共查询到20条相似文献,搜索用时 8 毫秒
1.
Neuronal intermediate filaments (neurofilaments) prepared from brain form a viscous sedimentable complex with microtubules under suitable conditions [Runge, M.S., Laue, T.M., Yphantis, D.A., Lifsics, M.R., Saito, A., Altin, M., Reinke, K., & Williams, R.C., Jr. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 1431-1435]. Under the same conditions, neurofilaments prepared from spinal cord did not form such a complex. Brain neurofilaments were shown to differ from spinal cord neurofilaments in part by having proteins that resemble microtubule-associated proteins (MAPs) attached to them. MAPs became bound to spinal cord neurofilaments when the two structures were incubated together. The resulting MAP-decorated neurofilaments formed a viscous complex with microtubules, showing that some component of the MAPs mediated the association between the two filamentous organelles. By means of gel filtration, the MAPs were separated into two major fractions. The large Stokes radius fraction was active in producing neurofilament-microtubule mixtures of high viscosity, while the small Stokes radius fraction was not. The dependence of the viscosity of neurofilament-microtubule mixtures upon the concentration of MAPs was found to possess a maximum. This result suggests that the MAPs serve as cross-bridges between the two structures. Neurofilaments, with and without bound MAPs, were allowed to adhere to electron microscope grids. The grids were then exposed to microtubules, fixed, and stained. The grids prepared with MAP-decorated neurofilaments bound numerous microtubules, each in apparent contact with one or more neurofilaments. The grids prepared with untreated neurofilaments lacked microtubules. These results show that one or more of the MAPs mediates association between microtubules and neurofilaments. 相似文献
2.
3.
A quantitative study of microtubules in motor and sensory axons 总被引:1,自引:0,他引:1
The number, density and distribution of microtubules were compared in the myelinated motor and sensory axons of the spinal roots of lizard (Lacerta muralis). In both motor and sensory axons the average number and density of microtubules were found to be related to the axonal size: the average number of microtubules rose, while the microtubular density decreased with an increase in the cross-sectional area of the axon. More precisely, a linear relationship was observed between the logarithm of the microtubular density and the cross-sectional area of the axon. No significant differences in the microtubular number and density were found between motor and sensory axons of corresponding size. Microtubules were unevenly distributed throughout the cross section of both motor and sensory axons. In particular, a nonaccidental association between microtubules and mitochondria was found in both axon types. 相似文献
4.
Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method 总被引:28,自引:59,他引:28 下载免费PDF全文
N Hirokawa 《The Journal of cell biology》1982,94(1):129-142
The elaborate cross-connections among membranous organelles (MO), microtubules (MT), and neurofilaments (NF) were demonstrated in unifixed axons by the quick-freeze, deep-etch, and rotary-shadowing method. They were categorized into three groups: NF-associated cross-linker, MT-associated cross-bridges, and long cross-links in the subaxolemmal space. Other methods were also employed to make sure that the observed cross-connections in the unfixed axons were not a result of artifactual condensation or precipitation of soluble components or salt during deep-etching. Axolemma were permeablized either chemically (0.1% saponin) or physically (gentle homogenization), to allow egress of their soluble components from the axon; or else the axons were washed with distilled water after fixation. After physical rupture of the axolemma or saponin treatment, most of the MO remained intact. MT were stabilized by adding taxol in the incubation medium. Axons prepared by these methods contained many longitudinally oriented NF connected to each other by numerous fine cross-linkers (4-6 nm in diameter, 20-50 nm in length). Two specialized regions were apparent within the axons: one composed of fascicles of MT linked with each other by fine cross-bridges; the other was in the subaxolemmal space and consisted of actinlike filaments and a network of long cross-links (50-150 nm) which connected axolemma and actinlike filaments with NF and MT. F-actin was localized to the subaxolemmal space by the nitrobenzooxadiazol phallacidin method. MO were located mainly in these two specialized regions and were intimately associated with MT via fine short (10-20 nm in length) cross-bridges. Cross-links from NF to MO and MT were also common. All these cross-connections were observed after chemical extraction or physical rupture of the axon; however, these procedures removed granular materials which were attached to the filaments in the fresh unextracted axons. The cross-connections were also found in the axons washed with distilled water after fixation. I conclude that the cross- connections are real structures while the granular material is composed of soluble material, probably protein in nature. 相似文献
5.
