首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capsular polysaccharide of Escherichia coli K92 contains alternating -8-NeuAcalpha2- and -9-NeuAcalpha2- linkages. The enzyme catalyzing this polymerizing reaction has been cloned from the genomic DNA of E. coli K92. The 1.2-kilobase polymerase chain reaction fragment was subcloned in pRSET vector and the protein was expressed in the BL21(DE3) strain of E. coli with a hexameric histidine at its N-terminal end. The enzyme was isolated in the supernatant after lysis of the cells and fractionated by ultracentrifugation. Western blotting using anti-histidine antibody showed the presence of a band that migrated at about 47.5 kDa on both reducing and nonreducing SDS-polyacrylamide gel electrophoresis, indicating a monomeric enzyme. Among the carbohydrate acceptors tested, N-acetylneuraminic acid and the gangliosides G(D3) and G(Q1b) were preferred substrates. The cell-free enzyme reaction products obtained were characterized by NMR and mass spectrometry, which indicated the presence of both alpha2,9- and alpha2,8-linked polysialyl structure. The K92 neuS gene was used to transform the K1 strain of E. coli, the capsule of which contains only -8-NeuAcalpha2- linkages. Analysis of the polysaccharides isolated from these transformed cells is consistent with the presence of both -8-NeuAcalpha2- and -9-NeuAcalpha2- linkages. Our results suggest that the neuS gene product of E. coli K92 catalyzes the synthesis of polysialic acid with alpha2,9- and alpha2,8-linkages in vitro and in vivo.  相似文献   

2.
Vionnet J  Vann WF 《Glycobiology》2007,17(7):735-743
Escherichia coli K92 produces a capsular polysialic acid with alternating alpha2,8 alpha2,9 NeuNAc linkages. This polysaccharide is cross-reactive with the neuroinvasive pathogen Neisseria meningitidis Group C. The K92 polysialyltransferase (PST) catalyzes the synthesis of the polysialic acid with alternating linkages by the transfer of NeuNAc from CMP-NeuNAc to the nonreducing end of the growing polymer. We used a fluorescent-based high-performance liquid chromatography assay to characterize the process of chain extension. The PST elongates the acceptor GT3-FCHASE in a biphasic fashion. The initial phase polymers are characterized by accumulation of product containing 1-8 additional sialic acid residues. This phase is followed by a very rapid formation of high-molecular weight (MW) polymer as the accumulated oligosaccharides containing 8-10 sialic acids are consumed. The high-MW polymer contains 90-100 sialic acids and is sensitive to degradation by periodate and K1-5 endoneuraminidase, suggesting that the polymer contains the alternating structure. The polymerization reaction does not appear to be strictly processive, since oligosaccharides of each intermediate size were detected before accumulation of high-molecular weight polymer. Synthesis can be blocked by CMP-9-azido-NeuNAc. These results suggest that the K92 PST forms both alpha2,8 and alpha2,9 linkages in a successive and nonprocessive fashion.  相似文献   

