首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The naked mole rat (NMR; Heterocephalus glaber) is the longest-living rodent known [maximum lifespan potential (MLSP): >28 yr] and is a unique model of successful aging showing attenuated declines in most physiological function. This study addresses age-related changes in endothelial function and production of reactive oxygen species in NMR arteries and vessels of shorter-living Fischer 344 rats (MLSP: approximately 3 yr). Rats exhibit a significant age-dependent decline in acetylcholine-induced responses in carotid arteries over a 2-yr age range. In contrast, over a 10-yr age range nitric oxide (NO)-mediated relaxation responses to acetylcholine and to the NO donor S-nitrosopencillamine (SNAP) were unaltered in NMRs. Cellular superoxide anion (O(2)(*-)) and H(2)O(2) production significantly increased with age in rat arteries, whereas they did not change substantially with age in NMR vessels. Indicators of apoptotic cell death (DNA fragmentation rate, caspase 3/7 activity) were significantly enhanced ( approximately 250-300%) in arteries of 2-yr-old rats. In contrast, vessels from 12-yr-old NMRs exhibited only a approximately 50% increase in apoptotic cell death. In the hearts of NMRs (2 to 26 yr old), expression of endothelial NO synthase, antioxidant enzymes (Cu,Zn-SOD, Mn-SOD, catalase, and glutathione peroxidase), the NAD(P)H oxidase subunit gp91(phox), and mitochondrial proteins (COX-IV, ATP synthase, and porin, an indicator of mitochondrial mass) did not change significantly with age. Thus long-living NMRs can maintain a youthful vascular function and cellular oxidant-antioxidant phenotype relatively longer and are better protected against aging-induced oxidative stress than shorter-living rats.  相似文献   

2.
It has been proposed that antioxidants can be longevity determinants in animals. However, no comprehensive study has been conducted to try to relate free radicals with maximum life span. This study compares the lung tissue of various vertebrate species — amphibia, mammals and birds — showing very different and well known maximum life spans and life energy potentials. The lung antioxidant enzymes superoxide dismutase, catalase, Se-dependent and non-Se-dependent glutathione peroxidases, and glutathione reductase showed significantly negative correlations with maximum life span. The same was observed for the lung antioxidants, reduced glutathione and ascorbate. It is concluded that a generalized decrease in tissue antioxidant capacity is a characteristic of longevous species. It is suggested that a low rate of free radical recycling (free-radical generation and scavenging) can be an important factor involved in the evolution of high maximum animal longevities. A low free-radical production could be responsible for a low rate of damage at critical sites such as mitochondrial DNA.Abbreviations CAT catalase - COX cytochrome oxidase - GPx glutathione peroxidase - GR glutathione reductase - GSH reduced glutathione - GSSG oxidized glutathione - LEP life energy potential - MDA malondialdehyde - MLSP maximum life span - MR metabolic rate - MW molecular weight - PO2 partial pressure of oxygen - SOD superoxide dismutase - VO2 basal oxygen consumption  相似文献   

