首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of breeding systems results from the existence of genetic variation and selective forces favoring different outcrossing rates. In this study we determine the extent of genetic variation for characters directly related to outcrossing, such as male frequency, male mating ability, and male reproductive success, in several wild isolates of the nematode Caenorhabditis elegans. This species is characterized by an androdioecious breeding system in which males occur with hermaphrodites that can either self-fertilize or outcross with males. We find genetic variation for all characters measured, but also find that environmental variation is a large fraction of the total phenotypic variance. We further determine the existence of substantial genetic variation for population competitive performance in several laboratory environments. However, these measures are uncorrelated with outcrossing characters. The data presented here contribute to an understanding of male maintenance in natural populations through their role in outcrossing.  相似文献   

2.
Sex allocation theory has been remarkably successful at explaining the prevalence of even sex ratios in natural populations and at identifying specific conditions that can result in biased sex ratios. Much of this theory focuses on parental sex determination (SD) strategies. Here, we consider instead the evolutionary causes and consequences of mixed offspring SD strategies, in which the genotype of an individual determines not its sex, but the probability of developing one of multiple sexes. We find that alleles specifying mixed offspring SD strategies can generally outcompete alleles that specify pure strategies, but generate constraints that may prevent a population from reaching an even sex ratio. We use our model to analyze sex ratios in natural populations of Tetrahymena thermophila, a ciliate with seven sexes determined by mixed SD alleles. We show that probabilistic SD is sufficient to account for the occurrence of skewed sex ratios in natural populations of T. thermophila, provided that their effective population sizes are small. Our results highlight the importance of genetic drift in sex ratio evolution and suggest that mixed offspring SD strategies should be more common than currently thought.  相似文献   

3.
Bidirectional sex change in mushroom stony corals   总被引:1,自引:0,他引:1  
Sex change occurs when an individual changes from one functional sex to another. The direction of sex change occurs mainly from male to female (protandry) or vice versa (protogyny), but sometimes may be bidirectional (repetitive). Here, for the first time in stony corals, we report on a protandrous sex change exhibited by two mushroom corals, Fungia repanda and Ctenactis echinata, with the latter also exhibiting bidirectional sex change. Compared with C. echinata, F. repanda exhibited relatively earlier sex change, significantly slower growth and higher mortality rates, in accordance with sex-allocation theory. Sex ratio in both the species was biased towards the first sex. The bidirectional sex change displayed by C. echinata greatly resembles that of dioecious plants that display labile sexuality in response to energetic and/or environmental constraints. We posit that, similar to these plants, in the studied corals, sex change increases their overall fitness, reinforcing the important role of reproductive plasticity in scleractinian corals in determining their evolutionary success.  相似文献   

4.
Although a large portion of plant and animal species exhibit intermediate levels of outcrossing, the factors that maintain this wealth of variation are not well understood. Natural enemies are one relatively understudied ecological factor that may influence the evolutionary stability of mixed mating. In this paper, we aim for a conceptual unification of the role of enemies in mating system expression and evolution in both hermaphroditic animals and plants. We review current theory and detail the potential effects of enemies on fundamental mating system parameters. In doing so, we identify situations in which consideration of enemies alters expectations about the stability of mixed mating. Generally, we find that inclusion of the enemy dimension may broaden conditions in which mixed mating systems are evolutionarily stable. Finally, we highlight avenues ripe for future theoretical and empirical work that will advance our understanding of enemies in the expression and evolution of mixed mating in their hosts/victims, including examination of feedback cycles between victims and enemies and quantification of mating system-related parameters in victim populations in the presence and absence of enemies.  相似文献   

5.
The evolution of self-fertilization from outcrossing is one of the most common evolutionary transitions in flowering plants. One goal of our research is to develop a linkage map based upon microsatellite loci in Mimulus guttatus and the selfing derivative M. nasutus in order to examine the genetics of one such transition. Here we present 19 primer pairs that detect polymorphisms between these two species. Within-population allelic surveys demonstrate the value of these markers for detailed analysis of population structure. We have found also that many of the microsatellites are conserved in more distantly related Mimulus species, and may thus serve as useful genetic markers for population genetic and comparative mapping studies within this diverse genus.  相似文献   

6.
We build on previous observations that Hill–Robertson interference generates an advantage of sex that, in structured populations, can be large enough to explain the evolutionary maintenance of costly sex. We employed a gene network model that explicitly incorporates interactions between genes. Mutations in the gene networks have variable effects that depend on the genetic background in which they appear. Consequently, our simulations include two costs of sex—recombination and migration loads—that were missing from previous studies of the evolution of costly sex. Our results suggest a critical role for population structure that lies in its ability to align the long‐ and short‐term advantages of sex. We show that the addition of population structure favored the evolution of sex by disproportionately decreasing the equilibrium mean fitness of asexual populations, primarily by increasing the strength of Muller's Ratchet. Population structure also increased the ability of the short‐term advantage of sex to counter the primary limit to the evolution of sex in the gene network model—recombination load. On the other hand, highly structured populations experienced migration load in the form of Dobzhansky–Muller incompatibilities, decreasing the effective rate of migration between demes and, consequently, accelerating the accumulation of drift load in the sexual populations.  相似文献   