Netrin-3 protein is localized to the axons of motor, sensory, and sympathetic neurons 总被引:2,自引:0,他引:2
The netrin family of axon guidance cues has been shown to play a pivotal role in the guidance of a variety of axon projections during embryonic development, both in the vertebrate and invertebrate. While the guidance potential of netrin-1 has been examined in depth in many regions of the developing mouse brain very little information is available on the expression and activity of netrin-3. Here we show that the netrin-3 protein is present on motor neurons and subpopulations of neurons within sensory and sympathetic ganglia. Moreover, significant levels of netrin-3 protein were found to be associated with the axons projecting from these neurons suggesting a role for netrin-3 in axon pathfinding and fasciculation within the peripheral nervous system. 相似文献
6.
Yurika Hashi Gota Kawai Susumu Kotani 《Bioscience, biotechnology, and biochemistry》2013,77(11):1864-1870
We previously used nuclear magnetic resonance (NMR) to analyze the structure of a synthetic tricosapeptide corresponding to an active site of microtubule-associated protein 4 (MAP4). To further the structural analysis, we have constructed a minimal active domain fragment of MAP4, encompassing the entire active site, and obtained its NMR spectra. The secondary structure prediction using partially assigned NMR data suggested that the fragment is largely unfolded. Two other independent techniques also demonstrated its unfolded nature, indicating that MAP4 belongs to the class of intrinsically disordered proteins (IDPs). The NMR spectra of the fragment-microtubule mixture revealed that the fragment binds to the microtubule using multiple binding sites, apparently contradicting our previous quantitative studies. Given that MAP4 is intrinsically disordered, we propose a mechanism in which any one of the binding sites is active at a time, which is one of the typical interaction mechanisms proposed for IDPs. 相似文献
7.
Microtubule-associated protein 1B: molecular structure, localization, and phosphorylation-dependent expression in developing neurons 总被引:13,自引:0,他引:13
Two monoclonal antibodies, 5E6 and 1B6, were raised against microtubule-associated protein 1B (MAP1B), a major component of the neuronal cytoskeleton. 5E6 recognized the entire MAP1B population, while 1B6 detected only phosphorylated forms. Affinity-purified MAP1B appeared as a long, filamentous molecule (186 +/- 38 nm) with a small spherical portion at one end, forming long cross-bridges between microtubules in vitro. These results, together with in vivo data from immunogold methods, demonstrate that MAP1B is a component of cross-bridges between microtubules in neurons. By immunohistochemical analysis, phosphorylated forms were shown to exist mainly in axons, whereas unphosphorylated forms were limited to cell bodies and dendrites. Phosphorylated MAP1B was quite abundant in developing axons, suggesting its essential role in axonal elongation. 相似文献
8.
Differential behavior of photoactivated microtubules in growing axons of mouse and frog neurons 下载免费PDF全文
To characterize the behavior of axonal microtubules in vivo, we analyzed the movement of tubulin labeled with caged fluorescein after activation to be fluorescent by irradiation of 365-nm light. When mouse sensory neurons were microinjected with caged fluorescein-labeled tubulin and then a narrow region of the axon was illuminated with a 365-nm microbeam, photoactivated tubulin was stationary regardless of the position of photoactivation. We next introduced caged fluorescein-labeled tubulin into Xenopus embryos and nerve cells isolated from injected embryos were analyzed by photoactivation. In this case, movement of the photoactivated zone toward the axon tip was frequently observed. The photoactivated microtubule segments in the Xenopus axon moved out from their initial position without significant spreading, suggesting that fluorescent microtubules are not sliding as individual filaments, but rather translocating en bloc. Since these observations raised the possibility that the mechanism of nerve growth might differ between two types of neurons, we further characterized the movement of another component of the axon structure, the plasma membrane. Analysis of the position of polystyrene beads adhering to the neurites of Xenopus neurons revealed anterograde movement of the beads at the rate similar to the rate of microtubule movement. In contrast, no movement of the beads relative to the cell body was observed in mouse sensory neurons. These results suggest that the mode of translocation of cytoskeletal polymers and some components of the axon surface differ between two neuron types and that most microtubules are stationary within the axon of mammalian neurons where the surface-related motility of the axon is not observed. 相似文献
9.
10.