3.
Vascular aging is characterized by increased oxidative stress, impaired nitric oxide (NO) bioavailability and enhanced apoptotic cell death. The oxidative stress hypothesis of aging predicts that vascular cells of long-lived species exhibit lower production of reactive oxygen species (ROS) and/or superior resistance to oxidative stress. We tested this hypothesis using two taxonomically related rodents, the white-footed mouse (Peromyscus leucopus) and the house mouse (Mus musculus), that show a more than twofold difference in maximum lifespan potential (MLSP = 8 and 3.5 years, respectively). We compared interspecies differences in endothelial superoxide (O2-) and hydrogen peroxide (H2O2) production, NAD(P)H oxidase activity, mitochondrial ROS generation, expression of pro- and antioxidant enzymes, NO production, and resistance to oxidative stress-induced apoptosis. In aortas of P. leucopus, NAD(P)H oxidase expression and activity, endothelial and H2O2 production, and ROS generation by mitochondria were less than in mouse vessels. In P. leucopus, there was a more abundant expression of catalase, glutathione peroxidase 1 and hemeoxygenase-1, whereas expression of Cu/Zn-SOD and Mn-SOD was similar in both species. NO production and endothelial nitric oxide synthase expression was greater in P. leucopus. In mouse aortas, treatment with oxidized low-density lipoprotein (oxLDL) elicited substantial oxidative stress, endothelial dysfunction and endothelial apoptosis (assessed by TUNEL assay, DNA fragmentation and caspase 3 activity assays). According to our prediction, vessels of P. leucopus were more resistant to the proapoptotic effects of oxidative stressors (oxLDL and H2O2). Primary fibroblasts from P. leucopus also exhibited less H2O2-induced DNA damage (comet assay) than mouse cells. Thus, increased lifespan potential in P. leucopus is associated with a decreased cellular ROS generation and increased oxidative stress resistance, which accords with the prediction of the oxidative stress hypothesis of aging.  相似文献   

4.
G Barja  A Herrero 《FASEB journal》2000,14(2):312-318
DNA damage is considered of paramount importance in aging. Among causes of this damage, free radical attack, particularly from mitochondrial origin, is receiving special attention. If oxidative damage to DNA is involved in aging, long-lived animals (which age slowly) should show lower levels of markers of this kind of damage than short-lived ones. However, this possibility has not heretofore been investigated. In this study, steady-state levels of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG) referred to deoxyguanosine (dG) were measured by high performance liquid chromatography (HPLC) in the mitochondrial (mtDNA) and nuclear (nDNA) DNA from the heart of eight and the brain of six mammalian species ranging in maximum life span (MLSP) from 3.5 to 46 years. Exactly the same digestion of DNA to deoxynucleosides and HPLC protocols was used for mtDNA and nDNA. Significantly higher (three- to ninefold) 8-oxodG/dG values were found in mtDNA than in nDNA in all the species studied in both tissues. 8-oxodG/dG in nDNA did not correlate with MLSP across species either in the heart (r=-0.68; P<0.06) or brain (r = 0.53; P<0.27). However, 8-oxodG/dG in mtDNA was inversely correlated with MLSP both in heart (r=-0.92; P<0.001) and brain (r=-0.88; P<0.016) tissues following the power function y = a(.)x(b), where y is 8-oxodG/dG and x is the MLSP. This agrees with the consistent observation that mitochondrial free radical generation is also lower in long-lived than in short-lived species. The results obtained agree with the notion that oxygen radicals of mitochondrial origin oxidatively damage mtDNA in a way related to the aging rate of each species.-Barja, G., Herrero, A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals.  相似文献   

5.
6.
In previous works we demonstrated that 2-methyl-1,4-naphthoquinone (menadione) causes a marked increase in the force of contraction of guinea pig and rat isolated atria. This inotropic effect was significantly higher in the guinea pig than in the rat and was strictly related to the amount of superoxide anion (O(2)(*-)), generated as a consequence of cardiac menadione metabolism through mitochondrial NADH-ubiquinone oxidoreductase. The present study was designed to further elucidate the basis of these quantitatively different positive inotropic responses. To this purpose, we measured O(2)(*-) and hydrogen peroxide (H(2)O(2)) produced by mitochondria isolated from guinea pig and rat hearts in the presence of 20 microM menadione. Moreover, we evaluated the menadione detoxification activity (DT-diaphorase) and the antioxidant defences of guinea pig and rat hearts, namely their GSH/GSSG content, Cu/Zn- and Mn-dependent superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (Gpx) activities. Our results indicate that DT-diaphorase activity and glutathione levels were similar in both animal species. By contrast, guinea pig mitochondria produced greater amounts of O(2)(*-) and H(2)O(2) than those of rat heart. This is probably due to both the higher Mn-SOD activity (2.93 +/- 0.02 vs. 1.95 +/- 0.06 units/mg protein; P < 0.05) and to the lower Gpx activity (10.09 +/- 0.30 vs. 32.67 +/- 1.02 units/mg protein; P < 0.001) of guinea pig mitochondria. A lower CAT activity was also observed in guinea pig mitochondria (2.40 +/- 0.80 vs. 6.13 +/- 0.20 units/mg protein; P < 0.01). Taken together, these data provide a rational explanation for the greater susceptibility of guinea pig heart to the toxic effect of menadione: because of the greater amount of O(2)(*-) generated by the quinone and the higher mitochondrial Mn-SOD activity, guinea pig heart is exposed to more elevated concentrations of H(2)O(2) that is less efficiently detoxified, because of lower Gpx and CAT levels of mitochondria.  相似文献   

