首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Placental lactogen (PL) production by rat trophoblast giant cells was studied using in vitro methods. The influence of trophoblast giant cell location within the conceptus and day of trophoblast giant cell isolation on the type of PL released in vitro were investigated. The effect of trophoblast giant cell location on the amount of PL, progesterone, and testosterone released in vitro was also evaluated. Trophoblast giant cells release two types of PLs in vitro; a high-molecular-weight lactogen, PL-1, and a low-molecular-weight lactogen, PL-2. The type of PL released by trophoblast giant cells was not influenced by their location within the conceptus at the time of dissection. Location did influence the amount of hormone produced by trophoblast giant cells. Mural trophoblast giant cells were more active in the production of PL, progesterone, and testosterone. The type of PL released by trophoblast giant cells is highly dependent upon the day of gestation the cells are removed for study. Trophoblast giant cells isolated on Day 10 of gestation release predominantly PL-1, while those cells isolated 24 hr later (Day 11 of gestation) release predominantly PL-2. The switch from PL-1 to PL-2 production that occurs in vivo does not occur under the in vitro conditions employed in this report.  相似文献   

2.
The junctional and labyrinth regions of the rat chorioallantoic placenta during the second half of gestation showed different patterns of development with regard to DNA, protein, placental lactogen and alkaline phosphatase content. DNA and protein measurements indicated that growth of the labyrinth region was more rapid and persisted for longer during gestation than did growth in the junctional zone. At midpregnancy the junctional zone was the main source of placental lactogen whereas by late pregnancy both regions contributed considerable amounts. On Day 20 of gestation the labyrinth region contained significantly more placental lactogen than did the junctional zone. Alkaline phosphatase activity was predominant in the labyrinth zone throughout the second half of gestation. The results indicate that the chorioallantoic placenta is composed of two functionally distinct regions.  相似文献   

3.
The differentiation of trophectoderm in ruminants is marked by the appearance of binucleate cells in cytotrophoblasts. Binucleate cells are produced by the acytokinesis of cytotrophoblasts and undergo endoreduplication. They secrete hormones such as placental lactogen, and exhibit migratory behavior to transfer their hormones into maternal circulations. In this study, we showed that a bovine trophoblastic cell line (BT-1) established from in vitro fertilized blastocysts differentiated into binucleate cells on collagen gel. BT-1 had cytotrophoblastic epithelial characteristics in that it expressed cytokeratin, E-cadherin and interferon-tau. It spontaneously formed multicellular spherical vesicles floating in the medium. We cultured these vesicles on type I collagen substrata. Most vesicles attached to the collagen substrata, and exhibited cell outgrowth and proliferation. We found that after more than 10 days, clusters of binucleate cells appeared in the cell colonies on the collagen gel, but not on the collagen film. These binucleate cells have features characteristic of those in vivo, including an increased nuclear DNA content and the expression of placental lactogen. BT-1 is a useful model with which to study trophoblast differentiation in ruminants.  相似文献   

4.
Cyclic adenosine 3',5'-monophosphate (cAMP) has been implicated in the control of placental function. The present investigation was designed to evaluate the actions of cAMP analogues on the control of rat placental development. Two model systems were used to assess the actions of cAMP in the placenta: 1) a rat placental cell line and 2) rat labyrinth placental explants. Elevation of intracellular cAMP via treatment with cAMP analogues, 3-isobutyl-1-methylxanthine, forskolin, or cholera toxin inhibited placental cell DNA synthesis whereas treatment with an analogue to cyclic guanosine 3',5'-monophosphate was without effect. The inhibitory actions of dibutyryl cAMP on DNA synthesis were at least partially reversible and were not the result of metabolic toxicity. Dibutyryl cAMP had dramatic effects on the organization and morphology of placental cells growing in vitro and diminished the ability of the placental cells to grow following transplantation into allogeneic hosts. Differentiation-associated characteristics of rat placental cells were also affected by cAMP. cAMP analogues stimulated placental cell progesterone release and inhibited placental cell alkaline phosphatase activity. Dibutyryl cAMP had effects on placental labyrinth explants similar to its effects on the placental cell line. Dibutyryl cAMP inhibited explant outgrowth while stimulating explant release of progesterone. In summary, cAMP effectively modulates the growth and differentiation of rat placental cells in vitro.  相似文献   

