首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phylogenetic relationships of members of Cotingidae were investigated using >2100 bp of sequence data from two nuclear introns (myoglobin intron 2 and G3PDH intron 11) and one protein-coding mitochondrial gene (cytochrome b). Strong support was found for a monophyletic clade including 23 traditional cotingid genera, corresponding to the Cotingidae sensu [Remsen, J.V. Jr., Jaramillo, A., Nores, M., Pacheco, J.F., Robbins, M.B., Schulenberg, T.S., Stiles, F.G., da Silva, J.M.C., Stotz, D.F., Zimmer, K.J., 2005. Version 2005-11-15. A classification of the bird species of South America. American Ornithologists' Union. ]. Neither Oxyruncus nor any of the genera in Tityrinae sensu [Prum, R.O, Lanyon, W.E., 1989. Monophyly and phylogeny of the Schiffornis group (Tyrannoidea). Condor 91, 444-461.] are members of Cotingidae. Within Cotingidae a polytomy of four well-supported clades was recovered: (1) the fruiteaters Pipreola and Ampelioides; (2) the Ampelion group, including Phytotoma; (3) Rupicola and Phoenicircus; and (4) the 'core cotingas' consisting of the remainder of the Cotingas (e.g. fruitcrows, Cotinga, Procnias, Lipaugus, and Carpodectes), with Snowornis in a basal position. The separation of Snowornis from Lipaugus [Prum, R.O, Lanyon, W.E., 1989. Monophyly and phylogeny of the Schiffornis group (Tyrannoidea). Condor 91, 444-461.] was strongly supported, as were the close relationships between Gymnoderus and Conioptilon, and between Tijuca and Lipaugus. However, basal relationships among 'core cotinga' clades were not resolved.  相似文献   

2.
Despite increased understanding of higher-level relationships in passerine birds in the last 15 years, the taxonomic boundaries and phylogenetic interrelationships of the major groups of the Tyrannida (including the cotingas, manakins, tityrines, and tyrant flycatchers) remain unclear. Here, we present an analysis of DNA sequence data obtained from two nuclear exons, three introns, and one mitochondrial gene for 26 genera of Tyrannida and 6 tracheophone outgroups. The analysis resulted in well-supported hypotheses about the earliest evolution within Tyrannida. The Cotingidae, Pipridae, Tityrinae (sensu) [Prum, R.O., Rice, N.H., Mobley, J.A., Dimmick, W.W., 2000. A preliminary phylogenetic hypothesis for the cotingas (Cotingidae) based on mitochondrial DNA. Auk 117, 236-241], Tyrannidae, and the tyrannid subfamiles Tyranninae and Pipromorphinae (sensu) [Sibley, C.G., Monroe, B. L. Jr., 1990. Distribution and Taxonomy of Birds of the World. Yale University Press, New Haven, CT] were all found to be reciprocally monophyletic (given the present taxon sampling). The Cotingidae and Pipridae form a clade that is the sister group to a well-supported clade including Oxyruncus, the Tityrinae, Piprites, and the Tyrannidae. Oxyruncus is the sister group to the Tityrinae, and Piprites is placed as the sister group to the Tyrannidae. The tyrannid subfamilies Tyranninae and Pipromorphinae are monophyletic sister taxa, but the relationships of Platyrinchus mystaceus to these two clades remains ambiguous. The presence of medial (=internal) cartilages in the syrinx is a synapomorphy for the Oxyruncus-Tityrinae-Piprites-Tyrannidae clade. Although morphological synapomorphies currently support the monophyly of both the Pipridae and the Cotingidae, convergences and/or reversals in morphological character states are common in Tyrannida. The relationship between Oxyruncus and the Tityrinae is congruent with additional syringeal synapomorphies and allozyme distance data. Accordingly, we propose the recognition the family Tityridae within the Tyrannida to include the genera Schiffornis, Laniisoma, Laniocera, Iodopleura, Xenopsaris, Pachyramphus, Tityra, and Oxyruncus.  相似文献   

