首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Finnish Landrace x Southdown ewes were ovariectomized (OVX) and subjected to daily photoperiods of 16L:8D (Group I) or 8L:16D (Group II) for 84 days. Ewes were then either adrenalectomized (ADX) (N = 5 for Group I; N = 4 for Group II) or sham ADX (N = 6 for Groups I + II). After surgery, ewes in Group I were subjected to 8L:16D for 91 days and 16L:8D for 91 days whereas ewes in Group II were exposed to 16L:8D for 91 days and 8L:16D for 91 days. Oestradiol implants were inserted into all ewes on Day 148. Sequential blood samples were taken at 28, 56, 91, 119, 147 and 168 days after surgery to determine secretory profiles of LH and prolactin. Photoperiod did not influence LH release in Group I in the absence of oestradiol. Although photoperiod influenced frequency and amplitude of LH pulses in Group II before oestradiol treatment, adrenalectomy did not prevent these changes in patterns of LH release. However, in Group II the increase in LH pulse amplitude during exposure to long days was greater (P less than 0.01) in adrenalectomized ewes than in sham-operated ewes. Mean concentrations of LH increased in ADX ewes on Days 91 (P = 0.07) and 119 (P less than 0.05). Adrenalectomy failed to influence photoperiod-induced changes in mean concentrations of LH, amplitude of LH pulses and frequency of LH pulses in the presence of oestradiol. Concentrations of prolactin were influenced by photoperiod. In Groups I and II concentrations of prolactin increased (P less than 0.01) after adrenalectomy, but the magnitude of this effect decreased over time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A combined radioimmunoassay (RIA) for the measurement of the anterior pituitary proteins luteinizing hormone (LH) and prolactin (PRL) is described and compared with individual RIAs for these hormones. The standard curves and the sample values for LH and PRL were identical when determined in a combined or in an individual RIA. This technique may prove useful to a number of laboratories where it is desirable to determine levels of more than one hormone in limited sample volumes.  相似文献   

4.
alpha-MSH and beta-endorphin, both synthesized from a common precursor, have opposite behavioral actions. In order to determine if these peptides have opposite effects on pituitary function, basal LH secretion and basal and stress-induced prolactin release were studied in adult male rats after intraventricular injection of alpha-MSH. Each rat also received intraventricular saline in order to serve as its own control. 18 micrograms alpha-MSH stimulated plasma LH from 16.5 +/- 2.5 (SEM) ng/ml to a peak of 27.2 +/- 4.0 and 26.0 +/- 4.9 ng/ml at 5 and 10 min, and suppressed prolactin from 3.5 +/- 0.7 ng/ml to 1.3 +/- 0.1 and 1.2 +/- 0.1 ng/ml at 15 and 30 min. Intraventricular alpha-MSH also significantly blunted the prolactin rise associated with the stress of swimming. 10 and 20 min after the onset of swimming, prolactin levels in rats pretreated with alpha-MSH were significantly diminished: 7.4 +/- 1.5 and 6.5 +/- 2.0 ng/ml vs 23.8 +/- 3.6 and 15.2 +/- 2.8 after normal saline. Similarly, des-acetyl alpha-MSH which is the predominant form of alpha-MSH in the hypothalamus, diminished the stress-induced prolactin rise from 18.4 +/- 5.3 and 11.2 +/- 3.4 ng/ml at 10 and 20 min to 10.0 +/- 2.4 and 5.5 +/- 1.6 ng/ml. We conclude that centrally administered alpha-MSH stimulates LH and suppresses basal and stress-induced prolactin release in male rats. These actions are opposite to those previously shown for beta-endorphin and suggest that alpha-MSH may antagonize the effects of beta-endorphin on pituitary function.  相似文献   