7.
蚜虫性信息素   总被引:7,自引:0,他引:7  
蚜虫属同翅目蚜总科,是重要的农作物害虫。蚜虫长年行孤雌生殖,在中、高纬度深秋时,产生性蚜,以卵越冬。雌性蚜分泌性信息素荆芥内酯(nepetalactone)和荆芥醇(nepetalactol)。该文综述了蚜虫性信息素的结构与组分、性腺的形态结构、性信息素释放及影响因素;性信息素对雌性母和天敌的引诱作用;性信息素在蚜虫种间隔离中的地位和作用以及蚜虫性信息素在蚜虫防治中的应用前景。  相似文献   

8.
The evolution of the primary sex ratio, the proportion of male births in an individual's offspring production strategy, is a frequency‐dependent process that selects against the more common sex. Because reproduction is shaped by the entire life cycle, sex ratio theory would benefit from explicitly two‐sex models that include some form of life cycle structure. We present a demographic approach to sex ratio evolution that combines adaptive dynamics with nonlinear matrix population models. We also determine the evolutionary and convergence stability of singular strategies using matrix calculus. These methods allow the incorporation of any population structure, including multiple sexes and stages, into evolutionary projections. Using this framework, we compare how four different interpretations of sex‐biased offspring costs affect sex ratio evolution. We find that demographic differences affect evolutionary outcomes and that, contrary to prior belief, sex‐biased mortality after parental investment can bias the primary sex ratio (but not the corresponding reproductive value ratio). These results differ qualitatively from the widely held conclusions of previous models that neglect demographic structure.  相似文献   

9.
Facultative reproductive strategies that incorporate both sexual and parthenogenetic reproduction should be optimal, yet are rarely observed in animals. Resolving this paradox requires an understanding of the economics of facultative asexuality. Recent work suggests that switching from parthenogenesis to sex can be costly and that females can resist mating to avoid switching. However, it remains unclear whether these costs and resistance behaviors are dependent on female age. We addressed these questions in the Cyclone Larry stick insect, Sipyloidea larryi, by pairing females with males (or with females as a control) in early life prior to the start of parthenogenetic reproduction, or in mid‐ or late life after a period of parthenogenetic oviposition. Young females were receptive to mating even though mating in early life caused reduced fecundity. Female resistance to mating increased with age, but reproductive switching in mid‐ or late life did not negatively affect female survival or offspring performance. Overall, mating enhanced female fitness because fertilized eggs had higher hatching success and resulted in more adult offspring than parthenogenetic eggs. However, female fecundity and offspring viability were also enhanced in females paired with other females, suggesting a socially mediated maternal effect. Our results provide little evidence that switching from parthenogenesis to sex at any age is costly for S. larryi females. However, age‐dependent effects of switching on some fitness components and female resistance behaviors suggest the possibility of context‐dependent effects that may only be apparent in natural populations.  相似文献   

10.
Reuven Brandt 《Bioethics》2018,32(7):437-444
The Institute of Medicine has recently endorsed arguments put forward by John Appleby calling for mandatory sex selection against female offspring in the initial trials of mitochondrial replacement techniques. In this paper I argue that, despite this endorsement, the reasons offered by Appleby for mandatory sex selection are inadequate. I further argue that plausible revisions to Appleby's arguments still fail to convincingly defend such an intrusive policy. While I remain neutral about whether intending parents making use of mitochondrial replacement techniques ought to have access to sex selection, I conclude that to date the case for mandatory sex selection has not been satisfactorily made.  相似文献   

11.
The evolution of self-fertilization from outcrossing has occurred on numerous occasions in flowering plants. This shift in mating system profoundly influences the morphology, ecology, genetics and evolution of selfing lineages. As a result, there has been sustained interest in understanding the mechanisms driving the evolution of selfing and its environmental context. Recently, patterns of molecular variation have been used to make inferences about the selective mechanisms associated with mating system transitions. However, these inferences can be complicated by the action of linked selection following the transition. Here, using multilocus simulations and comparative molecular data from related selfers and outcrossers, we demonstrate that there is little evidence for strong bottlenecks associated with initial transitions to selfing, and our simulation results cast doubt on whether it is possible to infer the role of bottlenecks associated with reproductive assurance in the evolution of selfing. They indicate that the effects of background selection on the loss of diversity and efficacy of selection occur rapidly following the shift to high selfing. Future comparative studies that integrate explicit ecological and genomic details are necessary for quantifying the independent and joint effects of selection and demography on transitions to selfing and the loss of genetic diversity.  相似文献   