7.
The objective of this study was to elucidate the mechanisms that govern the variations in the rates of mitochondrial superoxide anion radical (O2-*) generation in different species. The amounts of coenzyme Q (CoQ) associated with mitochondrial membrane proteins were compared in five different mammalian species, namely mouse, rat, rabbit, pig, and cow. Micelles of cardiac mitochondria were prepared using Triton X-100 or deoxycholate (DOC) as detergents, and the micelles containing mitochondrial proteins were sedimented by sucrose density ultracentrifugation. The amount of CoQ present in both types of micelles varied in different species, whereas alpha-tocopherol, another lipoidal molecule in mitochondrial membranes, could not be detected in the micelles of any of these species. The amounts of CoQ bound to mitochondrial proteins in DOC micelles were higher in those mammalian species where CoQ10 was the predominant CoQ homologue, and the amounts were found to be inversely correlated with the rate of mitochondrial 02-* generation among different species. Results also indicated that mitochondrial CoQ exists in at least two distinct pools, one of which is associated with the membrane proteins. The degree of association between CoQ and membrane proteins appears to be a factor determining the rate of mitochondrial O2-* generation.  相似文献   

8.
Amyloid-beta (Abeta) peptides are components of senile plaques initiating degeneration of brain neurons in Alzheimer's disease. They increase reactive oxygen species generation that may exceed the defensive capacity of cells. To test the hypothesis, this study investigated the in vivo effects of Abeta peptides on mitochondrial and non-mitochondrial enzymic sources of reactive oxygen species and antioxidant enzymes in rat brain. Continuous intracerebroventricular infusion of both Abeta(25-35) and Abeta(1-40) for up to 14 days stimulated the hydrogen peroxide (H2O2) generation in isolated neocortex mitochondria. Infusion of Abeta(1-40) led to an increase in Mn-superoxide dismutase activity and a decrease in activities of catalase and glutathione peroxidase in mitochondria, to elevation of activities of Cu,Zn-superoxide dismutase and aldehyde oxidase, forwarded the conversion of xanthine dehydrogenase to xanthine oxidase and corresponding increase in the rate of H2O2 formation in the cytosol. Thus, Abeta peptides increase H2O2-formation and H2O2-forming enzyme activities and inhibit H2O2-consuming enzyme activities in mitochondria and cytosol in vivo. These studies suggest that disbalance between H2O2-generating and H2O2-metabolizing enzyme activities can contribute to oxidative stress underlying neurodegeneration and neuronal death in Alzheimer's disease.  相似文献   

