首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High inhibits and low stimulates bone resorption, which mediates part of the effect of chronic acidosis or acid feeding on bone. Soluble adenylyl cyclase (sAC) is a bicarbonate sensor that can potentially mediate the effect of bicarbonate on osteoclasts. Osteoclasts were incubated in 0, 12, and 24 mM at pH 7.4 for 7–8 days and assayed for tartrate‐resistant acid phosphatase (TRAP) and vacuolar‐ATPase expression, and H+ accumulation. Total number and area of TRAP (+) multinucleated osteoclasts was decreased by in a dose‐dependent manner. V‐ATPase expression and H+ accumulation normalized to cell cross‐sectional area or protein were not significantly changed. The ‐induced inhibition of osteoclast growth and differentiation was blocked by either 2‐hydroxyestradiol, an inhibitor of sAC or sAC knockdown by sAC specific siRNA. The model of inhibiting osteoclast via sAC was further supported by the fact that the dose‐response on osteoclasts is flat when cells were saturated with 8‐bromo‐cAMP, a permeant cAMP analog downstream from sAC thus simulating sAC activation. To confirm our in vitro findings in intact bone, we developed a 1‐week mouse calvaria culture system where osteoclasts were shown to be viable. Bone volume density (BV/TV) determined by micro‐computed tomography (µCT), was higher in 24 mM compared to 12 mM treated calvaria. This effect on BV/TV was blocked by 2‐hydroxyestradiol. In summary, sAC mediates the inhibition of osteoclast function by , by acting as a sensor. J. Cell. Physiol. 220: 332–340, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Adenylyl cyclases (ACs) synthesize cAMP and are present in cells as transmembrane AC and soluble AC (sAC). In sperm, the cAMP produced regulates ion channels and it also activates protein kinase-A that in turn phosphorylates specific axonemal proteins to activate flagellar motility. In mammalian sperm, sAC localizes to the midpiece of flagella, whereas in sea urchin sperm sAC is along the entire flagellum. Here we show that in sea urchin sperm, sAC is complexed with proteins of the plasma membrane and axoneme. Immunoprecipitation shows that a minimum of 10 proteins is tightly associated with sAC. Mass spectrometry of peptides derived from these proteins shows them to be: axonemal dynein heavy chains 7 and 9, sperm specific Na+/H+ exchanger, cyclic nucleotide-gated ion channel, sperm specific creatine kinase, membrane bound guanylyl cyclase, cyclic GMP specific phosphodiesterase 5A, the receptor for the egg peptide speract, and alpha- and beta-tubulins. The sAC-associated proteins could be important in linking membrane signal transduction to energy utilisation in the regulation of flagellar motility.  相似文献   

3.
"Soluble" adenylyl cyclase (sAC) is a widely expressed source of cAMP in mammalian cells that is evolutionarily, structurally, and biochemically distinct from the G protein-responsive transmembrane adenylyl cyclases. In contrast to transmembrane adenylyl cyclases, sAC is insensitive to heterotrimeric G protein regulation and forskolin stimulation and is uniquely modulated by bicarbonate ions. Here we present the first report detailing kinetic analysis and biochemical properties of purified recombinant sAC. We confirm that bicarbonate regulation is conserved among mammalian sAC orthologs and demonstrate that bicarbonate stimulation is consistent with an increase in the V(max) of the enzyme with little effect on the apparent K(m) for substrate, ATP-Mg(2+). Bicarbonate can further increase sAC activity by relieving substrate inhibition. We also identify calcium as a direct modulator of sAC activity. In contrast to bicarbonate, calcium stimulates sAC activity by decreasing its apparent K(m) for ATP-Mg(2+). Because of their different mechanisms, calcium and bicarbonate synergistically activate sAC; therefore, small changes of either calcium or bicarbonate will lead to significant changes in cellular cAMP levels.  相似文献   

