首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Hoeffer CA  Klann E 《Neuron》2007,54(2):186-189
A critical molecular requirement underlying many forms of long-lasting synaptic plasticity and memory is the de novo synthesis of mRNAs and proteins. In a recent paper in Cell, Costa-Mattioli et al. present data from a pharmacogenetic study that places a key regulatory event in the "neural decision" to undergo these persistent neuronal changes under translational control mediated by eIF2alpha.  相似文献   

3.
Long-term memory and its putative synaptic correlates the late phases of both long-term potentiation and long-term depression require enhanced protein synthesis. On the basis of recent data on translation-dependent synaptic plasticity and on the supralinear effect of activation of nearby synapses on action potential generation, we propose a model for the formation of long-term memory engrams at the single neuron level. In this model, which we call clustered plasticity, local translational enhancement, along with synaptic tagging and capture, facilitates the formation of long-term memory engrams through bidirectional synaptic weight changes among synapses within a dendritic branch.  相似文献   

4.
Protein degradation through the ubiquitin-proteasome system [UPS] plays a critical role in some forms of synaptic plasticity. However, its role in memory formation in the amygdala, a site critical for the formation of fear memories, currently remains unknown. Here we provide the first evidence that protein degradation through the UPS is critically engaged at amygdala synapses during memory formation and retrieval. Fear conditioning results in NMDA-dependent increases in degradation-specific polyubiquitination in the amygdala, targeting proteins involved in translational control and synaptic structure and blocking the degradation of these proteins significantly impairs long-term memory. Furthermore, retrieval of fear memory results in a second wave of NMDA-dependent polyubiquitination that targets proteins involved in translational silencing and synaptic structure and is critical for memory updating following recall. These results indicate that UPS-mediated protein degradation is a major regulator of synaptic plasticity necessary for the formation and stability of long-term memories at amygdala synapses.  相似文献   

5.
Dynamic visualization of local protein synthesis in hippocampal neurons   总被引:21,自引:0,他引:21  
Aakalu G  Smith WB  Nguyen N  Jiang C  Schuman EM 《Neuron》2001,30(2):489-502
Using pharmacological approaches, several recent studies suggest that local protein synthesis is required for synaptic plasticity. Convincing demonstrations of bona fide dendritic protein synthesis in mammalian neurons are rare, however. We developed a protein synthesis reporter in which the coding sequence of green fluorescent protein is flanked by the 5' and 3' untranslated regions from CAMKII-alpha, conferring both dendritic mRNA localization and translational regulation. In cultured hippocampal neurons, we show that BDNF, a growth factor involved in synaptic plasticity, stimulates protein synthesis of the reporter in intact, mechanically, or "optically" isolated dendrites. The stimulation of protein synthesis is blocked by anisomycin and not observed in untreated neurons. In addition, dendrites appear to possess translational hot spots, regions near synapses where protein synthesis consistently occurs over time.  相似文献   

6.
Fischer A  Sananbenesi F  Pang PT  Lu B  Tsai LH 《Neuron》2005,48(5):825-838
While deregulation of cyclin-dependent kinase 5 (Cdk5) has been implicated in neurodegenerative diseases, its precise role in synaptic plasticity and memory remains elusive. Proteolytic cleavage of p35, a regulatory subunit of Cdk5, by calpain results in the generation of the truncated p25 protein, which causes hyperactivation of Cdk5. Using region-specific and inducible transgenic mice, we show that transiently increased p25 expression in the hippocampus enhanced long-term potentiation (LTP) and facilitated hippocampus-dependent memory. Moreover, p25 expression increased the number of dendritic spines and synapses. Importantly, enhanced memory achieved by a transient expression of p25 followed by its repression did not cause neurodegeneration. In contrast, prolonged p25 production caused severe cognitive deficits, which were accompanied by synaptic and neuronal loss and impaired LTP. Our data suggest a role for p25 in synaptic plasticity, synaptogenesis, learning, and memory and provide a model whereby deregulation of a plasticity factor can contribute to neurodegeneration.  相似文献   