3.
Phylogenetic relationships among the Tyrannides were assessed using over 4000 base pairs of nuclear recombination activating 1 (RAG-1) and 2 (RAG-2) DNA sequence data from about 93% of all described genera, which represents the most complete assessment of relationships for this diverse New World radiation to date. With this sampling we propose a significantly expanded interpretation of higher-level relationships within the group. The Tyrannides are shown to be comprised of six major lineages, all of which represent traditional family-level taxa ( sensu Fitzpatrick, 2004a and Snow, 2004a,b ; del Hoyo et al., 2004 ): (i) manakins (Pipridae); (ii) cotingas (Cotingidae); (iii) the sharpbill ( Oxyruncus ) + onychorhynchine flycatchers (Onychorhynchini); (iv) tityrines (Tityridae); (v) rhynchocycline flycatchers (Rhynchocyclidae); and (vi) the tyrant flycatchers (Tyrannidae). In addition, the RAG data recovered isolated lineages with uncertain relationships, including Neopipo , Platyrinchus , Piprites , and Tachuris . The Pipridae are the sister-group to all the other Tyrannides. Within the latter, the clade ((Oxyruncidae + Tityridae) + Cotingidae) is the sister-group of the Tyrannoidea. Within the Tyrannoidea, the Rhynchocyclidae and their allies are sisters to Neopipo  + Tyrannidae. Using our phylogenetic hypothesis, we propose the first comprehensive phylogenetic classification that attempts to achieve isometry between the tree and a classification scheme using subordination and phyletic sequencing. This study thus provides a phylogenetic framework for understanding the evolution of this diverse New World assemblage, and identifies many avenues for further systematic study.
 © The Willi Hennig Society 2009.  相似文献   

4.
In Europe, Miocene rails (Aves, Rallidae) are quite abundant, but their phylogenetic placement in the context of recent forms has remained elusive. Rails from the early Miocene of the Saint‐Gérand‐le‐Puy area in central France were first described in the 19th century, and currently, only two species are recognized, namely Palaeoaramides christyi and Paraortygometra porzanoides. Our examination of the material however suggests the presence of four, likely coeval, species of rail from these deposits. Palaeoaramides eximius, previously synonymized with Palaeoaramides christyi, is here shown to probably be a distinct species, and a previously unrecognized rail, Baselrallus intermedius gen. et sp. nov., is described. To find out how these fossil rails are related to modern Rallidae, we compared them with an extensive sample of extant rails and identified plesiomorphic and derived features for crown group Rallidae. Our assessment does not support a particularly close relationship of either Palaeoaramides to Aramides or Paraortygometra to Crex (Ortygometra), and overall, these fossil rails are more primitive than previously assumed. Based on our observations of the morphology of the previously undescribed humerus of Palaeoaramides, we show this taxon to be outside crown group Rallidae, and perhaps closely related to the early Oligocene taxon Belgirallus. On the other hand, Paraortygometra porzanoides bears a resemblance to recent flufftails (Sarothrura spp.) in some elements, but whether it can be included in a clade together with flufftails is uncertain.  相似文献   

5.
The pterolichoid feather mites of megapodes are reviewed. Named taxa are briefly discussed and most are figured. The Pterolichidae (Pterolichinae) are: Ascetohchus Perez & Atyeo, three species; Echinozonus Atyeo & Perez, six species; Pereziella Atyeo, two species; and Phycoferus Atyeo & Perez, two species. New pterolichine taxa, with the type species listed first, include: Botryaspis cordiforma gen. et sp.n. and B. cordata gen. et sp.n.; Cycloprotarsus lineatus gen. et sp.n., C. centralis gen. et sp.n. and C. monacrotrichus gen. et sp.n.; Eurypterolichus gen.n. for Pterolichus navicula comb.n. Trouessart & Neumann and E. coniger gen. et sp.n.; Goniodurus gen.n. for Pterolichus ( Pseudalloptes ) quadratus comb.n. Trouessart and G. bilobatus gen. et sp.n.; Haptepigynus gen.n. for Pterolichus ( Pseudalloptes ) tridentiger comb.n. Trouessart and H. holonotus gen. et sp.n.; Heliaspis ventralis gen. et sp.n.; Leipobius ocellatus gen. et sp.n.; Maleolichus maleo gen. et sp.n.; Mayracarus gen.n. for Pterolichus (P.) tritilobus comb.n. Trouessart; Megapodobius arcuatus gen. et sp.n. and M. striatus gen. et sp.n.; Oxygynurus brevissimus gen. et sp.n., O. longicaulis gen. et sp.n., O. mediocaulis gen. et sp.n. and O. parvicaulis gen. et sp. n.; Prionoturus amembranatus gen. et sp. n.; Talegallobius bidentatus gen. et sp.n.; and Tanysomacarus imperfectus gen. et sp.n. and T. brachymeles gen. et sp.n. A new taxon of the Thoracosathesidae is: Thoracosathes caudiculata sp.n. Keys are provided and host- commensal associations are discussed. All taxa are restricted to the Megapodiidae. Cheylabis fuscina Trouessart is assigned to Pereziella and has as a synonym P. dupilcata Atyeo.  相似文献   

