首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biofilm formation by Bacillus cereus was assessed using 56 strains of B. cereus, including the two sequenced strains, ATCC 14579 and ATCC 10987. Biofilm production in microtiter plates was found to be strongly dependent on incubation time, temperature, and medium, as well as the strain used, with some strains showing biofilm formation within 24 h and subsequent dispersion within the next 24 h. A selection of strains was used for quantitative analysis of biofilm formation on stainless steel coupons. Thick biofilms of B. cereus developed at the air-liquid interface, while the amount of biofilm formed was much lower in submerged systems. This suggests that B. cereus biofilms may develop particularly in industrial storage and piping systems that are partly filled during operation or where residual liquid has remained after a production cycle. Moreover, depending on the strain and culture conditions, spores constituted up to 90% of the total biofilm counts. This indicates that B. cereus biofilms can act as a nidus for spore formation and subsequently can release their spores into food production environments.  相似文献   

2.
Bacillus cereus is a foodborne pathogen and cause a frequent problem due to the biofilms forming in equipment of food production plants. Autoinducer-2 (AI-2) involved in interspecies communication, plays a role in the biofilm formation of B. cereus. In this study, biofilm formation by thirty-nine B. cereus strains isolated from foods produced in Korea was determined. To investigate the effect of AI-2 on biofilm formation by B. cereus SBC27, which had the highest biofilm-forming ability, biofilm densities formed after addition of the AI-2 from Staphylococcus aureus and Escherichia coli were analysed. As a result, it was found that the quorum sensing molecule AI-2 could induce biofilm formation by B. cereus within 24 h, but it may also inhibit biofilm formation when more AI-2 is added after 24 h. Thus, these results improve our understanding of biofilm formation by food-derived B. cereus and provide clues that could help to reduce the impact of biofilms, the biggest problem in food processing environments, which has an impact on public health as well as the economy.  相似文献   

3.
Navigating novel biological strategies to mitigate bacterial biofilms have great worth to combat bacterial infections. Bacterial infections caused by the biofilm forming bacteria are 1000 times more resistant to antibiotics than the planktonic bacteria. Among the known bacterial infections, more than 70% involve biofilms which severely complicates treatment options. Biofilm formation is mainly regulated by the Quorum sensing (QS) mechanism. Interference with the QS system by the quorum quenching (QQ) enzyme is a potent strategy to mitigate biofilm. In this study, bacterial strains with QQ activity were identified and their anti-biofilm potential was investigated against the Multidrug Resistant (MDR) Pseudomonas aeruginosa. A Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136-based bioassays were used to confirm the degradation of different Acyl Homoserine Lactones (AHLs) by QQ isolates. The 16S rRNA gene sequencing of the isolated strains identified them as Bacillus cereus strain QSP03, B. subtilis strain QSP10, Pseudomonas putida strain QQ3 and P. aeruginosa strain QSP01. Biofilm mitigation potential of QQ isolates was tested against MDR P. aeruginosa and the results suggested that 50% biofilm reduction was observed by QQ3 and QSP01 strains, and around 60% reduction by QSP10 and QSP03 bacterial isolates. The presence of AHL degrading enzymes, lactonases and acylases, was confirmed by PCR based screening and sequencing of the already annotated genes aiiA, pvdQ and quiP. Altogether, these results exhibit that QQ bacterial strains or their products could be useful to control biofilm formation in P.aeruginosa.  相似文献   

4.
Biofilm formation by 102 Bacillus cereus and B. thuringiensis strains was determined. Strains isolated from soil or involved in digestive tract infections were efficient biofilm formers, whereas strains isolated from other diseases were poor biofilm formers. Cell surface hydrophobicity, the presence of an S layer, and adhesion to epithelial cells were also examined.The Bacillus cereus group includes B. cereus sensu stricto, B. anthracis, and B. thuringiensis, three genetically close pathogenic species. Based on genetic evidence, it has been suggested that they could represent one species (7). B. cereus sensu stricto is itself an opportunistic human pathogen occasionally found to cause various diseases such as endophthalmitis or periodontitis but is more frequently involved in gastrointestinal diseases with diarrheal or emetic syndromes (4, 12). Emetic syndromes result from the presence of cereulide, a heat-stable toxin produced in food before ingestion, whereas diarrheal syndromes require survival of the bacterium in the host digestive tract. B. thuringiensis is an insect pathogen, and B. anthracis causes anthrax, a lethal human disease.The persistent contamination of industrial food processing systems by B. cereus (12) may facilitate its involvement in gastroenteritis. This persistence is due to spores, which may survive pasteurization, heating, and gamma-ray irradiation (9, 13), and to biofilms, which have been shown to be highly resistant to cleaning procedures (18). Biofilms are also suspected to be involved in bacterial pathogenicity, as they may form on host epithelia (15).In this study, we wanted to test whether biofilm formation by species of the B. cereus group could be connected to the pathogenicity of the bacterium. For this purpose, we screened a collection of 102 pathogenic (diarrheal, emetic, and oral diseases) and nonpathogenic strains of B. cereus and B. thuringiensis for their capability to form biofilms. As adhesion to inert or living surfaces is a prerequisite for biofilm formation, we have investigated relationships within our collection of strains between biofilm formation and cell surface hydrophobicity, the presence of an S-layer, or adhesion to epithelial cells.  相似文献   