7.
It is clear that de novo protein synthesis has an important function in synaptic transmission and plasticity. A substantial amount of work has shown that mRNA translation in the hippocampus is spatially controlled and that dendritic protein synthesis is required for different forms of long‐term synaptic plasticity. More recently, several studies have highlighted a function for protein degradation by the ubiquitin proteasome system in synaptic plasticity. These observations suggest that changes in synaptic transmission involve extensive regulation of the synaptic proteome. Here, we review experimental data supporting the idea that protein homeostasis is a regulatory motif for synaptic plasticity.  相似文献   

8.
In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.  相似文献   

9.
Synapses, points of contact between axons and dendrites, are conduits for the flow of information in the circuitry of the central nervous system. The strength of synaptic transmission reflects the interconnectedness of the axons and dendrites at synapses; synaptic strength in turn is modified by the frequency with which the synapses are stimulated. This modulation of synaptic strength, or synaptic plasticity, probably forms the cellular basis for learning and memory. RNA metabolism, particularly translational control at or near the synapse, is one process that controls long-lasting synaptic plasticity and, by extension, memory formation and consolidation. In the present paper, I review some salient features of translational control of synaptic plasticity.  相似文献   

10.
11.
12.
Long-term memory (LTM) formation requires new protein synthesis and new gene expression. Based on our work in Aplysia, we hypothesized that the rRNA genes, stimulation-dependent targets of the enzyme Poly(ADP-ribose) polymerase-1 (PARP-1), are primary effectors of the activity-dependent changes in synaptic function that maintain synaptic plasticity and memory. Using electrophysiology, immunohistochemistry, pharmacology and molecular biology techniques, we show here, for the first time, that the maintenance of forskolin-induced late-phase long-term potentiation (L-LTP) in mouse hippocampal slices requires nucleolar integrity and the expression of new rRNAs. The activity-dependent upregulation of rRNA, as well as L-LTP expression, are poly(ADP-ribosyl)ation (PAR) dependent and accompanied by an increase in nuclear PARP-1 and Poly(ADP) ribose molecules (pADPr) after forskolin stimulation. The upregulation of PARP-1 and pADPr is regulated by Protein kinase A (PKA) and extracellular signal-regulated kinase (ERK)—two kinases strongly associated with long-term plasticity and learning and memory. Selective inhibition of RNA Polymerase I (Pol I), responsible for the synthesis of precursor rRNA, results in the segmentation of nucleoli, the exclusion of PARP-1 from functional nucleolar compartments and disrupted L-LTP maintenance. Taken as a whole, these results suggest that new rRNAs (28S, 18S, and 5.8S ribosomal components)—hence, new ribosomes and nucleoli integrity—are required for the maintenance of long-term synaptic plasticity. This provides a mechanistic link between stimulation-dependent gene expression and the new protein synthesis known to be required for memory consolidation.  相似文献   

13.
14.
Glutamate (Glu), the major excitatory amino acid, activates a wide variety of signal transduction cascades. Synaptic plasticity relies on activity-dependent differential protein expression. Glu receptors have been critically involved in long-term synaptic changes, although recent findings suggest that Na+-dependent Glu transporters participate in Glu-induced signalling. Within the cerebellum, Bergmann glia cells are in close proximity to glutamatergic synapses and through their receptors and transporters, sense and respond to neuronal glutamatergic activity. Translational control represents the fine-tuning stage of protein expression regulation and Glu modulates this event in glial cells. In this context, we decided to explore the involvement of Glu receptors and transporters in the regulation of the initiation phase of protein synthesis. To this end, Bergmann glia cells were exposed to glutamatergic ligands and the serine 51-phosphorylation pattern of the main regulator of the initiation phase of translation, namely the α subunit of eukaryotic initiation factor 2 (eIF2α), determined. A time and dose-dependent increase in eIF2α phosphorylation was detected. The signalling cascade included Ca2+ influx, activation of the Ca2+/calmodulin-dependent protein kinase II and protein kinase C. These results provide an insight into the molecular targets of the Glu effects at the translational level and strengthen the notion of the critical involvement of glia cells in glutamatergic synaptic function.  相似文献   