5.
The human placenta arises from the zygote through single cell intermediates called cytotrophoblasts that in turn give rise to a syncytium. In culture, mononucleated cytotrophoblasts exhibit little, if any, cell division but are converted to multinucleated cells. Choriocarcinoma, the malignant tumor of placenta trophoblast, comprises a mixed population of dividing cellular intermediates that resemble cytotrophoblasts but are less differentiated. Because the choriocarcinoma intermediates arise from dividing cells, the tumor may contain one or more cell types in abundance not present in the population of isolated placental cells. To study placental differentiation through cell-cell interaction, choriocarcinoma cell lines were co-cultured with placenta-derived cytotrophoblasts, and placental hormone biosynthesis, as a marker of differentiation was examined. We reasoned that intermediates formed by the tumor might interact with and complement those intermediates in the placenta-derived cytotrophoblast population. Co-culturing either the JAr or JEG choriocarcinoma cell lines with cytotrophoblasts elevated the synthesis of the chorionic gonadotropin alpha and beta subunits 10-20 fold, and human placental lactogen 5-fold. The effect was specific for these trophoblast-derived cells, since comparable quantities of Chinese hamster ovary or HeLa cells did not affect the placental cytotrophoblast culture. Further experiments suggested that the source of enhanced synthesis was the cytotrophoblasts. We propose that an interaction between cytotrophoblasts and choriocarcinoma cells occurs, which results in an increased number of differentiating cytotrophoblasts. Such co-cultures may represent a model system for examining choriocarcinoma cell interaction with normal cells, a process known to occur in vivo. The data are also consistent with the hypothesis that the regulated chorionic gonadotropin production in the placenta is determined by interaction among trophoblast cells at different stages of differentiation.  相似文献   

6.
Opiate synthesis by human placental cells and the presence of kappa-type opiate binding sites in the syncytiotrophoblast brush border membrane may indicate the possible role of morphine-like substances in the autocrine regulation of trophoblast cell metabolism. This study was undertaken to examine the in vitro effect of morphine on hCG (human chorionic gonadotrophin) and hPL (human placental lactogen) release by 1st and 3rd trimester placental tissue explants. The results have shown that morphine (100 nM) significantly stimulated hCG secretion by 6-8 weeks old trophoblast and was without effect on hPL. Hormone secretion by term placental tissue explants was unaffected by morphine treatment. Based on these results we assume that opiates may have a role in the local (autocrine and/or paracrine) regulation of hCG secretion in early gestation.  相似文献   

7.
Immunoreaction to ovine placental lactogen was found in binucleate and uninucleate cells of the fetal trophoblast.  相似文献   

8.

Background

Abnormal trophoblast differentiation and function is the basis of many placenta-based pregnancy disorders, including pre-eclampsia and fetal growth restriction. PPARγ, a ligand-activated nuclear receptor, plays essential roles in placental development; null murine embryos die at midgestation due to abnormalities in all placental layers, in particular, small labyrinth and expanded giant cell layer. Previous studies have focused mostly on the role of PPARγ in trophoblast invasion. Based on the previously reported role of PPARγ in preadipocyte differentiation, we hypothesized that PPARγ also plays a pivotal role in trophoblast differentiation. To test this hypothesis, we report derivation of wild-type and PPARγ-null trophoblast stem (TS) cells.

Methodology/Principal Findings

PPARγ-null TS cells showed defects in both proliferation and differentiation, specifically into labyrinthine trophoblast. Detailed marker analysis and functional studies revealed reduced differentiation of all three labyrinthine lineages, and enhanced giant cell differentiation, particularly the invasive subtypes. In addition, rosiglitazone, a specific PPARγ agonist, reduced giant cell differentiation, while inducing Gcm1, a key regulator in labyrinth. Finally, reintroducing PPARγ into null TS cells, using an adenovirus, normalized invasion and partially reversed defective labyrinthine differentiation, as assessed both by morphology and marker analysis.

Conclusions/Significance

In addition to regulating trophoblast invasion, PPARγ plays a predominant role in differentiation of labyrinthine trophoblast lineages, which, along with fetal endothelium, form the vascular exchange interface with maternal blood. Elucidating cellular and molecular mechanisms mediating PPARγ action will help determine if modulating PPARγ activity, for which clinical pharmacologic agonists already exist, might modify the course of pregnancy disorders associated with placental dysfunction.  相似文献   