5.
Biofilm formation and adherence properties of 13 bacterial strains commonly found in wastewater treatment systems were studied in pure and mixed cultures using a crystal violet microtiter plate assay. Four different culture media were used, wastewater, acetate medium, glucose medium and diluted nutrient broth. The medium composition strongly affected biofilm formation. All strains were able to form pure culture biofilms within 24 h in at least one of the tested culture media and three strains were able to form biofilm in all four culture media, namely Acinetobacter calcoaceticus ATCC 23055, Comamonas denitrificans 123 and Pseudomonas aeruginosa MBL 0199. The adherence properties assessed were initial adherence, cell surface hydrophobicity, and production of amyloid fibers and extracellular polymeric substances. The growth of dual-strain biofilms showed that five organisms formed biofilm with all 13 strains while seven formed no or only weak biofilm when cocultured. In dual-strain cultures, strains with different properties were able to complement each other, giving synergistic effects. Strongest biofilm formation was observed when a mixture of all 13 bacteria were grown together. These results on attachment and biofilm formation can serve as a tool for the design of tailored systems for the degradation of municipal and industrial wastewater.  相似文献   

6.
Cell-free supernatants from growing Bacillus cereus strain ATCC 10987 induced luminescence in a Photorhabdus luminescens ΔluxS mutant, indicating the production of functional autoinducer 2 (AI-2). The exogenous addition of in vitro synthesized AI-2 had an inhibitory effect on biofilm formation by B. cereus and promoted release of the cells from a preformed biofilm.  相似文献   

7.
The study of biofilm function, structure and microbial interactions might help to improve our understanding of biofilm wastewater treatment processes. However, few reports specifically address the influence of interactions within multispecies biofilms on microbial activity and biofilm composition. Thus, the relationship between biofilm formation, denitrification activity, phosphorus removal and the composition of extracellular polymeric substances (EPS), exopolysaccharides and the bacterial community was investigated using biofilms of denitrifying and phosphorus removing strains Comamonas denitrificans 110, Brachymonas denitrificans B79, Aeromonas hydrophila L6 and Acinetobacter calcoaceticus ATCC23055. Denitrification activity within the biofilms generally increased with the amount of biofilm while phosphorus removal depended on bacterial growth rate. Synergistic effects of co-growth on denitrification (B. denitrificans B79 and A. hydrophila L6) and phosphorus removal (C. denitrificans 110 with either A. calcoaceticus or A. hydrophila L6) were observed. B. denitrificans B79 was highly affected by interspecies interactions with respect to biofilm formation, denitrification activity and EPS composition, while C. denitrificans 110 remained largely unaffected. In some of the dual and quadruple strain biofilms new exopolysaccharide monomers were detected which were not present in the pure strain samples.  相似文献   

8.
Streptococcus equi ssp. zooepidemicus (SEZ) is responsible for a wide variety of infections in many species, including pigs, horses and humans. Biofilm formation is essential for pathogenesis, and the ability to resist antibiotic treatment results in difficult-to-treat and persistent infections. However, the ability of SEZ to form biofilms is unclear. Furthermore, the mechanisms underlying SEZ biofilm formation and their attributes are poorly understood. In this study, scanning electron microscopy (SEM) demonstrated that SEZ strain ATCC35246 formed biofilms comprising a thick, heterogeneous layer with clumps on the coverslips when incubated for 24 h. In addition, we used a two-dimensional gel electrophoresis (2-DE) based approach to characterize differentially expressed protein in SEZ biofilms compared with their planktonic counterparts. The results revealed the existence of 24 protein spots of varying intensities, 13 of which were upregulated and 11 were downregulated in the SEZ biofilm compared with the planktonic controls. Most of proteins expressed during biofilm formation were associated with metabolism, adhesion, and stress conditions. These observations contribute to our understanding of the SEZ biofilm lifestyle, which may lead to more effective measures to control persistent SEZ infections.  相似文献   