15.
Regulation and function of local protein synthesis in neuronal dendrites   总被引:16,自引:0,他引:16  
It has long been shown that protein synthesis can occur in neuronal dendrites, but its significance remained unclear until relatively recently. Studies suggest that local protein synthesis has crucial roles in synaptic plasticity, the change in neuronal communication efficiency that is probably a cellular basis of learning and memory. Induced by neuronal activity, local protein synthesis provides key factors for the modification of activated synapses. In this review, we summarize the evidence for local protein synthesis and its functions in synaptic plasticity. We also discuss the molecular mechanisms by which neuronal activity induces the synthesis of proteins that allow for changes in synaptic function.  相似文献   

16.
Identifying the neural circuits that mediate particular behaviors and uncovering their plasticity is an endeavor at the heart of neuroscience. This effort is allied with the elucidation of plasticity mechanisms, because the molecular determinants of plasticity can be markers for the neurons and synapses that are modified by experience. Of particular interest is protein synthesis localized to the synapse, which might establish and maintain the stable modification of neuronal properties, including the pattern and strength of synaptic connections. Recent studies reveal that microRNAs and the RISC pathway regulate synaptic protein synthesis. Is synaptic activity of the RISC pathway a molecular signature of memory?  相似文献   

17.
18.
Making memories stick: cell-adhesion molecules in synaptic plasticity   总被引:17,自引:0,他引:17  
Synapses are adhesive junctions highly specialized for interneuronal signalling in the central nervous system. The strength of the synaptic signal can be modified (synaptic plasticity), a key feature of the cellular changes thought to underlie learning and memory. Cell-adhesion molecules are important constituents of synapses, with well-recognized roles in building and maintaining synaptic structure during brain development. However, growing evidence indicates that cell-adhesion molecules also play important and diverse roles in regulating synaptic plasticity and learning and memory. This review focuses on recent advances in understanding the molecular mechanisms through which adhesion molecules might regulate synaptic plasticity.  相似文献   

19.
In neurons, many proteins that are involved in the transduction of synaptic activity and the expression of neural plasticity are specifically localized at synapses. How these proteins are targeted is not clearly understood. One mechanism is synaptic protein synthesis. According to this idea, messenger RNA (mRNA) translation from the polyribosomes that are observed at the synaptic regions provides a local source of synaptic proteins. Although an increasing number of mRNA species has been detected in the dendrite, information about the synaptic synthesis of specific proteins in a physiological context is still limited. The physiological function of synaptic synthesis of specific proteins in synaptogenesis and neural plasticity expression remains to be shown. Experiments aimed at understanding the mechanisms and functions f synaptic protein synthesis might provide important information about the molecular nature of neural plasticity.  相似文献   

20.
It is well established that GluA1 mediated synaptic plasticity plays a central role in the early development of AD. The complex cellular and molecular mechanisms that enable GluA1‐related synaptic regulation remain to fully understood. Particularly, understanding the mechanisms that disrupt GluA1 related synaptic plasticity is central to the development of disease‐modifying therapies which are sorely needed as the incidence of AD rises. We surmise that the published evidence establishes deficits in synaptic plasticity as a central factor of AD aetiology. We additionally highlight potential therapeutic strategies for the treatment of AD, and we delve into the roles of GluA1 in learning and memory. Particularly, we review the current understanding of the molecular interactions that confer the actions of this ubiquitous excitatory receptor subunit including post‐translational modification and accessory protein recruitment of the GluA1 subunit. These are proposed to regulate receptor trafficking, recycling, channel conductance and synaptic transmission and plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号