3.
Escherichia coli Bos-12 synthesizes a heteropolymer of sialic acids with alternating alpha-2,9/alpha-2,8 glycosidic linkages (1). In this study, we have shown that the polysialyltransferase of the E. coli Bos-12 recognizes an alpha-2,8 glycosidic linkage of sialic acid at the nonreducing end of an exogenous acceptor of either the alpha-2,8 homopolymer of sialic acid or the alternating alpha-2,9/alpha-2,8 heteropolymer of sialic acid and catalyzes the transfer of Neu5Ac from CMP-Neu5Ac to this residue. When the exogenous acceptor is an alpha-2,8-linked oligomer of sialic acid, the main product synthesized is derived from the addition of a single residue of [14C]Neu5Ac to form either an alpha-2,8 glycosidic linkage or an alpha-2,9 glycosidic linkage at the nonreducing end, at an alpha-2, 8/alpha-2,9 ratio of approximately 2:1. When the acceptor is the alternating alpha-2,9/alpha-2,8 heteropolymer of sialic acid, chain elongation takes place four to five times more efficiently than the alpha-2,8-linked homopolymer of sialic acid as an acceptor. It was found that the alpha-2,9-linked homopolymer of sialic acid and the alpha-2,8/alpha-2,9-linked hetero-oligomer of sialic acid with alpha-2,9 at the nonreducing end not only failed to serve as an acceptor for the E. coli Bos-12 polysialyltransferase for the transfer of [14C]Neu5Ac, but they inhibited the de novo synthesis of polysialic acid catalyzed by this enzyme. The results obtained in this study favor the proposal that the biosynthesis of the alpha-2, 9/alpha-2,8 heteropolymer of sialic acid catalyzed by the E. coli Bos-12 polysialyltransferase involves a successive transfer of a preformed alpha-2,8-linked dimer of sialic acid at the nonreducing terminus of the acceptor to form an alpha-2,9 glycosidic linkage between the incoming dimer and the acceptor. The glycosidic linkage at the nonreducing end of the alternating alpha-2,9/alpha-2,8 heteropolymer of sialic acid produced by E. coli Bos-12 should be an alpha-2,8 glycosidic bond and not an alpha-2,9 glycosidic linkage.  相似文献   

4.
The N-acetyl-D-mannosamine (ManNAc) transport system of Escherichia coli K92 was studied when this bacterium was grown in a chemically defined medium containing ManNAc as carbon source. Kinetic measurements were carried out in vivo at 37 degrees C in 25 mM phosphate buffer, pH 7.5. Under these conditions, the uptake rate was linear for at least 15 min and the calculated Km for ManNAc was 280 microM. The transport system was strongly inhibited by sodium arsenate (97%), potassium cyanide (84%) and 2,4-dinitrophenol (88%) added at final concentrations of 1 mM (each). Analysis of bacterial ManNAc phosphotransferase activity revealed in vitro ManNAc phosphorylation activity only when phosphoenolpyruvate was present. These results strongly support the notion that ManNAc uptake depends on a specific phosphotransferase system. Study of specificities showed that N-acetylglucosamine and mannosamine specifically inhibited the transport of ManNAc in this bacterium. Analysis of expression revealed that the ManNAc transport system was induced by ManNAc, glucosamine, galactosamine, mannosamine and mannose but not by N-acetylglucosamine or N-acetylgalactosamine. Moreover, ManNAc permease was subject to glucose repression and cAMP stimulation. Full induction of the ManNAc transport system required the simultaneous presence of both cAMP and ManNAc.  相似文献   

5.
Vionnet J  Kempner ES  Vann WF 《Biochemistry》2006,45(45):13511-13516
The polysialyltransferase of Escherichia coli K92 catalyzes the transfer of sialic acid from CMP-sialic acid to a growing chain of polysialic acid at the nonreducing end. The enzyme encoded by the neuS gene is membrane-associated and has been suggested to be organized within a complex of several proteins encoded by the K92 gene cluster. Attempts to prepare a soluble active NeuS enzyme have been unsuccessful. Recent results suggest that de novo synthesis of polysialic acid requires coexpression of four genes from the cluster: neuS, neuE, kpsC, and kpsS. However, elongation of preexisting polysialic acid chains only requires expression of neuS. The molecular organization of the catalytic unit of bacterial polysialyltransferases has not been described. We used radiation inactivation to measure the size of the minimum functional unit catalyzing the polysialyltransferase chain extension and de novo reactions. Membranes harboring NeuS in the presence and absence of other products of the K92 gene cluster were exposed to high-energy electrons. The rate of loss of polysialyltransferase activity reveals the mass of the molecules essential for catalytic activity. We observed that the transfer of neuNAc from CMP-neuNAc to a polysialic acid acceptor is catalyzed by a complex with a target size larger than that of monomeric NeuS. The target size of the unit catalyzing the extension of existing polysialic acid chains does not differ significantly from the size of the unit catalyzing transfer of sialic acid to the endogenous acceptor. Parallel samples of membranes containing NeuS and a green fluorescent protein (GFP) chimera were compared by target analysis. The target size of this structural unit was estimated by analysis of the rate of decay of the GFP-NeuS chimera band migrating in the immunoblots. The target size of the structural unit is larger than expected for a monomer. The results of these experiments show that while the target size of the catalytic activity for K92 polysialyltransferase is larger than a monomer of NeuS, a large complex is not required for catalysis.  相似文献   