4.
Feng Q  Zhang Y  Li Y  Liu Z  Zuo J  Fang F 《Biochimie》2006,88(3-4):319-328
Soluble adenylyl cyclase (sAC) is a newly identified source of cyclic adenosine 3',5'-monophosphate (cAMP). Unlike the well-known transmembrane adenylyl cyclases (tmACs), sAC locates to the nucleus, mitochondria and microtubules. For most cAMP-signaling microdomains, there is always an AC nearby, for example tmAC. But it was until the discovery of sAC that there was not known cAMP resource in the nucleus. sAC associates with nuclear cAMP-signaling microdomains, which were once considered to depend on the diffusion of cAMP produced by tmAC. In this report, we focus on the truncated soluble adenylyl cyclase (tsAC), the most common existence form of sAC in tissues. Two domains (145-200 aa and 257-318 aa) related with sAC nuclear localization were present here. The findings provide evidence that these two domains are critical for the nuclear localization of sAC and they collocated with the catalytic domains.  相似文献   

5.
Electrolyte transport processes of small intestinal epithelia maintain a balance between hydration of the luminal contents and systemic fluid homeostasis. Under basal conditions, electroneutral Na(+) absorption mediated by Na(+)/H(+) exchanger 3 (NHE3) predominates; under stimulated conditions, increased anion secretion mediated by CFTR occurs concurrently with inhibition of Na(+) absorption. Homeostatic adjustments to diseases that chronically affect the activity of one transporter (e.g., cystic fibrosis) may include adaptations in the opposing transport process to prevent enterosystemic fluid imbalance. To test this hypothesis, we measured electrogenic anion secretion (indexed by the short-circuit current) across NHE3-null [NHE3(-)] murine small intestine and electroneutral Na(+) absorption (by radioisotopic flux analysis) across small intestine of mice with gene-targeted disruptions of the anion secretory pathway, i.e., CFTR-null [CFTR(-)] or Na(+)-K(+)-2Cl(-) cotransporter-null [NKCC1(-)]. Protein expression of NHE3 and CFTR in the intestinal epithelia was measured by immunoblotting. In NHE3(-), compared with wild-type small intestine, maximal and bumetanide-sensitive anion secretion following cAMP stimulation was significantly reduced, and there was a corresponding decrease in CFTR protein expression. In CFTR(-) and NKCC1(-) intestine, Na(+) absorption was significantly reduced compared with wild-type. NHE3 protein expression was decreased in the CFTR(-) intestine but was unchanged in the NKCC1(-) intestine, indicating that factors independent of expression also downregulate NHE3 activity. Together, these data support the concept that absorptive and secretory processes determining NaCl and water movement across the intestinal epithelium are regulated in parallel to maintain balance between the systemic fluid volume and hydration of the luminal contents.  相似文献   

6.
This review discusses the potential place of soluble adenylyl cyclase (sAC) in the framework of signaling in the cardiovascular system. cAMP has been studied as a critical and pleiotropic second messenger in cardiomyocytes, endothelial cells, and smooth muscle vascular cells for many years. It is involved in the transduction of signaling by catecholamines, prostaglandins, adenosine, and glucagon, just to name a few. These hormones can act via cAMP by binding to a G protein-coupled receptor on the plasma membrane with subsequent activation of a heterotrimeric G protein and its downstream effector, transmembrane adenylyl cyclase. This has long been the canonical standard for cAMP production in a cell. However, the relatively recent discovery of a unique source of cAMP, sAC, creates the potential for a shift in this signaling paradigm. In fact, sAC has been shown to play a role in apoptosis in coronary endothelial cells and cardiomyocytes. Additionally, it links nutrient utilization with ATP production in the liver and brain, which suggests one of many potential roles for sAC in cardiac function. The possibility of producing cAMP from a source distal to the plasma membrane provides a critical new building block for reconstructing the cellular signaling infrastructure.  相似文献   

7.
8.
9.
The molecular basis by which organisms detect and respond to fluctuations in inorganic carbon is not known. The cyaB1 gene of the cyanobacterium Anabaena sp. PCC7120 codes for a multidomain protein with a C-terminal class III adenylyl cyclase catalyst that was specifically stimulated by bicarbonate ion (EC50 9.6 mm). Bicarbonate lowered substrate affinity but increased reaction velocity. A point mutation in the active site (Lys-646) reduced activity by 95% and was refractory to bicarbonate activation. We propose that Lys-646 specifically coordinates bicarbonate in the active site in conjunction with an aspartate to threonine polymorphism (Thr-721) conserved in class III adenylyl cyclases from diverse eukaryotes and prokaryotes. Using recombinant proteins we demonstrated that adenylyl cyclases that contain the active site threonine (cyaB of Stigmatella aurantiaca and Rv1319c of Mycobacterium tuberculosis) are bicarbonate-responsive, whereas adenylyl cyclases with a corresponding aspartate (Rv1264 of Mycobacterium) are bicarbonate-insensitive. Large numbers of class III adenylyl cyclases may therefore be activated by bicarbonate. This represents a novel mechanism by which diverse organisms can detect bicarbonate ion.  相似文献   