12.
Modern sexual selection theory indicates that reproductive costs rather than the operational sex ratio predict the intensity of sexual selection. We investigated sexual selection in the polygynandrous common lizard Lacerta vivipara . This species shows male aggression, causing high mating costs for females when adult sex ratios (ASR) are male-biased. We manipulated ASR in 12 experimental populations and quantified the intensity of sexual selection based on the relationship between reproductive success and body size. In sharp contrast to classical sexual selection theory predictions, positive directional sexual selection on male size was stronger and positive directional selection on female size weaker in female-biased populations than in male-biased populations. Thus, consistent with modern theory, directional sexual selection on male size was weaker in populations with higher female mating costs. This suggests that the costs of breeding, but not the operational sex ratio, correctly predicted the strength of sexual selection.  相似文献   

13.
Maternal sex ratio distorters (MSDs) are selfish elements that enhance their transmission by biasing their host's sex allocation in favor of females. While previous models have predicted that the female‐biased populations resulting from sex ratio distortion can benefit from enhanced productivity, these models neglect Fisherian selection for nuclear suppressors, an unrealistic assumption in most systems. We used individual‐based computer simulation modeling to explore the intragenomic conflict between sex ratio distorters and their suppressors and explored the impacts of these dynamics on population‐level competition between species characterized by MSDs and those lacking them. The conflict between distorters and suppressors was capable of producing large cyclical fluctuations in the population sex ratio and reproductive rate. Despite fitness costs associated with the distorters and suppressors, MSD populations often exhibited enhanced productivity and outcompeted non‐MSD populations in single and multiple‐population competition simulations. Notably, the conflict itself is beneficial to the success of populations, as sex ratio oscillations limit the competitive deficits associated with prolonged periods of male rarity. Although intragenomic conflict has been historically viewed as deleterious to populations, our results suggest that distorter–suppressor conflict can provide population‐level advantages, potentially helping to explain the persistence of sex ratio distorters in a range of taxa.  相似文献   

14.
Theory predicts that the ‘size advantage’ (rate of increase in male and female fitness with age or size) determines the direction and the timing of sex change in sequential hermaphrodites. Whereas the size advantage is generated by the mating system and would be expected to vary within and between species, the shape or form of the size advantage has rarely been estimated directly. Here, we ask whether theoretical predictions about the timing of sex change hold under different types of size advantage. We model two biological scenarios representing different processes generating the size advantage and find that different types of size advantage can produce patterns that qualitatively differ from classic predictions. Our results demonstrate that a good understanding of sequentially hermaphroditic mating systems, and specifically, a direct assessment of the processes underlying the size advantage is crucial to reliably predict and explain within‐species patterns of the timing of sex change.  相似文献   

15.
A workshop on ‘The evolution of sex determination systems’ was held at a remote place in the Swiss Alps from 17 to 20 June 2009. It brought together theoreticians and empiricists, the latter ranging from molecular geneticists to evolutionary ecologists, all trying to understand key aspects of sex determination. The topics discussed included the evolutionary origins of sex determination, the diversity of sex determination mechanisms in different taxa, and the transition from genotypic to environmental sex determination and vice versa.  相似文献   

16.
We analyze models of evolution of sex ratio conditional on habitat quality and with sex specific dispersal. Previous analysis concluded that the main constraint on sex ratio is habitat choice and leads to overproduction of the most dispersing sex in low quality habitat. Here, we analyze three models with finite local populations and show that constraints on sex ratio can balance constraints on habitat choice. In the first model, dispersal rates are fixed. In the second, sex specific dispersal can evolve independently of the habitat quality. These models suggests that sex ratio evolution can lead to higher global dispersal rates (mean of male and female dispersal rates) from high quality habitats. In the last model dispersal evolves conditionally with both sex and habitat. Our models suggests that conditions for overproduction of the most dispersing sex in high quality habitat are frequent. The predictions of the models with evolving dispersal contrast with patterns generally described in nature. We discuss possible reasons of this difference.  相似文献   

17.
Sex in many organisms is a dichotomous phenotype--individuals are either male or female. The molecular pathways underlying sex determination are governed by the genetic contribution of parents to the zygote, the environment in which the zygote develops or interaction of the two, depending on the species. Systems in which multiple interacting influences or a continuously varying influence (such as temperature) determines a dichotomous outcome have at least one threshold. We show that when sex is viewed as a threshold trait, evolution in that threshold can permit novel transitions between genotypic and temperature-dependent sex determination (TSD) and remarkably, between male (XX/XY) and female (ZZ/ZW) heterogamety. Transitions are possible without substantive genotypic innovation of novel sex-determining mutations or transpositions, so that the master sex gene and sex chromosome pair can be retained in ZW-XY transitions. We also show that evolution in the threshold can explain all observed patterns in vertebrate TSD, when coupled with evolution in embryonic survivorship limits.  相似文献   