6.
The N-acetyl-D-galactosamine (GalNAc) transport system of Escherichia coli K92 was studied when the bacterium was grown in a chemically defined medium containing GalNAc as a carbon source. Kinetic measurements were carried out in vivo at 37 degrees C in 25 mM phosphate buffer, pH 7.0. Under these conditions, the uptake rate was linear for at least 3 min and the calculated Km for GalNAc was 3 microM. The transport system was strongly inhibited by sodium arsenate (70%), potassium cyanide (62%) and 2,4-dinitrophenol (75%). Analysis of bacterial GalNAc phosphotransferase activity revealed in vitro GalNAc phosphorylation activity only when phosphoenolpyruvate was present. These results strongly support the notion that GalNAc uptake depends on a specific phosphotransferase system. Study of activity regulation showed that N-acetylglucosamine and mannosamine specifically inhibit the transport of GalNAc in this bacterium. Analysis of expression revealed that the GalNAc transport system is specifically induced by GalNAc but not by N-acetylglucosamine (GlcNAc) or N-acetylmannosamine (ManNAc), two intimately related sugars. Moreover, full induction of GalNAc transport required the presence of both cAMP and GalNAc. Comparative studies revealed that E. coli K92 has developed a regulation mechanism that specifically induces the appropriate permease based on the presence of each respective phospho-amino sugar (GlcNAc, ManNAc and GalNAc). In this regulation system, GlcNAc is the preferred amino sugar as the carbon source. Finally, when E. coli K92 was grown using GalNAc, capsular polysialic acid production was strongly affected. The presence of intracellular phosphoderivative acetylamino sugars, generated by the action of the phosphotransferase transport system, can be responsible for this effect.  相似文献   

7.
8.
Escherichia coli K1 is part of a reservoir of adherent, invasive facultative pathogens responsible for a wide range of human and animal disease including sepsis, meningitis, urinary tract infection and inflammatory bowel syndrome. A prominent virulence factor in these diseases is the polysialic acid capsular polysaccharide (K1 antigen), which is encoded by the kps/neu accretion domain inserted near pheV at 67 map units. Some E. coli K1 strains undergo form (phase) variation involving loss or gain of O-acetyl esters at carbon positions 7 or 9 of the individual sialic acid residues of the polysialic acid chains. Acetylation is catalysed by the receptor-modifying acetyl coenzyme-A-dependent O-acetyltransferase encoded by neuO, a phase variable locus mapping near the integrase gene of the K1-specific prophage, CUS-3, which is inserted in argW at 53.1 map units. As the first E. coli contingency locus shown to operate by a translational switch, further investigation of neuO should provide a better understanding of the invasive K1 pathotype. Minimal estimates of morbidity and economic costs associated with human infections caused by extraintestinal pathogenic E. coli strains such as K1 indicate at least 6.5 million cases with attendant medical costs exceeding 2.5 billion US dollars annually in the United States alone.  相似文献   

9.
10.
11.
The extracellular polysaccharides elaborated by most or all bacterial species function in cell-to-cell and cell-substratum adhesion, cell signaling, and avoidance or inhibition of noxious agents in animal hosts or free-living environments. Recent advances in our understanding of exopolysaccharide synthesis have been facilitated by comparative approaches in both plant and animal pathogens, as well as in microorganisms of industrial importance. One of the best understood of these systems is thekps locus for polysialic acid synthesis inEscherichia coli K1. The genes for sialic acid synthesis, activation, polymerization and translocation have been identified and assigned at least tentative functions in the synthetic and export pathways. Initial studies ofkps thermoregulation suggest that genetic control mechanisms will be involved which are distinct from those already described for several other exopolysaccharides. Information about the common as well as unique features of polysialic acid biosynthesis will increase our knowledge of microbial cell surfaces which in turn may suggest novel targets for therapeutic or industrial interventions.  相似文献   