6.
Behavioral shifts can initiate morphological evolution by pushing lineages into new adaptive zones. This has primarily been examined in ecological behaviors, such as foraging, but social behaviors may also alter morphology. Swallows and martins (Hirundinidae) are aerial insectivores that exhibit a range of social behaviors, from solitary to colonial breeding and foraging. Using a well‐resolved phylogenetic tree, a database of social behaviors, and morphological measurements, we ask how shifts from solitary to social breeding and foraging have affected morphological evolution in the Hirundinidae. Using a threshold model of discrete state evolution, we find that shifts in both breeding and foraging social behavior are common across the phylogeny of swallows. Solitary swallows have highly variable morphology, while social swallows show much less absolute variance in all morphological traits. Metrics of convergence based on both the trajectory of social lineages through morphospace and the overall morphological distance between social species scaled by their phylogenetic distance indicate strong convergence in social swallows, especially socially foraging swallows. Smaller physical traits generally observed in social species suggest that social species benefit from a distinctive flight style, likely increasing maneuverability and foraging success and reducing in‐flight collisions within large flocks. These results highlight the importance of sociality in species evolution, a link that had previously been examined only in eusocial insects and primates.  相似文献   

7.
8.
Among the 10,000 birds species living on earth, 5% (e.g., 560) need imperatively freshwater habitat in order to satisfy at least one of their life history traits. About 11 completed families could even disappear if their wetland habitat left. About 10% (58) of these can be considered as endemic. Africa contains the biggest number of endemic (20) and more precisely Madagascar. Among freshwater species, ducks and geese have a major importance in human activities in northern hemisphere related to food resources (hunting) or birding. Guest editors: E.V. Balian, C. Lévêque, H. Segers & K. Martens Freshwater Animal Diversity Assessment  相似文献   

9.
Understanding how animal signals are produced is critical for understanding their evolution because complexity and modularity in the underlying morphology can affect evolutionary patterns. Hummingbird feathers show some of the brightest and most iridescent colors in nature. These are produced by optically complex stacks of hollow, platelet-shaped organelles called melanosomes. Neither how these morphologies produce colors nor their evolution has been systematically studied. We first used nanoscale morphological measurements and optical modeling to identify the physical basis of color production in 34 hummingbird species. We found that, in general, the melanosome stacks function as multilayer reflectors, with platelet thickness and air space size explaining variation in hue (color) and saturation (color purity). Additionally, light rays reflected from the outer keratin surface interact with those reflected by small, superficial melanosomes to cause secondary reflectance peaks, primarily in short (blue) wavelengths. We then compared variation of both the morphological components and the colors they produce. The outer keratin cortex evolves independently and is more variable than other morphological traits, possibly due to functional constraints on melanosome packing. Intriguingly, shorter wavelength colors evolve faster than longer wavelength colors, perhaps due to developmental processes that enables greater lability of the shapes of small melanosomes. Together, these data indicate that increased structural complexity of feather tissues is associated with greater variation in morphology and iridescent coloration.  相似文献   

10.
Populations of a host species may exhibit different assemblages of parasites and other symbionts. The loss of certain species of symbionts (lineage sorting, or "missing-the-boat") is a mechanism by which geographical variation in symbiont assemblages can arise. We studied feather mites and lice from Australian brush-turkeys (Aves: Megapodiidae: Alectura lathami) and expected to observe geographical structuring in arthropod assemblages for several reasons. First, because the brush-turkey is a sedentary ground-dwelling bird, we predicted that geographically close host populations should share more similar arthropod assemblages than distant ones. Second, because brush-turkeys do not brood their young, vertical transfer of arthropods is unlikely, and brush-turkeys probably acquire their mites and lice at social maturity through contact with other birds. Young birds could disperse and found new populations without carrying complete sets of symbionts. We predicted that young birds would have fewer species of arthropods than older birds; in addition, we expected that males (which are polygynous) would have more species than females. Birds were sampled from 12 sites (=populations) along the east coast of Queensland, Australia, that were separated by a distance of 12.5-2,005 km. In total, 5 species of mites from the Pterolichidae and 1 species from the Ascouracaridae were found. Two species of lice were collected but in numbers too low to be statistically useful. Differentiation of mite assemblages was evident; in particular, Leipobius sp. showed 100% prevalence in 3 host populations and 0% in the remaining 9. A dendrogram of brush-turkey populations based on mite assemblages showed 2 geographically correlated clusters of sites, plus 1 cluster that contained 2 sites near Brisbane and 1 approximately at a distance of 1,000 km. There was no strong effect of host age or sex on number of mite species carried. Horizontal transfer of feather mites by hippoboscid flies, in addition to physical contact between hosts, may play a role in homogenizing symbiont assemblages within populations.  相似文献   

