels. Bone specimens from one of the patients were examined and found to be deficient in histochemical ALP but contained immunologic cross-reactive material detected by anti-human liver ALP antiserum. Our results demonstrate that the deficiency of ALP activity in fibroblasts from 14 patients with severe hypophosphatasia is not due to decreased steady-state levels of the corresponding mRNA. The presence of enzymatically inactive L/B/K ALP protein in one of these patients is consistent with a point mutation or small in-frame deletion in the coding region of L/B/K ALP gene.  相似文献   

16.
The effect of the extracellular chaperone, clusterin, on amyloid fibril formation by lipid-free human apolipoprotein C-II (apoC-II) was investigated. Sub-stoichiometric levels of clusterin, derived from either plasma or semen, potently inhibit amyloid formation by apoC-II. Inhibition is dependent on apoC-II concentration, with more effective inhibition by clusterin observed at lower concentrations of apoC-II. The average sedimentation coefficient of apoC-II fibrils formed from apoC-II (0.3 mg.mL-1) is reduced by coincubation with clusterin (10 microg x mL(-1)). In contrast, addition of clusterin (0.1 mg x mL(-1)) to preformed apoC-II amyloid fibrils (0.3 mg x mL(-1)) does not affect the size distribution after 2 days. This sedimentation velocity data suggests that clusterin inhibits fibril growth but does not promote fibril dissociation. Electron micrographs indicate similar morphologies for amyloid fibrils formed in the presence or absence of clusterin. The substoichiometric nature of the inhibition suggests that clusterin interacts with transient amyloid nuclei leading to dissociation of the monomeric subunits. We propose a general role for clusterin in suppressing the growth of extracellular amyloid.  相似文献   

17.
We have examined the expression of the apolipoprotein CII (apo CII) gene in an individual with familial apo CII (apo CII) deficiency. Total RNA was prepared from this patient's liver tissue and analysed in Slot Blot and Northern Blot experiments using a cloned apo CII cDNA as a probe. In this patient, there is at least a four-fold decrease in the level of apo CII mRNA, when compared to liver tissue from a control individual. The residual apo CII mRNA detected in this patient is of normal length. These results suggest that the failure to detect apo CII protein in this patient's serum is not due to a failure to transcribe or process apo CII mRNA, but probably to a defect in the translation of the apo CII message. This defect results in partial degradation of the apo CII message leading to the much reduced levels which we have observed.  相似文献   

18.
The effect of human plasma apolipoproteins C-II and C-III on the hydrolytic activity of lipoprotein lipase from bovine milk was determined using dimyristoyl phosphatidylcholine (DMPC) vesicles as substrate. In the absence of apoC-II or C-III, lipoprotein lipase has limited phospholipase activity. When the vesicles were preincubated with apoC-II and then phospholipase activity determined, there was a time dependent release of lysolecithin; activity was dependent upon both apoC-II and lipoprotein lipase concentrations. The addition of apoC-III to DMPC did not stimulate phospholipase activity. We conclude that apoC-II has an activator effect on the phospholipase activity of lipoprotein lipase and that the mechanism is beyond that of simply altering the lateral compressibility of the lipid.  相似文献   

19.
Apolipoprotein C-II (apoC-II) is an exchangeable plasma apolipoprotein and an endogenous activator of lipoprotein lipase (LpL). Genetic deficiencies of apoC-II and overexpression of apoC-II in transgenic mice are both associated with severe hyperlipidemia, indicating a complex role for apoC-II in the regulation of blood lipid levels. ApoC-II exerts no effect on the activity of LpL for soluble substrates, suggesting that activation occurs via the formation of a lipid-bound complex. We have synthesized a peptide corresponding to amino acid residues 39-62 of mature human apoC-II. This peptide does not bind to model lipid surfaces but retains the ability to activate LpL. Conjugation of the fluorophore 7-nitrobenz-2-oxa-1,3-diazole (NBD) to the N-terminal alpha-amino group of apoC-II39-62 facilitated determination of the affinity of the peptide for LpL using fluorescence anisotropy measurements. The dissociation constant describing this interaction was 0.23 microM, and was unchanged when LpL was lipid-bound. Competitive binding studies showed that apoC-II39-62 and full-length apoC-II exhibited the same affinity for LpL in aqueous solution, whereas the affinity for full-length apoC-II was increased at least 1 order of magnitude in the presence of lipid. We suggest that while the binding of apoC-II to the lipid surface promotes the formation of a high-affinity complex of apoC-II and LpL, activation occurs via direct helix-helix interactions between apoC-II39-62 and the loop covering the active site of LpL.  相似文献   

20.
Lipoprotein lipase (LPL) is the major enzyme involved in triglyceride hydrolysis of lymph chylomicrons and plasma very low density lipoproteins. LPL can be isolated from human post heparin plasma by heparin-Sepharose 4B affinity chromatography. In the present study the effects of apolipoproteins (apo) C-II, C-III, and H on the enzymic activity of LPL were investigated. ApoH is a recently described protein (β2-glycoprotein I) constituent of triglyceride rich lipoproteins in human lymph and plasma. Human LPL was activated by apoC-II, and the apoC-II activation of LPL was inhibited by apoC-III. ApoH increased the enzymic activity of LPL in the presence of apoC-II by 45±17 percent. ApoC-III decreased the apoH + apoC-II enhanced activity of LPL by 77 percent. These results provide evidence for the concept that the enzymic activity of LPL in triglyceride metabolism is modulated by apoH. The relative proportion of apoH, apoC-II, and apoC-III in triglyceride rich lipoprotein particles may determine the ultimate rate of LPL catalyzed triglyceride hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号