9.
Neisseria meningitidis is the etiologic agent of meningococcal meningitis. We compared 48-h biofilm formation by N. meningitidis serogroup B strains NMB, MC58, C311 and isogenic mutants defective in capsule formation on SV-40 transformed human bronchial epithelial (HBE) cells in a flow cell. We demonstrated that strains NMB and NMB siaA-D were defective in biofilm formation over glass, and there was a partial rescue of biofilm growth for strain NMB on collagen-coated coverslips at 48 h. We demonstrated all three serogroup B strains form biofilms of statistically equivalent average height on HBE cells as their isogenic capsular mutants. Strain NMB also formed a biofilm of statistically equivalent biomass as the NMB siaA-D mutant on HBE cells at 6 and 48 h. These biofilms are significantly larger than biofilms formed over glass or collagen. Verification that strain NMB expressed capsule in biofilms on HBE cells was demonstrated by staining with 2.2.B, a monoclonal antibody with specificity for the serogroup B capsule. ELISA analysis demonstrated that strains MC58 and C311 also produced capsules during biofilm growth. These findings suggest that encapsulated meningococci can form biofilms on epithelial cells suggesting that biofilm formation may play a role in nasopharyngeal colonization.  相似文献   

10.
The ΔplcR mutant of Bacillus cereus strain ATCC 14579 developed significantly more biofilm than the wild type and produced increased amounts of biosurfactant. Biosurfactant production is required for biofilm formation and may be directly or indirectly repressed by PlcR, a pleiotropic regulator. Coating polystyrene plates with surfactin, a biosurfactant from Bacillus subtilis, rescued the deficiency in biofilm formation by the wild type.  相似文献   

11.

Background

Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments.

Methodology

We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells.

Conclusion

The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.  相似文献   

12.
Mechanisms for the undesired persistence of Bacillus species in paper machine slimes were investigated. Biofilm formation was measured for industrial Bacillus isolates under paper machine wet-end-simulating conditions (white water, pH 7, agitated at 45°C for 1–2 days). None of the 40 tested strains of seven Bacillus species formed biofilm on polished stainless steel or on polystyrene surfaces as a monoculture. Under the same conditions, Deinococcus geothermalis E50051 covered all test surfaces as a patchy thick biofilm. The paper machine bacilli, however, formed mixed biofilms with D. geothermalis E50051 as revealed by confocal microscopy. Biofilm interactions between the bacilli and the deinococci varied from synergism to antagonism. Synergism in biofilm formation of D. geothermalis E50051 was strongest with Bacillus coagulans D50192, and with the type strains of B. coagulans, B. amyloliquefaciens or B. pumilus. Two B. licheniformis, one B. amyloliquefaciens, one B. pumilus and four B. cereus strains antagonized biofilm production by D. geothermalis. B. licheniformis D50141 and the type strain of B. licheniformis were the strongest antagonists. These bacteria inhibited deinococcal growth by emitting heat-stable, methanol-soluble metabolite(s). We conclude that the persistence of Bacillus species in paper machine slimes relates to their ability to conquer biofilms formed by primary colonizers, such as D. geothermalis. Journal of Industrial Microbiology & Biotechnology (2001) 27, 343–351. Received 17 April 2001/ Accepted in revised form 16 July 2001  相似文献   

13.
A study on biofilm formation was carried out using five methicillin-sensitive [MSSA] and five methicillin-resistant [MRSA] strains of S. aureus. In each group, there were four strains isolated from patients from Kinshasa (Democratic Republic of Congo, DRC) and one reference strain. All of the strains were hydrophobic. The adherence of the bacteria to an abiotic surface was studied with the Biofilm Ring Test (BFRT®) and the crystal violet staining method (CVSM). Both techniques showed that eight of the strains formed biofilms within 2–3 h. The extent of the biofilm formed by one strain could only be observed with the CVSM. Periodate prevented the formation of biofilms and, in separate experiments, destroyed the biofilm pre-formed by the MSSA reference, but not those pre-formed by the clinical strains. Proteinase K destroyed all pre-formed biofilms. Six of the strains were icaA+; the clinical MSSA strains were not. The results also indicated different mechanisms of biofilm development between MSSA and MRSA clinical strains. The BFRT® and the CVSM are complementary techniques to study the adhesion of bacteria and the development of biofilms.  相似文献   