9.
The relationship of oxidative stress with maximum life span (MLSP) in different vertebrate species is reviewed. In all animal groups the endogenous levels of enzymatic and non-enzymatic antioxidants in tissues negatively correlate with MLSP and the most longevous animals studied in each group, pigeon or man, show the minimum levels of antioxidants. A possible evolutionary reason for this is that longevous animals produce oxygen radicals at a low rate. This has been analysed at the place where more than 90% of oxygen is consumed in the cell, the mitochondria. All available work agrees that, across species, the longer the life span, the lower the rate of mitochondrial oxygen radical production. This is true even in animal groups that do not conform to the rate of living theory of aging, such as birds. Birds have low rates of mitochondrial oxygen radical production, frequently due to a low free radical leak in their respiratory chain. Possibly the low rate of mitochondrial oxygen radical production of longevous species can decrease oxidative damage at targets important for aging (like mitochondrial DNA) that are situated near the places of free radical generation. A low rate of free radical production can contribute to a low aging rate both in animals that conform to the rate of living (metabolic) theory of aging and in animals with exceptional longevities, like birds and primates. Available research indicates there are at least two main characteristics of longevous species: a high rate of DNA repair together with a low rate of free radical production near DNA. Simultaneous consideration of these two characteristics can explain part of the quantitative differences in longevity between animal species. Accepted: 12 December 1997  相似文献   

10.
Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2(-) and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2(-) and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2(-) and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress.  相似文献   

11.
The objective of this study was to explore the relationship between partially reduced oxygen species and the aging process. Effect of age on antioxidant defenses and prooxidant generation was evaluated by comparing the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, and rates of mitochondrial O-2 and H2O2 generation in the liver, heart, and brain of 3-month and 18-month-old Sprague-Dawley rats. In addition, comparisons of antioxidant defenses and mitochondrial prooxidant generation were made between short-lived insects and the rat tissues. Results indicated that antioxidant enzymes exhibit a mixed pattern of age-related alterations. In each organ of the rat examines, activities of some enzymes were up with age and of others down with age. The overall magnitude of decline in antioxidant defenses observed here and elsewhere in the literature was deemed to be unlikely to be functionally significant. In contrast, the rate of mitochondrial O-2 and H2O2 generation increased in various tissues of the rat. Antioxidant defenses in insects were comparable to tissues in the rat but rates of O-2 and H2O2 generations were notably higher. Results are interpreted to suggest that rates of prooxidant generation may be more crucial than antioxidant levels as possible longevity determinants.  相似文献   

12.
Glutathione (GSH) content as well as GSH-peroxidase and GSH-reductase activity in isolated rat thymocytes X-irradiated in a dose of 4.5 Gy or treated with 0.1 mM H2O2 were studied in a period preceding the appearance of apoptosis morphological symptoms. The early adaptive response of thymocytes to radiation - increase of both GSH content and glutathione peroxidase and glutathione reductase activity was revealed. On the contrary the rapid fall of GSH level in H2O2-treated thymocytes was observed simultaneousely with glutathione reductase inhibition and enhanced GSH consumption by glutathione peroxidase, this disbalance of GSH-dependent antioxidant system probably facilitates mitochondrial way of apoptosis.  相似文献   

13.
Santiago AP  Chaves EA  Oliveira MF  Galina A 《Biochimie》2008,90(10):1566-1577
Mitochondrial hexokinase (mt-HK) and creatine kinase (mt-CK) activities have been recently proposed to reduce the rate of mitochondrial ROS generation through an ADP re-cycling mechanism. Here, we determined the role of mt-HK and mt-CK activities in regulate mitochondrial ROS generation in rat brain, kidney, heart and liver, relating them to the levels of classical antioxidant enzymes. The activities of both kinases were significantly higher in the brain than in other tissues, whereas the activities of catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were higher in both liver and kidney mitochondria. In contrast, manganese superoxide dismutase (Mn-SOD) activity was not significantly different among these tissues. Activation of mitochondrial kinases by addition of their substrates increased the ADP re-cycling and thus the respiration by enhancing the oxidative phosphorylation. Succinate induced hydrogen peroxide (H(2)O(2)) generation was higher in brain than in kidney and heart mitochondria, and the lowest in liver mitochondria. Mitochondrial membrane potential (DeltaPsi(m)) and H(2)O(2) production, decreased with additions of 2-DOG or Cr to respiring brain and kidney mitochondria but not to liver. The inhibition of H(2)O(2) production by 2-DOG and Cr correspond to almost 100% in rat brain and about 70% in kidney mitochondria. Together our data suggest that mitochondrial kinases activities are potent preventive antioxidant mechanism in mitochondria with low peroxidase activities, complementing the classical antioxidant enzymes against oxidative stress.  相似文献   