10.
The gulf toadfish (Opsanus beta) intestine secretes base mainly in the form of HCO3- via apical anion exchange to serve Cl- and water absorption for osmoregulatory purposes. Luminal HCO3- secretion rates measured by pH-stat techniques in Ussing chambers rely on oxidative energy metabolism and are highly temperature sensitive. At 25 degrees C under in vivo-like conditions, secretion rates averaged 0.45 micromol x cm(-2) x h(-1), of which 0.25 micromol x cm(-2) x h(-1) can be accounted for by hydration of endogenous CO2 partly catalyzed by carbonic anhydrase. Complete polarity of secretion of HCO3- and H+ arising from the CO2 hydration reaction is evident from equal rates of luminal HCO3- secretion via anion exchange and basolateral H+ extrusion. When basolateral H+ extrusion is partly inhibited by reduction of serosal pH, luminal HCO3- secretion is reduced. Basolateral H+ secretion occurs in exchange for Na+ via an ethylisopropylamiloride-insensitive mechanism and is ultimately fueled by the activity of the basolateral Na+-K+-ATPase. Fluid absorption by the toadfish intestine to oppose diffusive water loss to the concentrated marine environment is accompanied by a substantial basolateral H+ extrusion, intimately linking osmoregulation and acid-base balance.  相似文献   

11.
Crystallographic studies have elucidated the binding mechanism of forskolin and P-site inhibitors to adenylyl cyclase. Accordingly, computer-assisted drug design has enabled us to identify isoform-selective regulators of adenylyl cyclase. After examining more than 200 newly synthesized derivatives of forskolin, we found that the modification at the positions of C6 and C7, in general, enhances isoform selectivity. The 6-(3-dimethylaminopropionyl) modification led to an enhanced selectivity for type V, whereas 6-[N-(2-isothiocyanatoethyl) aminocarbonyl] and 6-(4-acrylbutyryl) modification led to an enhanced selectivity for type II. In contrast, 2'-deoxyadenosine 3'-monophosphate, a classical and 3'-phosphate-substituted P-site inhibitor, demonstrated a 27-fold selectivity for inhibiting type V relative to type II, whereas 9-(tetrahydro-2-furyl) adenine, a ribose-substituted P-site ligand, showed a markedly increased, 130-fold selectivity for inhibiting type V. Consequently, on the basis of the pharmacophore analysis of 9-(tetrahydro-2-furyl) adenine and adenylyl cyclase, a novel non-nucleoside inhibitor, 2-amino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone (NKY80), was identified after virtual screening of more than 850,000 compounds. NKY80 demonstrated a 210-fold selectivity for inhibiting type V relative to type II. More importantly, the combination of a type III-selective forskolin derivative and 9-(tetrahydro-2-furyl) adenine or NKY80 demonstrated a further enhanced selectivity for type III stimulation over other isoforms. Our data suggest the feasibility of adenylyl cyclase isoform-targeted regulation of cyclic AMP signaling by pharmacological reagents, either alone or in combination.  相似文献   