5.
In the ewe, seasonal anestrus appears to result from two effects of inhibitory photoperiod: 1) estradiol gains the capacity to suppress luteinizing hormone (LH) pulse frequency and hence becomes a potent inhibitor of tonic LH secretion and 2) a steroid-independent decrease in LH pulse frequency occurs in ovariectomized ewes. In this study, we have obtained evidence, using pentobarbital anesthesia, that both these actions of photoperiod reflect the activation, in anestrus, of an inhibitory neural system. Administration of pentobarbital to intact anestrous ewes produced a dramatic, 3-fold increase in LH pulse frequency during the 6 h of anesthesia. In contrast, during the breeding season, pentobarbital inhibited LH pulse frequency in luteal phase animals. There was also a seasonal variation in the effects of pentobarbital in ovariectomized ewes. During the breeding season this drug again suppressed LH secretion, inhibiting both LH pulse amplitude and frequency. In anestrus, pentobarbital also suppressed pulse amplitude, but it produced a transitory increase (lasting 3 h) in pulse frequency. To account for the stimulatory actions of pentobarbital, we propose that in anestrus, but not the breeding season, LH pulse frequency is held in check by a set of estradiol-sensitive inhibitory neurons. Further, we suggest that these neurons are activated by inhibitory photoperiod and account for both the steroid-dependent and steroid-independent actions of photoperiod.  相似文献   

6.
Aminoglutethimide (AG), an inhibitor of steroidogenesis, was administered s.c. to 5 groups of laying hens at a dose of 200 mg AG/kg body weight 9 h before expected midsequence ovulation. This dose has previously been demonstrated to consistently block ovulation. The injection of AG was followed by s.c. injections of: Group 1, 1.0 mg progesterone; Group 2, 0.1 mg estradiol-17 beta; Group 3, 1.5 mg corticosterone, all at 6 h prior to expected ovulation; Group 4, 1.0 mg testosterone at both 8 h and 5 h before expected ovulation; and Group 5, 25 micrograms of ovine luteinizing hormone (LH) at 8 and 50 micrograms ovine LH at 6 h before expected ovulation. For each group, 4 control hens were injected with AG and the appropriate vehicle. Blood samples were taken at 1- or 2-h intervals from the time of AG injection to the expected time of ovulation. The hens were killed 4 h after expected ovulation and examined for the occurrence of ovulation. In all hens injected with vehicle, ovulation and the preovulatory surges of progesterone, testosterone, estradiol-17 beta and LH were inhibited. The plasma concentration of corticosterone was not reduced following an injection of AG. Four of 6 hens ovulated in response to injection of ovine LH, although neither endogenous LH nor progesterone were released. Thus, LH appears to play a direct role in follicular rupture and extrusion of the ovum. The administration of progesterone induced a significant and prolonged rise in LH, restoring AG-blocked ovulation in all hens treated (n = 6). Injections of testosterone restored LH release in all hens and ovulation in 2 of 7 hens treated. Three of 7 hens ovulated in response to the corticosterone injection. A preovulatory rise in LH was not observed, indicating that corticosterone may exert its ovulation-inducing effect directly on the mature follicle. Estradiol-17 beta did not restore LH release or ovulation in any of the hens treated with AG.  相似文献   

7.
The response of 5 anterior pituitary hormones to single injections of naloxone, morphine and metenkephalin administration was measured in male rats. Morphine and met-enkephalin significantly increased serum prolactin and GH concentrations, and significantly decreased serum LH and TSH concentrations. Naloxone reduced serum prolactin and GH concentrations, increased serum LH and FSH, but had little effect on serum TSH concentrations. Concurrent injections of naloxone with morphine or met-enkephalin reduced the response to each of the drugs given separtely. These results suggest that endogenous morphinomimetic substances may participate in regulating secretion of anterior pituitary hormones.  相似文献   

8.
9.
In previous studies it has been observed that acute administration or short-term treatment with calcium channel blockers can influence the secretion of some pituitary hormones. In this study, we have examined the effect of the long-term administration of diltiazem on luteinizing-hormone (LH), follicle-stimulating hormone (FSH), thyrotropin (TSH) and prolactin (PRL) levels under basal conditions and after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing-hormone (TRH) stimulation in 12 subjects affected by cardiovascular diseases who were treated with diltiazem (60 mg 3 times/day per os) for more than 6 months and in 12 healthy volunteers of the same age. The basal levels of the studied hormones were similar in the two groups. In both the treated patients and the control subjects, a statistically significant increase (p < 0.01) in LH, FSH, TSH and PRL levels was observed after GnRH/TRH administration. Comparing the respective areas under the LH, FSH, TSH and PRL response curves between the two groups did not present any statistically significant difference. These findings indicate that long-term therapy with diltiazem does not alter pituitary hormone secretion.  相似文献   