14.
Birds are unique since they can combine a high rate of oxygen consumption at rest with a high maximum life span (MLSP). The reasons for this capacity are unknown. A similar situation is present in primates including humans which show MLSPs higher than predicted from their rates of O2 consumption. In this work rates of oxygen radical production and O2 consumption by mitochondria were compared between adult male rats (MLSP = 4 years) and adult pigeons (MLSP = 35 years), animals of similar body size. Both the O2 consumption of the whole animal at rest and the O2 consumption of brain, lung and liver mitochondria were higher in the pigeon than in the rat. Nevertheless, mitochondrial free radical production was 2-4 times lower in pigeon than in rat tissues. This is possible because pigeon mitochondria show a rate of free radical production per unit O2 consumed one order of magnitude lower than rat mitochondria: bird mitochondria show a lower free radical leak at the respiratory chain. This result, described here for the first time, can possibly explain the capacity of birds to simultaneously increase maximum longevity and basal metabolic rate. It also suggests that the main factor relating oxidative stress to aging and longevity is not the rate of oxygen consumption but the rate of oxygen radical production. Previous inconsistencies of the rate of living theory of aging can be explained by a free radical theory of aging which focuses on the rate of oxygen radical production and on local damage to targets relevant for aging situated near the places where free radicals are continuously generated.  相似文献   

15.
Studies on the relationship between oxidative stress and ageing in different vertebrate species and in calorie-restricted animals are reviewed. Endogenous antioxidants inversely correlate with maximum longevity in animal species and experiments modifying levels of these antioxidants can increase survival and mean life span but not maximum life span (MLSP). The available evidence shows that long-living vertebrates consistently have low rates of mitochondrial free radical generation, as well as a low grade of fatty acid unsaturation on cellular membranes, which are two crucial factors determining their ageing rate. Oxidative damage to mitochondrial DNA is also lower in long-living vertebrates than in short-living vertebrates. Calorie restriction, the best described experimental strategy that consistently increases mean and maximum life span, also decreases mitochondrial reactive oxygen species (ROS) generation and oxidative damage to mitochondrial DNA. Recent data indicate that the decrease in mitochondrial ROS generation is due to protein restriction rather than to calorie restriction, and more specifically to dietary methionine restriction. Greater longevity would be partly achieved by a low rate of endogenous oxidative damage generation, but also by a macromolecular composition highly resistant to oxidative modification, as is the case for lipids and proteins.  相似文献   

16.
Mitochondrial adaptations to obesity-related oxidant stress   总被引:15,自引:0,他引:15  
It is not known why viable hepatocytes in fatty livers are vulnerable to necrosis, but associated mitochondrial alterations suggest that reactive oxygen species (ROS) production may be increased. Although the mechanisms for ROS-mediated lethality are not well understood, increased mitochondrial ROS generation often precedes cell death, and hence, might promote hepatocyte necrosis. The aim of this study is to determine if liver mitochondria from obese mice with fatty hepatocytes actually produce increased ROS. Secondary objectives are to identify potential mechanisms for ROS increases and to evaluate whether ROS increase uncoupling protein (UCP)-2, a mitochondrial protein that promotes ATP depletion and necrosis. Compared to mitochondria from normal livers, fatty liver mitochondria have a 50% reduction in cytochrome c content and produce superoxide anion at a greater rate. They also contain 25% more GSH and demonstrate 70% greater manganese superoxide dismutase activity and a 35% reduction in glutathione peroxidase activity. Mitochondrial generation of H(2)O(2) is increased by 200% and the activities of enzymes that detoxify H(2)O(2) in other cellular compartments are abnormal. Cytosolic glutathione peroxidase and catalase activities are 42 and 153% of control values, respectively. These changes in the production and detoxification of mitochondrial ROS are associated with a 300% increase in the mitochondrial content of UCP-2, although the content of beta-1 ATP synthase, a constitutive mitochondrial membrane protein, is unaffected. Supporting the possibility that mitochondrial ROS induce UCP-2 in fatty hepatocytes, a mitochondrial redox cycling agent that increases mitochondrial ROS production upregulates UCP-2 mRNAs in primary cultures of normal rat hepatocytes by 300%. Thus, ROS production is increased in fatty liver mitochondria. This may result from chronic apoptotic stress and provoke adaptations, including increases in UCP-2, that potentiate necrosis.  相似文献   