12.
Polysialic acid (PSA) capsules are cell-associated homopolymers of alpha2,8-, alpha2,9-, or alternating alpha2,8/2,9-linked sialic acid residues that function as essential virulence factors in neuroinvasive diseases caused by certain strains of Escherichia coli and Neisseria meningitidis. PSA chains structurally identical to the bacterial alpha2,8-linked capsular polysaccharides are also synthesized by the mammalian central nervous system, where they regulate neuronal function in association with the neural cell adhesion molecule (NCAM). Despite the structural identity between bacterial and NCAM PSAs, the respective polysialyltransferases (polySTs) responsible for polymerizing sialyl residues from donor CMP-sialic acid are not homologous glycosyltransferases. To better define the mechanism of capsule biosynthesis, we established the functional interchangeability of bacterial polySTs by complementation of a polymerase-deficient E. coli K1 mutant with the polyST genes from groups B or C N. meningitidis and the control E. coli K92 polymerase gene. The biochemical and immunochemical results demonstrated that linkage specificity is dictated solely by the source of the polymerase structural gene. To determine the molecular basis for linkage specificity, we created chimeras of the K1 and K92 polySTs by overlap extension PCR. Exchanging the first 52 N-terminal amino acids of the K1 NeuS with the C terminus of the K92 homologue did not alter specificity of the resulting chimera, whereas exchanging the first 85 or reciprocally exchanging the first 100 residues did. These results demonstrated that linkage specificity is dependent on residues located between positions 53 and 85 from the N terminus. Site-directed mutagenesis of the K92 polyST N terminus indicated that no single residue alteration was sufficient to affect specificity, consistent with the proposed function of this domain in orienting the acceptor. The combined results provide the first evidence for residues critical to acceptor binding and elongation in polysialyltransferase.  相似文献   

13.
Growth of Escherichia coli K1 strains at 15 degrees C results in a defect in the synthesis or assembly of the K1 polysialic acid capsule. Synthesis is reactivated in cells grown at 15 degrees C after upshift to 37 degrees C, and activation requires protein synthesis (Whitfield et al., J. Bacteriol. 159:321-328, 1984). Using this temperature-induced defect, we determined the molecular weights and locations of membrane proteins correlated with the expression of K1 (polysialosyl) capsular antigen. Pulse-labeling experiments demonstrated the presence of 11 proteins whose synthesis was correlated with capsule appearance at the cell surface. Using the differential solubility of inner and outer membranes in the detergent Sarkosyl, we localized five of the proteins in the outer membrane and four in the inner membrane. The subcellular location of two of the proteins was not determined. Five proteins appeared in the membrane simultaneously with the initial expression of the K1 capsule at the cell surface. One of these proteins, a 40,000-dalton protein localized in the outer membrane, was identified as porin protein K, which previously has been shown to be present in the outer membrane of encapsulated E. coli. The possible role of these proteins in the synthesis of the polysialosyl capsule is discussed.  相似文献   

14.
Escherichia coli K1 is responsible for 80% of E. coli neonatal meningitis and is a common pathogen in urinary tract infections. Bacteria of this serotype are encapsulated with the alpha(2-8)-polysialic acid NeuNAc(alpha2-8), common to several bacterial pathogens. The gene cluster encoding the pathway for synthesis of this polymer is organized into three regions: (i) kpsSCUDEF, (ii) neuDBACES, and (iii) kpsMT. The K1 polysialyltransferase, NeuS, cannot synthesize polysialic acid de novo without other products of the gene cluster. Membranes isolated from strains having the entire K1 gene cluster can synthesize polysialic acid de novo. We designed a series of plasmid constructs containing fragments of regions 1 and 2 in two compatible vectors to determine the minimum number of gene products required for de novo synthesis of the polysialic acid from CMP-NeuNAc in K1 E. coli. We measured the ability of the various combinations of region 1 and 2 fragments to restore polysialyltransferase activity in vitro in the absence of exogenously added polysaccharide acceptor. The products of region 2 genes neuDBACES alone were not sufficient to support de novo synthesis of polysialic acid in vitro. Only membrane fractions harboring NeuES and KpsCS could form sialic polymer in the absence of exogenous acceptor at the concentrations formed by wild-type E. coli K1 membranes. Membrane fractions harboring NeuES and KpsC together could form small quantities of the sialic polymer de novo.  相似文献   