11.
Lorilichus n. g. (Pterolichidae, Pterolichinae) is restricted to the Indo-Australian parrots of the family Loriidae. Assigned to this new genus are Pterolichus (Pseudalloptes) species described by Trouessart in 1884, namely, lobiger (type-species), delibativentris, discifer, cultriventris, emargiventris and securiventris. The first three named species are illustrated and two new species, parvifolius and grandifolius, are described: the five species are from Lorius domicellus (L.).  相似文献   

12.
Species limits and the evolutionary mechanisms that have shaped diversification of woodpeckers and allies (Picidae) remain obscure, as inter and intraspecific phylogenetic relationships have yet to be comprehensively resolved for most genera. Herein, we analyzed 5020 base pairs of nucleotide sequence data from the mitochondrial and nuclear genomes to reconstruct the evolutionary history of Celeus woodpeckers. Broad geographic sampling was employed to assess species limits in phenotypically variable lineages and provide a first look at the evolution of song and plumage traits in this poorly known Neotropical genus. Our results strongly support the monophyly of Celeus and reveal several novel relationships across a shallow phylogenetic topology. We confirm the close sister relationship between Celeus spectabilis and the enigmatic Celeus obrieni, both of which form a clade with Celeus flavus. The Mesoamerican Celeus castaneus was placed as sister to a Celeus undatus-grammicus lineage, with the species status of the latter drawn into question given the lack of substantial genetic, morphological, and vocal variation in these taxa. We recovered paraphyly in Celeus elegans; however, this result appears to be the consequence of mitochondrial introgression from Celeus lugubris considering the monophyly of elegans at the ?-FIBI7 locus. A second instance of paraphyly was observed in Celeus flavescens with deep genetic splits and substantial phenotypic variation indicating the presence of two distinct species in this broadly distributed lineage. As such, we advocate elevation of Celeus flavescens ochraceus to species status. Our analysis of Celeus vocalizations and plumage characters demonstrates a pattern of lability consistent with a relatively recent origin of the genus and potentially rapid speciation history.  相似文献   

13.
Abstract Seven new feather mite species of the family Pterolichidae are described from various Australian parrots: Apexolichus lathami sp. n. from the swift parrot, Lathamus discolor (Shaw); Titanolichus platycerci sp. n. and Rhytidelasma punctata sp. n. from the pale-headed rosella, Platycercus adscitus (Latham); R. striata sp. n. from the Australian king-parrot, Alisterus scapularis (Lichtenstein); Lorilichus stenolobus sp. n. and Lorilichus curvilobus sp. n. from the rainbow lorikeet, Trichoglossus haematodus (Linnaeus); Psittophagus galahi sp. n. from the galah, Eolophus roseicapillus (Vieillot). We give a brief overview of taxonomic studies of pterolichid mites living on Psittaciformes, and discuss the main diagnostic characters of different generic groups of these mites.  相似文献   