18.
鹅掌楸的传粉环境与性配置   总被引:16,自引:3,他引:13  
近年来研究表明,动物传粉者对植物花部诱物特征(花冠形状大小,花蜜产量和花序大小)有潜在的选择作用。不同效率的传粉者可能导致植物性配置的变化,不同传粉效率的环境下,两性花植物鹅掌楸的花粉和胚珠的配置不同,居群Z在主要访花者是传粉效率较低的类的传粉环境下,花粉粒小,花粉数量相对较高;另一方面胚珠投资的减少,缓解了低效的传粉(增大授粉的几率),增加了受精的机会。相对而言,具有高效访花者的两个居群,资源较  相似文献   

19.
Our understanding of the impact of recombination, mutation, genetic drift, and selection on the evolution of a single gene is still limited. Here we investigate the impact of all these evolutionary forces at the complementary sex determiner (csd) gene that evolves under a balancing mode of selection. Females are heterozygous at the csd gene and males are hemizygous; diploid males are lethal and occur when csd is homozygous. Rare alleles thus have a selective advantage, are seldom lost by the effect of genetic drift, and are maintained over extended periods of time when compared with neutral polymorphisms. Here, we report on the analysis of 17, 19, and 15 csd alleles of Apis cerana, Apis dorsata, and Apis mellifera honeybees, respectively. We observed great heterogeneity of synonymous (piS) and nonsynonymous (piN) polymorphisms across the gene, with a consistent peak in exons 6 and 7. We propose that exons 6 and 7 encode the potential specifying domain (csd-PSD) that has accumulated elevated nucleotide polymorphisms over time by balancing selection. We observed no direct evidence that balancing selection favors the accumulation of nonsynonymous changes at csd-PSD (piN/piS ratios are all <1, ranging from 0.6 to 0.95). We observed an excess of shared nonsynonymous changes, which suggest that strong evolutionary constraints are operating at csd-PSD resulting in the independent accumulation of the same nonsynonymous changes in different alleles across species (convergent evolution). Analysis of csd-PSD genealogy revealed relatively short average coalescence times ( approximately 6 Myr), low average synonymous nucleotide diversity (piS < 0.09), and a lack of trans-specific alleles that substantially contrasts with previously analyzed loci under strong balancing selection. We excluded the possibility of a burst of diversification after population bottlenecking and intragenic recombination as explanatory factors, leaving high turnover rates as the explanation for this observation. By comparing observed allele richness and average coalescence times with a simplified model of csd-coalescence, we found that small long-term population sizes (i.e., N(e) < 10(4)), but not high mutation rates, can explain short maintenance times, implicating a strong historical impact of genetic drift on the molecular evolution of highly social honeybees.  相似文献   

20.
Sex allocation by simultaneous hermaphrodites is theoretically influenced by selfing rate, which is in turn influenced by the benefits of enhanced genomic transmission and reproductive assurance relative to the cost of inbreeding depression. The experimental investigation of these influences in seed plants has a rich pedigree, yet although such an approach is equally relevant to colonial invertebrates, which globally dominate subtidal communities on firm substrata, such studies have been scarce. We reared self‐compatible genets of the marine bryozoan Celleporella hyalina s.l. in the presence and absence of allosperm, and used molecular genetic markers for paternity analysis of progeny to test theoretical predictions that: (1) genets from focal populations with high selfing rates show less inbreeding depression than from focal populations with low selfing rates; (2) genets whose selfed progeny show inbreeding depression prefer outcross sperm (allosperm); and (3) genets bias sex allocation toward female function when reared in reproductive isolation. Offspring survivorship and paternity analysis were used to estimate levels of inbreeding depression and preference for outcrossing or selfing. Sex allocation was assessed by counting male and female zooids. As predicted, inbreeding depression was severe in selfed progeny of genets derived from the populations with low self‐compatibility rates, but, with one exception, was not detected in selfed progeny of genets derived from the populations with higher self‐compatibility rates. Also, as predicted, genets whose selfed progeny showed inbreeding depression preferred outcrossing, and a genet whose selfed progeny did not show inbreeding depression preferred selfing. Contrary to prediction, sex allocation in the majority of genets was not influenced by reproductive isolation. Lack of economy of male function may reflect the over‐riding influence of allosperm‐competition in typically dense breeding populations offering good opportunity for outcrossing. We suggest that hermaphroditism may be a plesiomorphic character of the crown group Bryozoa, prevented by phylogenetic constraint from being replaced by gonochorism and therefore not necessarily adaptive in all extant clades. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 519–531.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号