15.
Recent studies from many laboratories revealed remarkable structural, distributional, and functional diversities of oligo/polysialic acids (OSA/PSA) that exist in organisms ranging from bacteria to man. These diversities are further complicated by the fact that OSA/PSA spontaneously form lactones under even mildly acidic conditions. By using high performance anion-exchange chromatography (HPAEC) with nitrate eluents, we found that lactonization of alpha2,8-linked OSA/PSA (oligo/poly-Neu5Ac, oligo/poly-Neu5Gc and oligo/poly-KDN) proceeds readily, and the lactonization process displays three discrete stages. The initial stage is characterized by limited lactonization occurring between two internal sialic acid residues, reflected by a regular pattern of lactone peaks interdigitated with non-lactonized peaks on HPAEC. In the middle stage, multiple lactonized species are formed from a molecule with a given degree of polymerization (DP), in which the maximum number of lactone rings formed equals DP minus 2. At the final stage, completely lactonized species become the major components, resulting in drastic changes in the physicochemical properties of the sample. Interestingly, the smallest lactonizable OSA are tetramer, trimer, and dimer at the initial, middle, and final stages, respectively. At any of the stages, OSA/PSA of higher DP lactonize more rapidly, but all the lactone rings rapidly open up when exposed to mild alkali. Lactonized OSA/PSA are resistant to both enzyme- and acid-catalyzed glycosidic bond cleavage. The latter fact was utilized to obtain more high DP oligo/poly(alpha2,8-Neu5Gc) chains from a polysialoglycoprotein. Our results should be useful in preparation, storage, and analysis of OSA/PSA. Possible biological significance and bioengineering potentials of lactonization are discussed.  相似文献   

16.
Polysialic acid (polySia), a unique acidic glycan modifying neural cell adhesion molecule (NCAM), is known to regulate embryonic neural development and adult brain functions. Polysialyltransferase STX is responsible for the synthesis of polySia, and two single nucleotide polymorphisms (SNPs) of the coding region of STX are reported from schizophrenic patients: SNP7 and SNP9, respectively, giving STX(G421A) with E141K and STX(C621G) with silent mutations. In this study, we focused on these mutations and a binding activity of polySia to neural materials, such as brain-derived neurotrophic factor (BDNF). Here we describe three new findings. First, STX(G421A) shows a dramatic decrease in polySia synthetic activity on NCAM, whereas STX(C621G) does not. The STX(G421A)-derived polySia-NCAM contains a lower amount of polySia with a shorter chain length. Second, polySia shows a dopamine (DA) binding activity, which is a new function of polySia as revealed by frontal affinity chromatography for measuring the polySia-neurotransmitter interactions. Interestingly, the STX(G421A)-derived polySia-NCAM completely loses the DA binding activity, whereas it greatly diminishes but does not lose the BDNF binding activity. Third, an impairment of the polySia structure with an endosialidase modulates the DA-mediated Akt signaling. Taken together, impairment of the amount and quality of polySia may be involved in psychiatric disorders through impaired binding to BDNF and DA, which are deeply involved in schizophrenia and other psychiatric disorders, such as depression and bipolar disorder.  相似文献   