14.
Glutaraldehyde (GLUT) was evaluated for control of single and dual species biofilms of Bacillus cereus and Pseudomonas fluorescens on stainless steel surfaces using a chemostat system. The biofilms were characterized in terms of mass, cell density, total and matrix proteins and polysaccharides. The control action of GLUT was assessed in terms of inactivation and removal of biofilm. Post-biocide action was characterized 3, 7, 12, 24, 48 and 72 h after treatment. Tests with planktonic cells were also performed for comparison. The results demonstrated that in dual species biofilms the metabolic activity, cell density and the content of matrix proteins were higher than those of either single species. Planktonic B. cereus was more susceptible to GLUT than P. fluorescens. The biocide susceptibility of dual species planktonic cultures was an average of each single species. Planktonic cells were more susceptible to GLUT than their biofilm counterparts. Biofilm inactivation was similar for both of the single biofilms while dual biofilms were more resistant than single species biofilms. GLUT at 200 mg l?1 caused low biofilm removal (<10%). Analysis of the post-biocide treatment data revealed the ability of biofilms to recover their activity over time. However, 12 h after biocide application, sloughing events were detected for both single and dual species biofilms, but were more marked for those formed by P. fluorescens (removal >40% of the total biofilm). The overall results suggest that GLUT exerts significant antimicrobial activity against planktonic bacteria and a partial and reversible activity against B. cereus and P. fluorescens single and dual species biofilms. The biocide had low antifouling effects when analysed immediately after treatment. However, GLUT had significant long-term effects on biofilm removal, inducing significant sloughing events (recovery in terms of mass 72 h after treatment for single biofilms and 42 h later for dual biofilms). In general, dual species biofilms demonstrated higher resistance and resilience to GLUT exposure than either of the single species biofilms. P. fluorescens biofilms were more susceptible to the biocide than B. cereus biofilms.  相似文献   

15.
Listeria monocytogenes has the ability to form biofilms on food-processing surfaces, potentially leading to food product contamination. The objective of this research was to standardize a polyvinyl chloride (PVC) microtiter plate assay to compare the ability of L. monocytogenes strains to form biofilms. A total of 31 coded L. monocytogenes strains were grown in defined medium (modified Welshimer's broth) at 32°C for 20 and 40 h in PVC microtiter plate wells. Biofilm formation was indirectly assessed by staining with 1% crystal violet and measuring crystal violet absorbance, using destaining solution. Cellular growth rates and final cell densities did not correlate with biofilm formation, indicating that differences in biofilm formation under the same environmental conditions were not due to growth rate differences. The mean biofilm production of lineage I strains was significantly greater than that observed for lineage II and lineage III strains. The results from the standardized microtiter plate biofilm assay were also compared to biofilm formation on PVC and stainless steel as assayed by quantitative epifluorescence microscopy. Results showed similar trends for the microscopic and microtiter plate assays, indicating that the PVC microtiter plate assay can be used as a rapid, simple method to screen for differences in biofilm production between strains or growth conditions prior to performing labor-intensive microscopic analyses.  相似文献   

16.
Biofilm formation is a general attribute to almost all bacteria 1-6. When bacteria form biofilms, cells are encased in extracellular matrix that is mostly constituted by proteins and exopolysaccharides, among other factors 7-10. The microbial community encased within the biofilm often shows the differentiation of distinct subpopulation of specialized cells 11-17. These subpopulations coexist and often show spatial and temporal organization within the biofilm 18-21.Biofilm formation in the model organism Bacillus subtilis requires the differentiation of distinct subpopulations of specialized cells. Among them, the subpopulation of matrix producers, responsible to produce and secrete the extracellular matrix of the biofilm is essential for biofilm formation 11,19. Hence, differentiation of matrix producers is a hallmark of biofilm formation in B. subtilis.We have used fluorescent reporters to visualize and quantify the subpopulation of matrix producers in biofilms of B. subtilis15,19,22-24. Concretely, we have observed that the subpopulation of matrix producers differentiates in response to the presence of self-produced extracellular signal surfactin 25. Interestingly, surfactin is produced by a subpopulation of specialized cells different from the subpopulation of matrix producers 15.We have detailed in this report the technical approach necessary to visualize and quantify the subpopulation of matrix producers and surfactin producers within the biofilms of B.subtilis. To do this, fluorescent reporters of genes required for matrix production and surfactin production are inserted into the chromosome of B. subtilis. Reporters are expressed only in a subpopulation of specialized cells. Then, the subpopulations can be monitored using fluorescence microscopy and flow cytometry (See Fig 1).The fact that different subpopulations of specialized cells coexist within multicellular communities of bacteria gives us a different perspective about the regulation of gene expression in prokaryotes. This protocol addresses this phenomenon experimentally and it can be easily adapted to any other working model, to elucidate the molecular mechanisms underlying phenotypic heterogeneity within a microbial community.  相似文献   