10.
Daily rhythms of secretion have been described for luteinizing hormone (LH) and prolactin (PRL) from the anterior pituitary of rats. Using selective opioid antagonists, we found that mu and kappa opioid receptor ligands regulate LH and PRL secretion and, of particular interest, that the magnitude of opioidergic effects varies with the time of day. In addition, incomplete temporal overlapping of the LH and PRL responses to the antagonists suggests that different endogenous opioid pathways, with different temporal profiles of peptide release, may control each of these hormones.  相似文献   

11.
The binding of luteinizing hormone (LH) to testicular homogenates increased gradually in mice from 15 to 60 days of age, while the level at 90 days was almost the same as that at 60 days. The plasma concentration of prolactin (PRL) increased significantly from 15 to 40 days and thereafter remained constant. In order to ascertain the influence of PRL on testicular receptors for LH, bromocryptine was injected subcutaneously for 10 days into immature (20-day-old) and adult (90-day-old) mice. In 20-day-old mice, treatment with bromocryptine significantly reduced the plasma levels of PRL but had no significant effects on the binding of LH to receptors in 30-day-old mice. However, in 90-day-old mice, treatment with bromocryptine led to a significant reduction in numbers of receptors for LH 10 days later. There was no difference in dissociation constants (Kd) between groups of oil-injected (Kd = 6.5 x 10(-10) M) and bromocryptine-injected (Kd = 4.6 x 10(-10) M) mice. The reduction in binding of LH per testis of 100-day-old mice after treatment with bromocryptine was eliminated by the simultaneous administration of ovine (o) PRL. The plasma level of follicle-stimulating hormone (FSH) in 100-day-old mice, which tended to be decreased as a result of treatment with bromocryptine, was markedly increased by treatment with oPRL. There were no distinct changes in binding of FSH in any of the groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
K P Briski  P W Sylvester 《Life sciences》1987,41(10):1249-1255
The present study was carried out to determine the effects of repetitive acute stress exposure on pituitary secretion of both luteinizing hormone (LH) and prolactin (PRL). Adult male rats were exposed to sequential episodes of acute novel environment stress separated by intervals of either 60 or 120 minutes. Serial blood samples were obtained from animals before, during and after each stress episode via indwelling intra-cardiac cannulas. The imposition of 10 minute episodes of novel environment stress on an hourly basis eventually rendered the hypothalamic-hypophyseal LH axis refractory to the stimulatory effect of stress. If sequential stress was imposed at 120 minute intervals, LH release was significantly enhanced during each exposure. A different pattern of PRL release was observed during the same sequential stress schedule. After an initial increase in hormone release in response to the first hourly stress episode, PRL levels were unaltered during the second and third hourly stress exposures. Thereafter, plasma PRL levels showed a trend toward a progressive increase in release during each successive episode, and were significantly elevated above preceding baseline levels during the fourth and fifth hourly stress exposures. In rats exposed to stress every two hours, a significant increase in PRL levels occurred following the first, but not the second stress episode. Hormone release was again enhanced in response to the third exposure to novel environment. The present results demonstrate that the repetitive exposure to acute novel environment stress results in differential alterations in pituitary LH and PRL secretion over time, and that the timing of repeated episodes is an important determinant of continued responsiveness to stress, particularly with regard to LH release. These findings suggest that the LH and PRL hormonal responses to at least this specific stressor are mediated by independent neural mechanisms.  相似文献   

14.
The ontogenetic changes that occur in secretory patterns of growth hormone (GH), prolactin (Prl), luteinizing hormone (LH), and testosterone (T) in rams maintained in constant photoperiod were examined. Nine ram lambs were moved to individual pens in a controlled environment (12L: 12D cycle; 18-24 degrees C temperature) at 66 days of age. Blood samples were collected via indwelling cannulae at 15-min intervals for an 8-h period at 80, 136, 192, 248, and 304 days of age. Plasma concentrations of GH, Prl, LH, and T were quantitated and parameters of the secretory patterns determined. Mean concentration of GH tended to decline with age, probably because the amplitude of secretory peaks was significantly reduced with age. There were no age-associated changes in basal concentration of GH or incidence of GH peaks. There was an increase in Prl secretion (as estimated by mean concentration) at 136 and after 248 days of age. Significant age-associated changes occurred in all parameters of LH and T secretion. At the younger ages, testosterone concentrations were low and LH concentrations were elevated. At the older ages the relationship was reversed, with LH low and testosterone high. There were no significant correlations between frequency and magnitude of LH and T peaks. The significant correlations present among parameters of LH and T secretion were between basal concentration of LH and overall mean concentration and basal concentration of T. These results suggest that LH may not be the sole tropic stimulator of acute T secretion.  相似文献   