9.
Trophoblast giant cells (TGCs) are the first terminally differentiated subtype to form in the trophoblast cell lineage in rodents. In addition to mediating implantation, they are the main endocrine cells of the placenta, producing several hormones which regulate the maternal endocrine and immune systems and promote maternal blood flow to the implantation site. Generally considered a homogeneous population, TGCs have been identified by their expression of genes encoding placental lactogen 1 or proliferin. In the present study, we have identified a number of TGC subtypes, based on morphology and molecular criteria and demonstrated a previously underappreciated diversity of TGCs. In addition to TGCs that surround the implantation site and form the interface with the maternal deciduas, we demonstrate at least three other unique TGC subtypes: spiral artery-associated TGCs, maternal blood canal-associated TGCs and a TGC within the sinusoidal spaces of the labyrinth layer of the placenta. All four TGC subtypes could be identified based on the expression patterns of four genes: Pl1, Pl2, Plf (encoded by genes of the prolactin/prolactin-like protein/placental lactogen gene locus), and Ctsq (from a placental-specific cathepsin gene locus). Each of these subtypes was detected in differentiated trophoblast stem cell cultures and can be differentially regulated; treatment with retinoic acid induces Pl1/Plf+ TGCs preferentially. Furthermore, cell lineage tracing studies indicated unique origins for different TGC subtypes, in contrast with previous suggestions that secondary TGCs all arise from Tpbpa+ ectoplacental cone precursors.  相似文献   

10.
Apoptosis, or physiological cell death, is elevated in the placenta of human pregnancies complicated by fetal growth retardation, suggesting that placental apoptosis may be a key factor in the overall control of feto-placental growth. The present study used DNA internucleosomal fragmentation analysis to characterize apoptosis in the two morphologically and functionally distinct regions of the rat placenta, the basal and labyrinth zones, during the last week of pregnancy (Days 16, 22, and 23). In addition, because glucocorticoids are potent inhibitors of feto-placental growth and can stimulate apoptosis in other tissues, we examined whether dexamethasone treatment in vivo induces placental apoptosis. DNA fragmentation was clearly evident in both placental zones at each stage of pregnancy, with higher levels evident in the basal zone compared with the labyrinth zone on Days 22 and 23. TUNEL analysis, which identifies dying cells in situ, demonstrated positive staining of cells in the basal zone, particularly giant trophoblast cells. Dexamethasone treatment increased DNA fragmentation in the basal zone but not the labyrinth zone. Similarly, maternal treatment with carbenoxolone, which can enhance local concentrations of endogenous glucocorticoid by inhibition of 11 beta-hydroxysteroid dehydrogenase, also increased DNA fragmentation in the basal zone but not in the labyrinth zone. These effects of dexamethasone and carbenoxolone on placental apoptosis were associated with reduced placental and fetal weights. In conclusion, this study shows that apoptosis occurs in both zones of the rat placenta, particularly in the basal zone near term, and is elevated after increased glucocorticoid exposure in vivo. These data support the hypothesis that placental apoptosis is an important player in the regulation of feto-placental growth, and establish the rat as a useful model to study the endocrine control of placental apoptosis.  相似文献   

11.
Isolation and identification of a cDNA clone of rat placental lactogen II   总被引:5,自引:0,他引:5  
The developing rat placenta expresses two placental lactogens at different stages of pregnancy: rat placental lactogen I from Days 11 to 13 of pregnancy and rat placental lactogen II (rPLII) from Day 12 to term. In this paper, we describe cDNA clones for rPLII, which have been isolated from a Day 18 rat placental cDNA library. The rPLII clones hybrid-select a mRNA which translates in vitro to a protein of 25,000 daltons. This protein is processed by dog pancreatic microsomes to a 22,000-dalton form, identical in size to rPLII isolated from pregnant rat serum. Both forms are precipitated by an anti-rPLII antiserum and an anti-ovine prolactin antiserum. The mRNA for rPLII is first expressed in Day 12 placenta and reaches a maximum at about Day 18 of pregnancy, in parallel with the appearance of the hormone in serum. Sequencing of the cDNA shows that, unlike human placental lactogen which is 85% homologous to human growth hormone at the amino acid level, rPLII is much more closely related to the prolactins. Thus, rPLII is 52% homologous to rat prolactin at the amino acid level, but only 34% related to rat growth hormone. This is the second placental lactogen to be fully characterized, and in the rat this hormone appears to have evolved by a route quite different from that which produced placental lactogen in humans.  相似文献   