17.
B Biyikoğlu  A Ricker  PI Diaz 《Anaerobe》2012,18(4):459-470
Periodontitis results from an ecological shift in the composition of subgingival biofilms. Subgingival community maturation is modulated by inter-organismal interactions and the relationship of communities with the host. In an effort to better understand this process, we evaluated biofilm formation, with oral commensal species, by three strains of the subgingivally prevalent microorganism Fusobacterium nucleatum and four strains of the periodontopathogen Porphyromonas gingivalis. We also tested the effect of serum, which resembles gingival exudates, on subgingival biofilms. Biofilms were allowed to develop in flow cells using salivary medium. We found that although not all strains of F. nucleatum were able to grow in mono-species biofilms, forming a community with health-associated partners Actinomyces oris and Veillonella parvula promoted biofilm growth of all F. nucleatum strains. Strains of P. gingivalis also showed variable ability to form mono-species biofilms. P. gingivalis W50 and W83 did not form biofilms, while ATCC 33277 and 381 formed biofilm structures, but only strain ATCC 33277 grew over time. Unlike the enhanced growth of F. nucleatum with the two health-associated species, no strain of P. gingivalis grew in three-species communities with A. oris and V. parvula. However, addition of F. nucleatum facilitated growth of P. gingivalis ATCC 33277 with health-associated partners. Importantly, serum negatively affected the adhesion of F. nucleatum, while it favored biofilm growth by P. gingivalis. This work highlights strain specificity in subgingival biofilm formation. Environmental factors such as serum alter the colonization patterns of oral microorganisms and could impact subgingival biofilms by selectively promoting pathogenic species.  相似文献   

18.
The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.  相似文献   

19.
In clinical staphylococci, the presence of the ica genes and biofilm formation are considered important for virulence. Biofilm formation may also be of importance for survival and virulence in food-related staphylococci. In the present work, staphylococci from the food industry were found to differ greatly in their abilities to form biofilms on polystyrene. A total of 7 and 21 of 144 food-related strains were found to be strong and weak biofilm formers, respectively. Glucose and sodium chloride stimulated biofilm formation. The biofilm-forming strains belonged to nine different coagulase-negative species of Staphylococcus. The icaA gene of the intercellular adhesion locus was detected by Southern blotting and hybridization in 38 of 67 food-related strains tested. The presence of icaA was positively correlated with strong biofilm formation. The icaA gene was partly sequenced for 22 food-related strains from nine different species of Staphylococcus, and their icaA genes were found to have DNA similarities to previously sequenced icaA genes of 69 to 100%. Northern blot analysis indicated that the expression of the ica genes was higher in strong biofilm formers than that seen with strains not forming biofilms. Biofilm formation on polystyrene was positively correlated with biofilm formation on stainless steel and with resistance to quaternary ammonium compounds, a group of disinfectants.  相似文献   

20.

Background

Stenotrophomonas maltophilia is emerging as one of the most frequently found bacteria in chronic pulmonary infection. Biofilm is increasingly recognized as a contributing factor to disease pathogenesis. In the present study, a total of 37 isolates of S. maltophilia obtained from chronic pulmonary infection patients were evaluated to the relationship between biofilm production and the relative genes expression.

Methods

The clonal relatedness of isolates was determined by pulse-field gel electrophoresis. Biofilm formation assays were performed by crystal violet assay, and confirmed by Electron microscopy analysis and CLSM analysis. PCR was employed to learn gene distribution and expression.

Results

Twenty-four pulsotypes were designated for 37 S. maltophilia isolates, and these 24 pulsotypes exhibited various levels of biofilm production, 8 strong biofilm-producing S. maltophilia strains with OD492 value above 0.6, 14 middle biofilm-producing strains with OD492 average value of 0.4 and 2 weak biofilm-producing strains with OD492 average value of 0.19. CLSM analysis showed that the isolates from the early stage of chronic infection enable to form more highly structured and multilayered biofim than those in the late stage. The prevalence of spgM, rmlA, and rpfF genes was 83.3%, 87.5%, and 50.0% in 24 S. maltophilia strains, respectively, and the presence of rmlA, spgM or rpfF had a close relationship with biofilm formation but did not significantly affect the mean amount of biofilm. Significant mutations of spgM and rmlA were found in both strong and weak biofilm-producing strains.

Conclusion

Mutations in spgM and rmlA may be relevant to biofilm formation in the clinical isolates of S. maltophilia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号