12.
Mammals express nine membranous adenylyl cyclase isoforms (ACs 1-9), a structurally related soluble guanylyl cyclase (sGC) and a soluble AC (sAC). Moreover, Bacillus anthracis and Bacillus pertussis produce the AC toxins, edema factor (EF), and adenylyl cyclase toxin (ACT), respectively. 2'(3')-O-(N-methylanthraniloyl)-guanosine 5'-[gamma-thio]triphosphate is a potent competitive inhibitor of AC in S49 lymphoma cell membranes. These data prompted us to study systematically the effects of 24 nucleotides on AC in S49 and Sf9 insect cell membranes, ACs 1, 2, 5, and 6, expressed in Sf9 membranes and purified catalytic subunits of membranous ACs (C1 of AC5 and C2 of AC2), sAC, sGC, EF, and ACT in the presence of MnCl(2). N-Methylanthraniloyl (MANT)-GTP inhibited C1.C2 with a K(i) of 4.2 nm. Phe-889 and Ile-940 of C2 mediate hydrophobic interactions with the MANT group. MANT-inosine 5'-[gamma-thio]triphosphate potently inhibited C1.C2 and ACs 1, 5, and 6 but exhibited only low affinity for sGC, EF, ACT, and G-proteins. Inosine 5'-[gamma-thio]triphosphate and uridine 5'-[gamma-thio]triphosphate were mixed G-protein activators and AC inhibitors. AC5 was up to 15-fold more sensitive to inhibitors than AC2. EF and ACT exhibited unique inhibitor profiles. At sAC, 2',5'-dideoxyadenosine 3'-triphosphate was the most potent compound (IC(50), 690 nm). Several MANT-adenine and MANT-guanine nucleotides inhibited sGC with K(i) values in the 200-400 nm range. UTP and ATP exhibited similar affinities for sGC as GTP and were mixed sGC substrates and inhibitors. The exchange of MnCl(2) against MgCl(2) reduced inhibitor potencies at ACs and sGC 1.5-250-fold, depending on the nucleotide and cyclase studied. The omission of the NTP-regenerating system from cyclase reactions strongly reduced the potencies of MANT-ADP, indicative for phosphorylation to MANT-ATP by pyruvate kinase. Collectively, AC isoforms and sGC are differentially inhibited by purine and pyrimidine nucleotides.  相似文献   

13.
Structural development and lipid absorption in anterior intestine of gilt-head sea bream Sparus aurata , were studied by light and electron microscopy during three stages of post-embryonic development: (1) the endotrophic period from hatching day (day 0) to mouth opening day (day 3); (2) the endo-exotrophic period from days 3 to 15; (3) the exotrophic period after day 15. During the 2 days following hatching, there was no trace of lipids in intestinal epithelia. Before mouth opening day, the first lipoproteic particles of endogenous origin appeared in enterocyte endoplasmic reticulum and Golgi apparatus. During the endo-exotrophic period, lipoproteinogenesis increased weakly until day 9, and more greatly between days 9 and 15. It intensified at the beginning of the exotrophic period to remain at a high level afterwards. Until day 15, few transfers of lipoproteins to interenterocyte spaces occurred, whereas no lipoproteins were detectable in the blood flow from days 7 to 9. Their concentration increased slightly between days 9 and 15 to become intense afterwards. Lipid droplets appeared from day 7, and subsisted until the end of endo-exotrophic period. Possible relationships between very low density lipoproteins and chylomicron type lipoproteins and lipid droplets related to lipid excess in food are discussed.  相似文献   

14.
Glaucoma is a leading cause of blindness affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP). IOP results from the resistance to drainage of aqueous humor (AH) produced by the ciliary body in a process requiring bicarbonate. Once secreted into the anterior chamber, AH drains from the eye via two pathways: uveoscleral and pressure-dependent or conventional outflow (C(t)). Modulation of "inflow" and "outflow" pathways is thought to occur via distinct, local mechanisms. Mice deficient in the bicarbonate channel bestrophin-2 (Best2), however, exhibit a lower IOP despite an increase in AH production. Best2 is expressed uniquely in nonpigmented ciliary epithelial (NPE) cells providing evidence for a bicarbonate-dependent communicative pathway linking inflow and outflow. Here, we show that bicarbonate-sensitive soluble adenylyl cyclase (sAC) is highly expressed in the ciliary body in NPE cells, but appears to be absent from drainage tissues. Pharmacologic inhibition of sAC in mice causes a significant increase in IOP due to a decrease in C(t) with no effect on inflow. In mice deficient in sAC IOP is elevated, and C(t) is decreased relative to wild-type mice. Pharmacologic inhibition of sAC did not alter IOP or C(t) in sAC-deficient mice. Based on these data we propose that the ciliary body can regulate C(t) and that sAC serves as a critical sensor of bicarbonate in the ciliary body regulating the secretion of substances into the AH that govern outflow facility independent of pressure.  相似文献   