14.
Coliiformes (mousebirds) are represented by just six extant species. These species, restricted to sub‐Saharan Africa, are all primarily frugivorous and are among the most sedentary of living birds. Previously described fossil Coliiformes preserving feather traces share the short, rounded wing shape of extant mousebirds. Along with osteological evidence, these observations have been proposed to support poor sustained flight capabilities across the stem mousebird lineage. We report a new species of Coliiformes from the early Eocene (51.66 ± 0.09 Ma) Fossil Butte Member of the Green River Formation, represented by one of the comparatively few fossils from these deposits preserving carbonized traces of the wing and tail feathering. Feather traces indicate an elongate, tapering wing shape similar to that of some extant aerial insectivores, and suggestive of a capacity for sustained and agile open‐air flight. Traces of the rectrices reveal the tail accounted for approximately two‐thirds of the total length of the bird, a proportion similar to that in living mousebirds. Phylogenetic analysis places the new species as a stem representative of Coliiformes, demonstrating for the first time that the two major clades of Coliiformes – Sandcoleidae and Colii – co‐occurred at Fossil Lake. Based on the recovered phylogeny, as well as the osteology and feathering of extant and fossil Coliiformes, the wing shape of the new species is interpreted as apomorphic. In addition to documenting unexpected morphological specialization within stem‐lineage Coliiformes, the new species adds yet another taxon to the emerging reconstruction of the diverse Paleogene avifauna from the tightly dated and nearly synchronous fossiliferous deposits of the Fossil Butte Member. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 685–706.  相似文献   

15.
Chromosomal evolution of South American Columbiformes (Aves)   总被引:3,自引:2,他引:1  
E. J. De Lucca 《Genetica》1984,62(3):177-185
Karyotypes are compared of 14 species of Brazilian Columbiformes (family Columbidae): Claravis pretiosa (2n=74), Columba cayennensis (2n=76), Columba picazuro (2n=76), Columba speciosa (2n=76), Columbina minuta (2n=76), Columbina passerina (2n=76), Columbina picui (2n=76), Columbina talpacoti (2n=76), Geotrygon montana (2n=86), Leptotila rufaxilla (2n=76), Leptotila verreauxi (2n=78), Scardafella squammata (2n=78), Uropelia campestris (2n=68) and Zenaida auriculata (2n=76). The macrochromosomes of each species were analysed by conventional Giemsa staining, cytobiometrically and with G-and C-banding.All species studied are characterized by typical bird karyotypes with a few pairs of macrochromosomes and many microchromosomes.The morphology and relative length of the Z chromosome are nearly the same in all species, but the W chromosome shows variation. The G-band patterns of the first pair in Columbiformes show a large positive band distally in the long arm, common to all species of the order. The constitutive heterochromatin is restricted to the centromeres of the macro- and microchromosomes. The W is the most heterochromatic chromosome in all species studied.Studies of relative lengths, arm ratios and G- and C-banding patterns showed that in Columbiformes pairs 3, 4 and 5 are the most stable. The types of rearrangements distinguishing between species vary among the genera: pericentric inversions in Columba; fusions and translocations in Uropelia; centric fissions in Geotrygon; fusions, translocations, para and pericentric inversions in Columbina, Leptotila, Zenaida and Scardafella.On the basis of the karyological findings the phylogenetic relationships of the Brazilian Columbiformes are discussed.This work was supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (Plano Integrado de Genética-Processo No. 22.1375/77 and 40.0499/80).  相似文献   

16.
A rich source of markers may be overlooked by screening for polymorphism in the source species only. We screened 129 microsatellite loci isolated from the powerful owl (Ninox strenua) against two closely related species; Ninox connivens and Ninox novaeseelandiae. From the screening effort 20 polymorphic markers were isolated, including six loci which were originally discarded as they were monomorphic in the source species. Further cross-species amplification of all 20 loci across species from two families, Strigidae and Tytonidae, revealed unusually high levels of polymorphism within closely related species, and limited success within phylogenetically distant species. Routine screening of multiple species during the marker development phase can yield a wider range of polymorphic markers which can subsequently enhance cross-species amplification attempts.  相似文献   

17.
The economically important grain aphid, Sitobion avenae (F.) shows colour polymorphism, with brown and green forms predominating. Colour is determined both genetically and in response to environmental factors, including nutrition. The biological significance of the colour polymorphism is unknown, although seasonal changes occur in the frequency of colour morphs in the field, whilst the brown morph may have adaptive significance in terms of hymenopterous endoparasitism. The ground colour of aphids is produced by haemolymph pigments, aphins (glucosides) and carotenoids. The latter may be under the synthetic control of intracellular endosymbiotic bacteria. In this study, the major carotenoid pigments of a brown and a green clone of S. avenae were examined using thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC), and their absorbance spectra recorded. Using TLC, the brown clone produced five bands of different Rf, ranging from yellow, to orange-pink to pink in colour. In contrast, the green clone gave only a single yellow band of higher Rf than any of the bands of brown aphids. Following separation of carotenoids by HPLC, brown aphids gave seven peaks and green aphids five. Comparison of absorbance maxima with known published values for carotenoids provides strong evidence for the identification of four of the carotenoid pigments from brown aphids (RB-4, 3,4-didehydrolycopene; RB-5, torulene; RB-6; lycopene; RB-7, γ-carotene) and one from green aphids (RG-2, α-carotene). The other carotenoids remain unidentified. The biosynthesis and possible biological relevance of the various pigments of S. avenae are briefly discussed.  相似文献   