15.
The effects of thyroidectomy and thyroxine (T4) replacement on the release of luteinizing hormone (LH) and gonadotropin-releasing hormone (GnRH) in ovariectomized (Ovx) rats were studied. Immediately after ovariectomy, rats were thyroidectomized (Tx) or sham-Tx. The Ovx-Tx rats were injected subcutaneously with either saline or T4 (2 micrograms/100 g body weight) daily for 30 days before sacrifice. Sham-Tx rats were treated with saline only. Twenty hours after the last injection, the blood sample was obtained by decapitation. The excised anterior pituitary gland (AP) was bisected and incubated in vitro with or without 0.1, 0.5, 2.5, and 50 ng GnRH at 37 degrees C for 4 h. The mediobasal hypothalamus (MBH) was bisected and incubated with or without the AP of Ovx donor rat in vitro. Concentrations of LH and GnRH in the medium and that of LH in the serum were measured by radioimmunoassay. LH in the serum of Tx rats was higher than that in the serum of sham-Tx and Tx-T4 rats. Thyroidectomy resulted in an increase of LH release by Ovx rat AP, stimulated with or without 0.1 and 50 ng GnRH, as well as in an increase of immunoreactive GnRH release from MBH of Ovx rats in vitro. After a 4-hour incubation with donor APs, the LH in the medium containing MBH obtained from Tx rats was significantly higher than that obtained from sham-Tx and Tx-T4 rats. LH concentrations, in both sera and media, as well as GnRH concentration in the media of euthyroid and T4-replaced Tx groups were nonsignificantly different. These results suggest that T4 is inhibitory to the basal and GnRH-stimulated LH release as well as to the release of GnRH in the absence of ovarian hormones.  相似文献   

16.
A T Davenport  C A Hodson 《Life sciences》1992,50(14):1001-1006
The effect of cyclosporin A (CsA) treatment on LH and prolactin was investigated. Chronic daily administration of an immunosuppressive dose of CsA (1.5 mg/100g bw) increased serum LH concentrations and pituitary gland LH content. CsA treatment also resulted in increased serum testosterone. Immunosuppressive doses of CsA had no effect on serum prolactin or pituitary gland prolactin content. Acute administration of low doses of 0.12, 1.2, 12 and 120ug CsA/100g bw had no effect on serum LH or prolactin. These results suggest that administration of immunosuppressive doses of CsA alters serum and pituitary LH and serum testosterone but not prolactin.  相似文献   

17.
Naturally cycling white faced ewes were utilized to study the effects of continuously elevated environmental temperature and/or humidity on plasma concentrations of luteinizing hormone (LH), prolactin (PRL), progesterone (P4) and testosterone (TE) during the estrous cycle. Fourteen ewes were randomly allocated on the day of estrus (day 0) to either thermoneutral conditions (21.1 degrees C, 65% relative humidity) or elevated ambient temperature/humidity conditions (36.1 degrees C, 71% relative humidity) producing an average 1.4 degrees C hyperthermia. Animals remained in their respective environments and blood samples were collected daily until the next estrus or day 20, whichever occurred first. Starting at noon on day 14, blood was sampled every 2 hours. Concentrations of LH, PRL, P4 and TE were quantified using validated radioimmunoassays. Hyperthermic ewes exhibited 1) a significant decrease (P<0.05) in the incidence of behavioral estrus and a preovulatory LH surge at the expected time of the estrous cycle, 2) significantly lower (P<0.05) plasma P4 between days 7 and 13 of the cycle, 3) a six-fold increase of PRL levels (P<0.01). Plasma levels of TE were not significantly affected by hyperthermia. The only two experimental ewes which exhibited estrus and an LH surge also showed an unusual and significant peak in plasma P4 two days before estrus. These results confirm that elevated environmental temperatures that result in hyperthermia can induce endocrine imbalances in the ewe which may contribute to decreased reproductive efficiency in the heat-stressed female.  相似文献   