15.
16.
cAMP-dependent activation of the cystic fibrosis transmembrane conductance regulator (CFTR) regulates fluid transport in many tissues. Secretion by the corneal endothelium is stimulated by cAMP and dependent on HCO(3)(-). We asked whether HCO(3)(-) can secondarily increase CFTR permeability in bovine corneal endothelial cells (BCEC) by activating soluble adenylyl cyclase (sAC). Immunofluorescence suggests that sAC is distributed throughout the cytoplasm. HCO(3)(-) (40 mM) increased cAMP concentration 42% in the presence of 50 microM rolipram (a phosphodiesterase 4 inhibitor), and a standard HCO(3)(-) Ringer solution (28.5 mM) increased apical Cl(-) permeability by 78% relative to HCO(3)(-)-free solution. The HCO(3)(-)-dependent increase in Cl(-) permeability was reduced 60% by 20 mM NaHSO(3) (a weak agonist of sAC). NaHSO(3) alone increased apical Cl(-) permeability by only 13%. The HCO(3)(-)-dependent increase in Cl(-) permeability was reduced 57% in the presence of 50 microM Rp-adenosine 3',5'-cyclic monophosphorothioate, and 86% by 50 microM 5-nitro-2-(3-phenylpropyl-amino)benzoic acid but unaffected by 200 microM apical H(2)DIDS. CFTR phosphorylation was increased 23, 150, and 32% by 20 mM HSO(3)(-), 28.5 mM HCO(3)(-), and 28.5 mM HCO(3)(-) + 20 mM HSO(3)(-), respectively. Activation of apical Cl(-) permeability by 5 microM genistein was increased synergistically by HCO(3)(-) over that due to genistein and HCO(3)(-) alone. We conclude that HCO(3)(-)-stimulated sAC is a form of autocrine signaling that contributes to baseline cAMP production, thereby affecting baseline CFTR activity in BCEC. This form of autocrine signaling may be important in tissues that express sAC and exhibit robust HCO(3)(-) influx (e.g., ocular ciliary epithelium, choroid plexus, and airway epithelium).  相似文献   

17.
Fine structure of the intestine development in cultured sea bream larvae   总被引:5,自引:0,他引:5  
At hatching, the gut cells of Sparus aurata are quite undifferentiated; however, slight ultrastructural differences can already be distinguished between the presumptive intestinal regions. The hindgut cells are more differentiated than midgut cells and the rectal cells show rather particular ultrastructural features. During days 1 (D1) and 2 (D2) after hatching, major changes occur that lead to full differentiation of the epithelial cells. Shortly before the onset of exogenous feeding (D3), the anterior intestine enterocytes can synthesize lipoprotein particles (LP) from endogenous lipids. The posterior intestine enterocytes show morphological features indicating a role in absorption and intracellular digestion of nutrients, whereas the rectal cells do not. Transient ciliated cells occur at hatching (D0) in the presumptive intestine, except in the caudal rectum, and disappear at the start of the late endotrophic phase about 3 days after hatching (D3). At hatching, very scarce enteroendocrine and leucocyte-like cells are found at the base of the gut epithelium. Their number increases throughout development. At D3 (late endotrophic phase), LP synthesized mainly in the periblast invade the circulatory system, interstitial spaces of the subepithelial tissue and intercellular spaces of the gut epithelium. When the endo-exotrophic phase begins (D4), the enterocytes can absorb exogenous food. Acid phosphatase activity was detected in microvilli, pical vacuoles and Golgi complex in both anterior and posterior enterocytes, as well as in supranuclear vacuoles (SNV) of posterior enterocytes, but not in the apical tubulovesicular system (TVS). During the exotrophic phase, large lipid droplets (LD) are found in anterior enterocytes, and the SNV occupy a large cell volume in posterior enterocytes. LP accumulate first in extracellular spaces and then are transferred to the circulatory system. Mucous and rodlet cells appear in the intestinal epithelium during the exotrophic phase, from D15.  相似文献   