17.
Sastre J  Pallardó FV  Viña J 《IUBMB life》2000,49(5):427-435
Harman first suggested in 1972 that mitochondria might be the biological clock in aging, noting that the rate of oxygen consumption should determine the rate of accumulation of mitochondrial damage produced by free radical reactions. Later in 1980 Miquel and coworkers proposed the mitochondrial theory of cell aging. Mitochondria from postmitotic cells use O2 at a high rate, hence releasing oxygen radicals that exceed the cellular antioxidant defences. The key role of mitochondria in cell aging has been outlined by the degeneration induced in cells microinjected with mitochondria isolated from fibroblasts of old rats, especially by the inverse relationship reported between the rate of mitochondrial production of hydroperoxide and the maximum life span of species. An important change in mitochondrial lipid composition is the age-related decrease found in cardiolipin content. The concurrent enhancement of lipid peroxidation and oxidative modification of proteins in mitochondria further increases mutations and oxidative damage to mitochondrial DNA (mtDNA) in the aging process. The respiratory enzymes containing the defective mtDNA-encoded protein subunits may increase the production of reactive oxygen species, which in turn would aggravate the oxidative damage to mitochondria. Moreover, superoxide radicals produced during mitochondrial respiration react with nitric oxide inside mitochondria to yield damaging peroxynitrite. Treatment with certain antioxidants, such as sulphur-containing antioxidants, vitamins C and E, or the Ginkgo biloba extract EGb 761, protects against the age-associated oxidative damage to mtDNA and the oxidation of mitochondrial glutathione. Moreover, the EGb 761 extract also prevents changes in mitochondrial morphology and function associated with aging of the brain and liver.  相似文献   

18.
Mitochondria are an important intracellular source and target of reactive oxygen species. The life span of a species is thought to be determined, in part, by the rate of mitochondrial damage inflicted by oxygen free radicals during the course of normal cellular metabolism. In the present study, we have investigated the protective effect of squalene supplementation for 15 days and 30 days on energy status and antioxidant defense system in liver mitochondria of 18 young and 18 aged rats. The dietary supplementation of 2% squalene significantly minimized aging associated alterations in mitochondrial energy status by maintaining the activities of TCA cycle enzymes (isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase) and respiratory marker enzymes (NADH dehydrogenase and cytochrome-c-oxidase) at higher level in the liver mitochondria of aged rats compared with unsupplemented controls. It exerted an antioxidant effect by inhibiting mitochondrial lipid peroxidation (malondialdehyde) in liver of young and aged rats. Supplementation with squalene also maintained the mitochondrial antioxidant defense system at higher rate by increasing the level of reduced glutathione and the activities of glutathione-dependent antioxidant enzymes (glutathione peroxidase and glutathione-S-transferase) and antiperoxidative enzymes (superoxide dismutase and catalase) in the liver of young and aged rats. The results of this study provide evidence that dietary supplementation with squalene can improve liver mitochondrial function during aging and minimize the age-associated disorders in which reactive oxygen species are a major cause.  相似文献   