12.
13.
D A Bhiwgade 《Acta anatomica》1990,138(4):302-317
In the present study the comparative ultrastructure of the definitive chorio-allantoic placental barrier has been studied in considerable detail in six species of bats, representing six different families and both suborders of Chiroptera, by electron microscopy, and these species illustrate different kinds of interhaemal membranes met with among bats. The definitive chorio-allantoic placenta of Rousettus leschenaulti is haemodichorial, since the syncytiotrophoblast and cytotrophoblast layers are present to term. The fine structure of the placental barrier in the labyrinth of the definitive placenta of Rhinopoma hardwickei hardwickei is essentially endotheliomonochorial due to the presence of a single layer of cytotrophoblast and maternal endothelial cells. The placenta of Taphozous melanopogon, examined electron-microscopically in the present study, shows a thick maternal endothelium, a continuous interstitial membrane and the presence of a single layer of syncytiotrophoblast. The placenta of Megaderma comprises a typical endotheliochorial labyrinth and the presence of two layers of trophoblast. In Rhinolophus rouxi, the mature placenta during advanced pregnancy resembles that of Megaderma, its labyrinth containing large maternal capillaries with maternal endothelial cells and the two layers of trophoblast. Finally, the placental barrier of Hipposideros fulvus fulvus is haemodichorial due to the presence of two layers of trophoblast and the absence of maternal endothelial cells.  相似文献   

14.
Suppressor of cytokine signaling 3 (SOCS3) binds cytokine receptors and thereby suppresses cytokine signaling. Deletion of SOCS3 causes an embryonic lethality that is rescued by a tetraploid rescue approach, demonstrating an essential role in placental development and a non-essential role in embryo development. Rescued SOCS3-deficient mice show a perinatal lethality with cardiac hypertrophy. SOCS3-deficient placentas have reduced spongiotrophoblasts and increased trophoblast secondary giant cells. Enforced expression of SOCS3 in a trophoblast stem cell line (Rcho-1) suppresses giant cell differentiation. Conversely, SOCS3-deficient trophoblast stem cells differentiate more readily to giant cells in culture, demonstrating that SOCS3 negatively regulates trophoblast giant cell differentiation. Leukemia inhibitory factor (LIF) promotes giant cell differentiation in vitro, and LIF receptor (LIFR) deficiency results in loss of giant cell differentiation in vivo. Finally, LIFR deficiency rescues the SOCS3-deficient placental defect and embryonic lethality. The results establish SOCS3 as an essential regulator of LIFR signaling in trophoblast differentiation.  相似文献   

15.
16.
The structure of the placental labyrinth, interlobular or "coarse" syncytium, visceral (splanchnopleuric) yolk sac, giant cells and subplacenta of the chinchilla was studied with the electron microscope. The fine structure of the interhemal membrane of the placental labyrinth was found to be hemomonochorial, consisting of a single layer of syncytial trophoblast. In this respect, the placental labyrinth was similar to that of another caviomorph rodent, the guinea pig. The labyrinthine trophoblast had pinocytotic vesicles as well as larger vaculoes and multivesicular bodies. The interlobular syncytium contained granular endoplasmic reticulum, and in one case from early in gestation there were intracisternal granules in the ER. The visceral endodermal cells of the inverted yolk sac placenta had a well-developed system of apical vesicles and tubules as well as larger cytoplasmic vacuoles. Their appearance was similar to that of endodermal cells found in other rodents which are known to absorb proteins and other substances from the uterine lumen. Towards term the giant cells were often vacuolated and contained large deposits of glycogen as well as lipid droplets. The syncytial trophoblast of the subplacenta contained numerous moderately electron-dense granules which may be secretory in function; cytotrophoblastic cells lacked these granules. The subplacental syncytium often surrounded spaces or lacunae which contained an electron-dense granular material.  相似文献   

17.
A cell line was derived from midgestation chorioallantoic placental explants of the outbred Holtzman rat. The cell line was found to express characteristics of extraembryonic membranes and to grow when introduced into allogeneic hosts. Growth in allogeneic hosts was detected following intraperitoneal injection of the cells but not following subcutaneous injection. The transplanted cells grew as cystic structures free in the peritoneum and as solid masses adhered to various abdominal organs. Cystic structures had a homogeneous morphology consisting of an epithelial-like cell layer surrounding a fluid-filled sac. Solid masses had a heterogeneous morphology, containing parts resembling normal components of the extraembryonic membranes (trophoblast, parietal, and visceral yolk sacs). Biochemical analysis of the placenta-derived cell line and transplanted structures derived from the cell line indicated that the cells had the potential to produce a variety of proteins characteristic of extraembryonic tissues. Cultured cells and both types of in vivo transplants produced the basement membrane protein, laminin. Peritoneal cystic structures also contained alpha-fetoprotein mRNA and very high levels of c-fos mRNA. Solid masses demonstrated elevated alkaline phosphatase activity, a marker of trophoblast cells. Cells grown in vitro expressed elevated c-myc mRNA levels, whereas, c-myc mRNA levels were reduced in the in vivo transplants. The behavior of the cell line in vitro and following in vivo transplantation suggests it contains elements capable of differentiation toward various components of the extraembryonic membranes. The results indicate that the rat placental cell line will be valuable for future studies on the differentiation of trophoblast cells and other components of the extraembryonic membranes.  相似文献   