18.
The louse genus Carduiceps Clay & Meinertzhagen, 1939 is widely distributed on sandpipers and stints (Calidrinae). The current taxonomy includes three species on the Calidrinae (Carduiceps meinertzhageni, Carduiceps scalaris, Carduiceps zonarius) and four species on noncalidrine hosts. We estimated a phylogeny of four of the seven species of Carduiceps (the three mentioned above and Carduiceps fulvofasciatus) from 13 of the 29 hosts based on three mitochondrial loci, and evaluated the relative importance of flyway differentiation (same host species has different lice along different flyways) and flyway homogenization (different host species have the same lice along the same flyway). We found no evidence for either process. Instead, the present, morphology‐based, taxonomy of the genus corresponds exactly to the gene‐based phylogeny, with all four included species monophyletic. Carduiceps zonarius is found both to inhabit a wider range of hosts than wing lice of the genus Lunaceps occurring on the same group of birds, and to occur on Calidris sandpipers of all sizes, both of which are unexpected for a body louse. The previously proposed family Esthiopteridae is found to be monophyletic with good support. The concatenated dataset suggests that the pigeon louse genus Columbicola may be closely related to the auk and diver louse genus Craspedonirmus. These two genera share some morphological characters with Carduiceps, but no support was obtained for grouping these three genera together. Based on mitochondrial data alone, the relationships among genera within this proposed family cannot be properly assessed, but some previously suggested relationships within this proposed family are confirmed.  相似文献   

19.
Summary The carotenoid pigments of the myxobacterium Sorangium compositum were analyzed by chromatographical and chemical techniques and by visible, infra red, and mass spectroscopy. Besides -carotene, neurosporene, torulene, lycopene, and 1,2-dihydro-1-hydroxy--carotene, four new carotenoid glycosides were found. These pigments were identified as 1,2-dihydro-1-hydroxy-torulene glucoside ester (I), 1,2-dihydro-3,1-dihydroxy-torulene glucoside ester (III), 1,2-dihydro-1-hydroxy-torulene rhamnoside (II), and 1,2-dihydro-3,1-dihydroxytorulene rhamnoside (IV).Fifth communication on the carotenoids of myxobacteria. Fourth communication see Arch. Mikrobiol. 76, 364–380 (1971).  相似文献   

20.
Puffins, auks and their allies in the wing‐propelled diving seabird clade Pan‐Alcidae (Charadriiformes) have been proposed to be key pelagic indicators of faunal shifts in Northern Hemisphere oceans. However, most previous phylogenetic analyses of the clade have focused only on the 23 extant alcid species. Here we undertake a combined phylogenetic analysis of all previously published molecular sequence data (~ 12 kb) and morphological data (n = 353 characters) with dense species level sampling that also includes 28 extinct taxa. We present a new estimate of the patterns of diversification in the clade based on divergence time estimates that include a previously vetted set of twelve fossil calibrations. The resultant time trees are also used in the evaluation of previously hypothesized paleoclimatic drivers of pan‐alcid evolution. Our divergence dating results estimate the split of Alcidae from its sister taxon Stercorariidae during the late Eocene (~ 35 Ma), an evolutionary hypothesis for clade origination that agrees with the fossil record and that does not require the inference of extensive ghost lineages. The extant dovekie Alle alle is identified as the sole extant member of a clade including four extinct Miocene species. Furthermore, whereas an Uria + Alle clade has been previously recovered from molecular analyses, the extinct diversity of closely related Miocepphus species yields morphological support for this clade. Our results suggest that extant alcid diversity is a function of Miocene diversification and differential extinction at the Pliocene–Pleistocene boundary. The relative timing of the Middle Miocene climatic optimum and the Pliocene–Pleistocene climatic transition and major diversification and extinction events in Pan‐Alcidae, respectively, are consistent with a potential link between major paleoclimatic events and pan‐alcid cladogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号