19.
The net emission of hydrogen peroxide (H(2)O(2)) from mitochondria results from the balance between reactive oxygen species (ROS) continuously generated in the respiratory chain and ROS scavenging. The relative contribution of the two major antioxidant systems in the mitochondrial matrix, glutathione (GSH) and thioredoxin (Trx), has not been assessed. In this paper, we examine this key question via combined experimental and theoretical approaches, using isolated heart mitochondria from mouse, rat, and guinea pig. As compared with untreated control mitochondria, selective inhibition of Trx reductase with auranofin along with depletion of GSH with 2,4-dinitrochlorobenzene led to a species-dependent increase in H(2)O(2) emission flux of 17, 11, and 6 fold in state 4 and 15, 7, and 8 fold in state 3 for mouse, rat, and guinea pig mitochondria, respectively. The maximal H(2)O(2) emission as a percentage of the total O(2) consumption flux was 11%/2.3% for mouse in states 4 and 3 followed by 2%/0.25% and 0.74%/0.29% in the rat and guinea pig, respectively. A minimal computational model accounting for the kinetics of GSH/Trx systems was developed and was able to simulate increase in H(2)O(2) emission fluxes when both scavenging systems were inhibited separately or together. Model simulations suggest that GSH/Trx systems act in concert. When the scavenging capacity of either one of them saturates during H(2)O(2) overload, they relieve each other until complete saturation, when maximal ROS emission occurs. Quantitatively, these results converge on the idea that GSH/Trx scavenging systems in mitochondria are both essential for keeping minimal levels of H(2)O(2) emission, especially during state 3 respiration, when the energetic output is maximal. This suggests that the very low levels of H(2)O(2) emission observed during forward electron transport in the respiratory chain are a result of the well-orchestrated actions of the two antioxidant systems working continuously to offset ROS production.  相似文献   

20.
Respiratory function of mitochondria is compromised in aging human tissues and severely impaired in the patients with mitochondrial disease. A wide spectrum of mitochondrial DNA (mtDNA) mutations has been established to associate with mitochondrial diseases. Some of these mtDNA mutations also occur in various human tissues in an age-dependent manner. These mtDNA mutations cause defects in the respiratory chain due to impairment of the gene expression and structure of respiratory chain polypeptides that are encoded by the mitochondrial genome. Since defective mitochondria generate more reactive oxygen species (ROS) such as O2- and H2O2 via electron leak, we hypothesized that oxidative stress is a contributory factor for aging and mitochondrial disease. This hypothesis has been supported by the findings that oxidative stress and oxidative damage in tissues and culture cells are increased in elderly subjects and patients with mitochondrial diseases. Another line of supporting evidence is our recent finding that the enzyme activities of Cu,Zn-SOD, catalase and glutathione peroxidase (GPx) decrease with age in skin fibroblasts. By contrast, Mn-SOD activity increases up to 65 years of age and then slightly declines thereafter. On the other hand, we observed that the RNA, protein and activity levels of Mn-SOD are increased two- to three-fold in skin fibroblasts of the patients with CPEO syndrome but are dramatically decreased in patients with MELAS or MERRF syndrome. However, the other antioxidant enzymes did not change in the same manner. The imbalance in the expression of these antioxidant enzymes indicates that the production of ROS is in excess of their removal, which in turn may elicit an elevation of oxidative stress in the fibroblasts. Indeed, it was found that intracellular levels of H2O2 and oxidative damage to DNA and lipids in skin fibroblasts from elderly subjects or patients with mitochondrial diseases are significantly increased as compared to those of age-matched controls. Furthermore, Mn-SOD or GPx-1 gene knockout mice were found to display neurological disorders and enhanced oxidative damage similar to those observed in the patients with mitochondrial disease. These observations are reviewed in this article to support that oxidative stress elicited by defective respiratory function and impaired antioxidant enzyme system plays a key role in the pathophysiology of mitochondrial disease and human aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号