18.
Expression and function of PPARgamma in rat placental development   总被引:7,自引:0,他引:7  
Peroxisome proliferator-activated receptor (PPAR) gamma is a nuclear receptor known to regulate adipogenesis. Deletion of the PPARgamma gene in the mouse results in death by embryonic day 10.0 (E10.0) due to the failure of establishment of a labyrinth layer in the placenta, which suggests that PPARgamma is involved in trophoblast differentiation. To define PPARgamma function further in placental development, the expression and localization of the PPARgamma gene in the rat placenta was investigated. RT-PCR analysis shows the presence of PPARgamma mRNA in the placenta of day 11 of pregnancy (d11). The expression level is higher at d13 and then later decreased. Immunohistochemistry detects both PPARgamma and its putative intrinsic ligand, 15-deoxy-Delta(12,14)-prostaglandin J(2), in the trophoblast of layer I which lined the maternal sinus. Oral administration of troglitazone, an agonist of PPARgamma, to pregnant rats between d9 and d11 increases the expression level of PPARgamma in the placenta and reduces the mortality of the fetuses by half. These results suggest that PPARgamma is required not only for trophoblast differentiation but also trophoblast maturation to establish maternal-fetal transport.  相似文献   

19.
Placentation starts with the formation of a spheroidal trophoblastic shell surrounding the embryo, thus facilitating both implantation into the uterine stroma and contact with maternal blood. Although it is known that diabetes increases the placental size and weight, the mechanisms responsible for this alteration are still poorly understood. In mammals, cellular proliferation occurs in parallel to placental development and it is possible that diabetes induces abnormal uncontrolled cell proliferation in the placenta similar to that seen in other organs (e.g. retina). To test this hypothesis, the objective of this work was to determine cell proliferation in different regions of the placenta during its development in a diabetic rat model. Accordingly, diabetes was induced on day 2 of pregnancy in Wistar rats by a single injection of alloxan (40 mg/kg i.v.). Placentas were collected on days 14, 17, and 20 postcoitum. Immunoperoxidase was used to identify Ki67 nuclear antigen in placental sections. The number of proliferating cells was determined in the total placental area as well as in the labyrinth, spongiotrophoblast and giant trophoblast cell regions. During the course of pregnancy, the number of Ki67 positive cells decreased in both control and diabetic rat placentas. However, starting from day 17 of pregnancy, the number of Ki67 positive cells in the labyrinth and spongiotrophoblast regions was higher in diabetic rat placentas as compared to control. The present results demonstrate that placentas from the diabetic rat model have a significantly higher number of proliferating cells in specific regions of the placenta and at defined developmental stages. It is possible that this increased cell proliferation promotes thickness of the placental barrier consequently affecting the normal maternal-fetal exchanges.  相似文献   

20.
The present study was designed to clarify the cellular localization and expression of leptin receptor(s) [OB-R(s)] mRNA including its splice variants and their correlation with the cells which secrete placental hormone, placental lactogen-II (PL-II), in rat placentae. By in situ hybridization analysis, hybridization signals for OB-Rb and the common extracellular domain of OB-R were first detectable in some cells of the labyrinth zone of the placentae on day 14 of pregnancy and then a lot of cells dispersed in the entire area of the labyrinth zone expressed OB-Rb during the latter half of pregnancy. However, no expression was observed in the decidua and the junctional zone of the placentae during pregnancy. Double staining study revealed that signals for OB-R expressing trophoblast cells showed PL-II immunoreactivity in the labyrinth zone of the placentae. In Northern blot analysis, two bands (2.8 kb and 5.1 kb) of OB-R mRNA expression were observed in the placentae from day 17 to 21 of pregnancy and the expression of both increased markedly up to day 21 of pregnancy. RT-PCR analysis revealed that OB-Rb, OB-Ra, and OB-Re are expressed in the placentae on days 19 and 21 of pregnancy. These results suggest that the OB-R may have a physiological significance in the placental function during the latter half of pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号