Matsuda S Niidome T Nonaka H Goto Y Fujimura K Kato M Nakanishi M Akaike A Kihara T Sugimoto H 《Biochemical and biophysical research communications》2008,368(4):971-976
Microglia are believed to play an important role in the regulation of phagocytosis, neuronal survival, neuronal cell death, and inflammation. Recent studies have demonstrated that microglia are multipotential stem cells that give rise to neurons, astrocytes, and oligodendrocytes. However, the functional properties of neurons derived from microglia are poorly understood. In this study, we investigated the possibility that microglia differentiate into functional neurons. Immunocytochemical study demonstrated that microtubule-associated protein 2 (MAP2)-positive cells were derived from microglia under differentiation conditions. Intracellular Ca2+ imaging study demonstrated that KCl caused no significant changes in [Ca2+]i in microglia, whereas it caused a remarkable increase in [Ca2+]i in microglia-derived cells. Furthermore, electrophysiological study demonstrated that the spike waveform, firing rate, and tetrodotoxin sensitivity of extracellular action potentials evoked by 4-aminopyridine from microglia-derived MAP2-positive cells were nearly identical to those from cultured cortical neurons. These results suggest that microglia-derived MAP2-positive cells possess properties of functional neurons. 相似文献
11.
During development, fibroblast growth factors (FGF) are essential for early patterning events along the anterior-posterior axis, conferring positional identity to spinal motor neurons by activation of different Hox codes. In the periphery, signaling through one of four fibroblast growth factor receptors supports the development of the skeleton, as well as induction and maintenance of extremities. In previous studies, FGF receptor 2 (FGFR2) was found to interact with axon bound molecules involved in axon fasciculation and extension, thus rendering this receptor an interesting candidate for the promotion of proper peripheral innervation. However, while the involvement of FGFR2 in limb bud induction has been extensively studied, its role during axon elongation and formation of distinct nervous projections has not been addressed so far. We show here that motor neurons in the spinal cord express FGFR2 and other family members during the establishment of motor connections to the forelimb and axial musculature. Employing a conditional genetic approach to selectively ablate FGFR2 from motor neurons we found that the patterning of motor columns and the expression patterns of other FGF receptors and Sema3A in the motor columns of mutant embryos are not altered. In the absence of FGFR2 signaling, pathfinding of motor axons is intact, and also fasciculation, distal advancement of motor nerves and gross morphology and positioning of axonal projections are not altered. Our findings therefore show that FGFR2 is not required cell-autonomously in motor neurons during the formation of initial motor projections towards limb and axial musculature. 相似文献
12.
In neurons from rat hippocampus, VIP induces the elongation of dendrites. In the present study, we have investigated in cultured hippocampal neurons whether VIP changed the actin and tubulin cytoskeleton in dendrites. VIP caused the elongation of dendrites and induced the outgrowth of microtubules, so that they extended up to the tips. In contrast, VIP reduced the F-actin content measured as total pixel after phalloidin staining in dendritic tips. These results suggest that VIP causes dendrite elongation by facilitating the outgrowth of microtubules into the newly formed extensions. 相似文献
13.
GDNF对体外运动神经元和感觉神经元的影响 总被引:5,自引:0,他引:5
目的:探讨胶质细胞源性神经营养因子(GDNF)对正常胎鼠脊髓运动神经元(SMN)和背根神经节神经元(DRG)生长活性的作用.方法:建立大鼠胚胎SMN和DRG单细胞培养体系,观察1 μg/L、10 μg/L、50 μg/L和100 μg/L GDNF对SMN和DRG存活及突起生长的影响.结果: GDNF组培养的SMN和DRG存活数目明显增加,神经元突起长度比对照组明显增长,且具有剂量依赖趋势.结论: GDNF对正常大鼠胚胎发育期运动神经元和感觉神经元具有神经营养作用. 相似文献
14.
Properties of several protein kinases that copurify with rat spinal cord neurofilaments 总被引:2,自引:0,他引:2
C B Caputo L A Sygowski W F Brunner C W Scott A I Salama 《Biochimica et biophysica acta》1989,1012(3):299-307
Several protein kinases that copurify with neurofilaments (NF) were identified and each kinase was assessed for its ability to phosphorylate NF proteins. NFs were isolated using an axonal flotation procedure and the kinases were extracted from NFs with 0.8 M KCl. NF kinases were incubated with peptide substrates for selected protein kinases, [32P]ATP and protein kinase cofactors and inhibitors to characterize the kinases. Using peptide substrates, three types of kinase were identified, and a fourth was identified using NF protein as substrate. The first three kinases were the catalytic subunit of cAMP-dependent protein kinase, calcium-calmodulin dependent protein kinase II and a cofactor-independent kinase that phosphorylated prepro VIP sequence 156-170 and was inhibited by heparin. Using NF proteins as substrate, a fourth kinase was identified which was cofactor-independent and was not inhibited by heparin. Neither cofactor-independent kinase was casein kinase II. NF proteins were phosphorylated in vitro on serine and threonine, primarily by the two cofactor-independent kinases. Using [alpha-32P]8-N3ATP for affinity labeling, one kinase of 43,800 Da was identified. Thus, in addition to cAMP-dependent protein kinase and calcium-calmodulin dependent protein kinase II, two kinases have been found which are primarily responsible for NF phosphorylation in vitro and are cofactor-independent. 相似文献
15.
Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments 总被引:5,自引:2,他引:5 下载免费PDF全文
《The Journal of cell biology》1988,107(6):2689-2701
The 200-kD subunit of neurofilaments (NF-H) functions as a cross-bridge between neurofilaments and the neuronal cytoskeleton. In this study, four phosphorylated NF-H variants were identified as major constituents of axons from a single neuron type, the retinal ganglion cell, and were shown to have characteristics with different functional implications. We resolved four major Coomassie Blue-stained proteins with apparent molecular masses of 197, 200, 205, and 210 kD on high resolution one- dimensional SDS-polyacrylamide gels of mouse optic axons (optic nerve and optic tract). Proteins with the same electrophoretic mobilities were radiolabeled within retinal ganglion cells in vivo after injecting mice intravitreally with [35S]methionine or [3H]proline. Extraction of the radiolabeled protein fraction with 1% Triton X-100 distinguished four insoluble polypeptides (P197, P200, P205, P210) with expected characteristics of NF-H from two soluble neuronal polypeptides (S197, S200) with few properties of neurofilament proteins. The four Triton- insoluble polypeptides displayed greater than 90% structural homology by two-dimensional alpha-chymotryptic iodopeptide map analysis and cross-reacted with four different monoclonal and polyclonal antibodies to NF-H by immunoblot analysis. Each of these four polypeptides advanced along axons primarily in the Group V (SCa) phase of axoplasmic transport. By contrast, the two Triton-soluble polypeptides displayed only a minor degree of alpha-chymotryptic peptide homology with the Triton-insoluble NF-H forms, did not cross-react with NF-H antibodies, and moved primarily in the Group IV (SCb) wave of axoplasmic transport. The four NF-H variants were generated by phosphorylation of a single polypeptide. Each of these polypeptides incorporated 32P when retinal ganglion cells were radiolabeled in vivo with [32P]orthophosphate and each cross-reacted with monoclonal antibodies specifically directed against phosphorylated epitopes on NF-H. When dephosphorylated in vitro with alkaline phosphatase, the four variants disappeared, giving rise to a single polypeptide with the same apparent molecular mass (160 kD) as newly synthesized, unmodified NF-H. The NF-H variants distributed differently along optic axons. P197 predominated at proximal axonal levels; P200 displayed a relatively uniform distribution; and P205 and P210 became increasingly prominent at more distal axonal levels, paralleling the distribution of the stationary neurofilament network.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
16.
17.
18.
Interactions of microtubules, neurofilaments, and microtubule-associated proteins were investigated by turbidity and falling-ball viscometry measurements. We found evidence of endogenous GTPase activity in neurofilaments and microtubule-associated proteins (MAPs) in preparations that do not include urea or heat treatment, respectively. The absence or presence of either adenyl-5'-yl imidodiphosphonic acid or a GTP-regenerating system markedly influenced observed polymerization and gelation characteristics. Most significantly, the apparent viscosity of neurofilament and microtubule samples did not display a biphasic optimal MAP concentration profile when a GTP-regenerating system was operant. Likewise, GTP regeneration promoted the recovery of gelation following mechanical disruption of neurofilament/MAP/microtubule mixtures. These and other observations require some reassessment of proposed roles for microtubule-associated proteins in modulating neurofilament-microtubule interactions in vitro. 相似文献
19.
Summary Neuron populations in the retina of the toad, Bufo marinus, were labelled with a monoclonal antibody raised against microtubule-associated protein 2 (MAP2). A subpopulation of cones, probably corresponding to the blue-sensitive small single cones, large diameter amacrine cells in the most proximal row of the inner nuclear layer and some large ganglion cells in the ganglion cell layer were labelled. Double labelling experiments were carried out to establish the colocalisation of MAP2 with known putative transmitter substances of the anuran amacrine cells. MAP2 was colocalised in a subpopulation of serotonin-immunoreactive and in all tyrosine hydroxylase-immunoreactive amacrine cells. The results indicate, that the MAP2 content in the neurons of the anuran retina can be correlated with other well-defined neurochemical and/or physiological properties.On leave from Department of Zoology, Attlia József University, Szeged, Hungary 相似文献