18.
Two photoperiod-controlled neuroendocrine systems appear to suppress secretion of tonic luteinizing hormone (LH) in anestrous ewes: a steroid-independent system that decreases LH pulse frequency in ovariectomized ewes and a steroid-dependent system whereby estradiol gains the capacity to suppress LH pulse frequency in anestrus. This study was designed to test the hypothesis that serotonergic neurons inhibit LH pulse frequency in ovariectomized ewes and to examine the possible interaction of this system with the steroid-dependent inhibition of LH pulse frequency in the anestrous season. In Experiment 1, i.v. injection of serotonin receptor antagonist, methysergide, significantly increased LH pulse frequency in ovariectomized ewes during the anestrous season. In Experiment 2, we examined the effects of oral administration of parachlorophenylalanine for 5 days on the synthesis of serotonin. This treatment significantly increased LH pulse frequency in ovariectomized ewes, but had no effect on the negative feedback action of estradiol. These data support the hypothesis that a serotonergic neural system mediates the steroid-independent inhibition of LH pulse frequency in anestrous ewes and suggest that this system is not absolutely essential for the functioning of the steroid-dependent system responsible for the negative feedback action during the anestrous season.  相似文献   

19.
The relationship between number of receptors for gonadotropin-releasing hormone (GnRH) and the ability of the anterior pituitary gland to release luteinizing hormone (LH) was examined in ovariectomized ewes. A GnRH antagonist was used to regulate the number of available receptors. The dose of GnRH antagonist required to saturate approximately 50 and 90% of GnRH receptors in ovariectomized ewes was determined. Thirty min after intracarotid infusion of GnRH antagonist, ewes were killed and the number of unsaturated (i.e., those available for binding) pituitary GnRH receptors was quantified. Infusion of 10 and 150 micrograms GnRH antagonist over a 5-min period reduced binding of the labeled ligand to approximately 50 and 12% of controls, respectively. The effect of reducing the number of GnRH receptors on release of LH after varying doses of the GnRH agonist, D-Ala6-GnRH-Pro9-ethylamide (D-Ala6-GnRH) was then evaluated. One of four doses of D-Ala6-GnRH (0.125, 2.5, 50 and 400 micrograms) was given i.v. to 48 ovariectomized ewes whose GnRH receptors had not been changed or were reduced to approximately 50 or 12% of control ewes. In ewes with a 50% reduction in GnRH receptors, total release of LH (area under response curve) was lower than that obtained for controls (P less than 0.01) at the 0.125-micrograms dose of D-Ala (6.1 +/- 0.7 cm2 vs. 13.5 +/- 0.7 cm2) but was not different at the 2.5-, 50- or 400-micrograms doses of D-Ala6-GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
M E Apfelbaum 《Life sciences》1987,41(17):2069-2076
The effect of serotonin (5-HT) on the basal and gonadotrophin-releasing hormone (GnRH)-stimulated release of luteinizing hormone (LH) was studied in rat adenohypophysis in vitro. Anterior pituitary glands from ovariectomized rats were incubated for 1h in the presence of different doses of 5-HT (0.01 to 3 mumol/l). Serotonin added to the culture medium slightly dimished the basal release of LH and markedly inhibited the release of LH induced by GnRH. Responsiveness to GnRH (3 nmol/l) was significantly reduced, in a dose-dependent manner, by the simultaneous treatment of glands with 5-HT. Maximal inhibition to 65% of the response obtained with GnRH alone, was attained with 1 mumol/l 5-HT. The EC50 value was estimated to be about 1.9 X 10(-7) M. The inhibitory effect of 5-HT was evident within 30 min of incubation. Furthermore, 5-HT appear to exert a short-lasting action, since the rate of basal and GnRH-induced release of LH was reduced during the first hour of incubation, but after 2h the suppressive effects of 5-HT were no longer apparent. Methysergide, a serotonin receptor blocking agent, partially antagonized the inhibitory effect of 5-HT on LH release, either basal or GnRH-stimulated. This suggests that a receptor-mediated component may be involved in the mechanism of 5-HT action. The present results indicate that 5-HT can affect the release of LH by acting directly at the pituitary gland level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号