18.
Beeler JA  Yan SZ  Bykov S  Murza A  Asher S  Tang WJ 《Biochemistry》2004,43(49):15463-15471
Adenylyl cyclase (AC) is a prototypical cell-signaling molecule expressed in virtually all organisms from bacteria to man. While C1b, a poorly conserved region within mammalian AC, has been implicated in numerous isoform-specific regulatory properties, no one has purified the C1b region as a functional protein to homogeneity in order to study its role in enzyme function. We hypothesize that C1b is an internal regulatory subunit. To pursue this hypothesis, we constructed several soluble C1b proteins from type VII AC, arriving at one, 7C1b-S, which can be expressed and purified from Escherichia coli. 7C1b-S is relatively stable, as demonstrated by limited proteolytic analysis, circular dichroism, and UV Raman spectroscopy. Using size-exclusion chromatography and co-immunoprecipitation we demonstrate that 7C1b-S interacts with a cardinal activator of AC (Gsalpha) and with the conserved first catalytic domain (C1a) of type VII AC. We show that 7C1b-S inhibits Gsalpha-stimulated and Gsalpha-forskolin stimulated activity in our soluble ACVII model system. On the basis of these results, we suggest that 7C1b-S meets basic criteria to serve as a model protein for the C1b region and may be used as a prototype to develop other isoform C1b soluble model proteins to further investigate the role of this domain in isoform-specific regulation of adenylyl cyclase.  相似文献   

19.
Escherichia coli cells permeabilized by treatment with low concentrations of toluene contain an adenylyl cyclase activity that can be stimulated 3.6-7.6-fold by GTP. The stimulatory effect of GTP is maximal at concentrations of the nucleotide in the physiological range (above 0.7 mM). Studies of the dependence of velocity on substrate (ATP) concentration indicate that the velocity vs. substrate plots are sigmoid in the absence of GTP but hyperbolic in the presence of GTP, suggesting an allosteric regulatory site that can be occupied by either ATP or GTP. Replacement of ATP by AMPPNP as substrate results in velocity vs. substrate plots that are hyperbolic in the absence or presence of GTP, although GTP increases the Vmax by a factor of 2.2; these findings indicate that AMPPNP specifically occupies the substrate site and GTP exclusively occupies the regulatory site. A test of the capacity of other guanine nucleotides to stimulate adenylyl cyclase activity showed that 2'-deoxy-GTP was almost as effective as GTP, but that GDP, GMP, ppGpp, and 3',5'-cGMP were not stimulatory effectors; GTP-gamma-S and GMPPNP stimulated adenylyl cyclase activity but to a lesser degree than did GTP. In addition to the previous indication that ATP can occupy the regulatory site on adenylyl cyclase, it was found that CTP and UTP were potent stimulators. Thus, all the naturally occurring RNA precursor nucleoside triphosphates are capable of stimulating adenylyl cyclase activity. In contrast, PPPi inhibits adenylyl cyclase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Mutational replacements of specific residues in the GTP-binding pocket of the 21-kDa ras proteins (p21ras) reduce their GTPase activity. To test the possibility that the cognate regions of G protein alpha chains participate in GTP binding and hydrolysis, we compared signaling functions of normal and mutated alpha chains (termed alpha s) of Gs, the stimulatory regulator of adenylyl cyclase. alpha s chains were expressed in an alpha s-deficient S49 mouse lymphoma cell line, cyc-. alpha s in which leucine replaces glutamine 227 (corresponding to glutamine 61 of p21ras) constitutively activates adenylyl cyclase and reduces the kcat for GTP hydrolysis more than 100-fold. There is a smaller reduction in GTPase activity in another mutant in which valine replaces glycine 49 (corresponding to glycine 12 of p21ras). This mutant alpha s is a poor activator of adenylyl cyclase. Moreover, the glycine 49 protein, unlike normal alpha s, is not protected against tryptic cleavage by hydrolysis resistant GTP analogs; this finding suggests impairment of the mutant protein's ability to attain the active (GTP-bound) conformation. We conclude that alpha s residues near glutamine 227 and glycine 49 participate in binding and hydrolysis of GTP, although the GTP binding regions of alpha s and p21ras are not identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号