17.
The nature of endogenous acceptor molecules implicated in the membrane-directed synthesis of the polysialic acid (polySia) capsule in Escherichia coli K1 serotypes is not known. The capsule contains at least 200 sialic acid (Sia) residues that are elongated by the addition of new Sia residues to the nonreducing termini of growing nascent chains (Rohr, T. E., and Troy, F. A. (1980) J. Biol. Chem. 255, 2332-2342). Presumably, chain growth starts when activated Sia residues are transferred to acceptors that are not already sialylated. In the present study, we used an acapsular mutant defective in synthesis of CMP-NeuAc to label acceptors with [14C]NeuAc and an anti-polySia-specific antibody (H.46) to identify the molecules to which the polySia was attached. [14C]Sia-labeled acceptors were solubilized with 2% Triton X-100, immunoprecipitated with H.46, and partially depolymerized with poly-alpha-2,8-endo-N-acetylneuraminidase. Approximately 5% of the [14C]Sia incorporated remained attached to endogenous acceptors. Double-labeling experiments were used to show that the non-Sia moiety of the acceptor was labeled in vivo with [14C]leucine and elongated in vitro with CMP-[3H]NeuAc. Concomitant with desialylation of the [3H]polySia-[14C]Leu acceptor was the appearance of a new [14C]Leu-labeled protein at 20 kDa. After strong acid hydrolysis, the 20-kDa labeled protein was shown to contain [14C]Leu. The acceptor molecules were not labeled metabolically with D-[3H]GlcN, 35SO4, or 32PO4, indicating that they do not appear to contain lipopolysaccharide, peptidoglycan, phosphatidic acid, or phospholipid. Based on these results, we conclude that the endogenous acceptor molecule is a membrane protein of about 20 kDa. The nature of attachment of polySia to acceptor is unknown. There are only 400-500 acceptor molecules/cell, which is about 100-fold fewer than the 50,000 polySia chains/cell. This suggests that each acceptor molecule may participate in the shuttling of about 100 polySia chains/cell. We hypothesize that the acceptor protein may function to translocate polySia chains from their site of synthesis on the cytoplasmic surface of the inner membrane to the periplasm.  相似文献   

18.
Capsules are well-studied components of the bacterial surface that modulate interactions between the cell and its environment. Generally composed of polysaccharide, they are key virulence determinants in invasive infections in humans and other animals. Genetic determinants involved in capsule expression have been isolated from a number of organisms, but perhaps the best characterized is the kps cluster of Escherichia coli K1. In this review, the current understanding of the functions of the kps gene products is summarized. Further, a proposed mechanistic model for capsule expression is presented and discussed. The model is based on the premise that the numerous components of the kps cluster form a hetero-oligomeric complex responsible for synthesis and concurrent translocation of the capsular polysialic acid through sites of inner and outer membrane fusion. We view the ATP-binding cassette (ABC) transporter, KpsMT, to be central to the functioning of the complex, interacting with the biosynthetic apparatus as well as the extracytoplasmic components of the cluster to co-ordinate synthesis and translocation. The model provides the basis for additional experimentation and reflects emerging similarities among systems responsible for macromolecular export in Gram- negative bacteria.  相似文献   

19.
20.
A novel alpha2,9-linked polysialic acid (polySia)-containing glycoprotein of sea urchin sperm flagella was identified and named "flagellasialin." Flagellasialin from Hemicentrotus pulcherrimus shows a diverse relative molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of 40-80 kDa. Flagellasialin is a 96-amino acid, threonine-rich, heavily O-glycosylated (80-90% by weight) glycoprotein with a single transmembrane segment at its C-terminus and no apparent cytosolic domain. Of 12 extracellular Thr residues, eight are O-glycosylated and three are nonglycosylated. Flagellasialin is highly expressed in the testis but cannot be detected in the ovary. The amino acid sequences of flagellasialin from three sea urchin species (H. pulcherrimus, Strongylocentrotus purpuratus, and Strongylocentrotus franciscanus) are identical, but some species differences exist in the three core glycan structures to which the sulfated alpha2,9-linked polyNeu5Ac chain is linked. Finally, the treatment of sperm with a specific antibody against the alpha2,9-linked polyNeu5Ac structure results in the elevation of intracellular Ca(2+) and inhibition of sperm motility and fertilization, implicating flagellasialin as a regulator of these critical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号