首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matsuno K 《Bio Systems》2012,109(2):159-168
The evolutionary onset of a reaction cycle such as an autocatalytic cycle requires a reliable framework for protecting the harbinger cycle, once it appears by any chance, against the hostile environments in the neighborhood. One natural candidate for protecting the fragile nascent cycle could be available from the operation of internal measurement envisioned in the relative-state formulation of quantum mechanics. Once every chemical reactant is taken to be relative to every other reactant in the act of measuring each other internally, the relative-state formulation provides the condition for favoring and protecting those events such that the reactions mediating between the reactants and the products may eventually form a reaction cycle.  相似文献   

2.
Regulation of the G1 phase of the mammalian cell cycle   总被引:24,自引:0,他引:24  
In any multi-cellular organism,the balance between cell division and cell death maintains a constant cell number.Both cell division cycle and cell death are highly regulated events.Whether the cell will proceed through the cycle or not,depends upon whether the conditions required at the checkpoints during the cycle and fulfilled.In higher eucaryotic cells,such as mammalian cells,signals that arrest the cycle usually act at a G1 checkpoint.Cells that pass this restriction point are committed to complete the cycle.Regulation of the G1 phase of the cell cycle is extremely complex and involves many different families of proteins such as retinoblastoma family,cyclin dependent kinases,cyclins,and cyclin kinase inhibitors.  相似文献   

3.
There have been a growing number of observations of oscillating protein levels (p53 and NFkB) in eukaryotic signalling pathways. This has resulted in a renewed interest in the mechanism by which such oscillations might occur. Recent computational work has shown that a multisite phosphorylation mechanism such as that found in the MAPK cascade can theoretically exhibit bistability. The bistable behavior was shown to arise from sequestration and saturation mechanisms for the enzymes that catalyse the multisite phosphorylation cycle. These effects generate the positive feedback necessary for bistability. In this paper we describe two kinds of oscillatory dynamics which can occur in a network by which, both use such bistable multisite phosphorylated cycles. In the first example, the fully phosphorylated form of the phosphorylated cycle represses the production of the kinase, which carries out the phosphorylation of the unphosphorylated states of the cycle. The dynamics of this system leads to a relaxation oscillator. In the second example, we consider a cascade of two cycles, in which the fully phosphorylated form of the kinase, in the first cycle, phosphorylates the unphosphorylated forms in the second cycle. A feedback loop, by which the fully phosphorylated form of the second cycle inhibits the kinase step in the first cycle is also present. In this case we obtain a ring oscillator. Both these networks illustrate the versatility of the multisite bistable network.  相似文献   

4.
城市系统碳循环:特征、机理与理论框架   总被引:2,自引:0,他引:2  
赵荣钦  黄贤金 《生态学报》2013,33(2):358-366
城市是地表受人类活动影响最深刻的区域,城市系统碳循环在全球和区域碳过程中具有重要的地位和作用.提出了城市“自然-社会”二元碳循环的概念,探讨了城市系统碳循环的一般特征;分析了城市系统碳循环的内部机理,主要包括:城市系统碳储量和碳输入/输出通量的主要过程和途径、城市系统碳储量、碳通量和碳流通的生命周期分析、城市系统碳输入和碳输出的类型划分等;提出了基于系统层次划分和碳流通过程的城市系统碳循环的研究框架,分析了城市自然系统和城市经济系统的主要碳流通过程和环节,构建了城市系统碳循环研究的思路和理论框架;最后提出了城市系统碳循环领域未来的研究重点.  相似文献   

5.
6.
Spatio-temporal coordination of events during cell division is crucial for animal development. In recent years, emerging data have strengthened the notion that tight coupling of cell cycle progression and cell polarity in dividing cells is crucial for asymmetric cell division and ultimately for metazoan development. Although it is acknowledged that such coupling exists, the molecular mechanisms linking the cell cycle and cell polarity machineries are still under investigation. Key cell cycle regulators control cell polarity, and thus influence cell fate determination and/or differentiation, whereas some factors involved in cell polarity regulate cell cycle timing and proliferation potential. The scope of this review is to discuss the data linking cell polarity and cell cycle progression, and the importance of such coupling for asymmetric cell division. Because studies in model organisms such as Caenorhabditis elegans and Drosophila melanogaster have started to reveal the molecular mechanisms of this coordination, we will concentrate on these two systems. We review examples of molecular mechanisms suggesting a coupling between cell polarity and cell cycle progression.  相似文献   

7.
Bistability is a common mechanism to ensure robust and irreversible cell cycle transitions. Whenever biological parameters or external conditions change such that a threshold is crossed, the system abruptly switches between different cell cycle states. Experimental studies have uncovered mechanisms that can make the shape of the bistable response curve change dynamically in time. Here, we show how such a dynamically changing bistable switch can provide a cell with better control over the timing of cell cycle transitions. Moreover, cell cycle oscillations built on bistable switches are more robust when the bistability is modulated in time. Our results are not specific to cell cycle models and may apply to other bistable systems in which the bistable response curve is time-dependent.  相似文献   

8.
The kinesin superfamily of microtubule associated motor proteins share a characteristic motor domain which both hydrolyses ATP and binds microtubules. Kinesins display differences across the superfamily both in ATP turnover and in microtubule interaction. These differences tailor specific kinesins to various functions such as cargo transport, microtubule sliding, microtubule depolymerization and microtubule stabilization. To understand the mechanism of action of a kinesin it is important to understand how the chemical cycle of ATP turnover is coupled to the mechanical cycle of microtubule interaction. To dissect the ATP turnover cycle, one approach is to utilize fluorescently labeled nucleotides to visualize individual steps in the cycle. Determining the kinetics of each nucleotide transition in the ATP turnover cycle allows the rate-limiting step or steps for the complete cycle to be identified. For a kinesin, it is important to know the rate-limiting step, in the absence of microtubules, as this step is generally accelerated several thousand fold when the kinesin interacts with microtubules. The cycle in the absence of microtubules is then compared to that in the presence of microtubules to fully understand a kinesin’s ATP turnover cycle. The kinetics of individual nucleotide transitions are generally too fast to observe by manually mixing reactants, particularly in the presence of microtubules. A rapid mixing device, such as a stopped-flow fluorimeter, which allows kinetics to be observed on timescales of as little as a few milliseconds, can be used to monitor such transitions. Here, we describe protocols in which rapid mixing of reagents by stopped-flow is used in conjunction with fluorescently labeled nucleotides to dissect the ATP turnover cycle of a kinesin.  相似文献   

9.
The orderly progression through the cell division cycle is of paramount importance to all organisms, as improper progression through the cycle could result in defects with grave consequences. Previously, our lab has shown that model eukaryotes such as Saccharomyces cerevisiae, Caenorhabditis elegans, and Danio rerio all retain high viability after prolonged arrest in a state of anoxia-induced suspended animation, implying that in such a state, progression through the cell division cycle is reversibly arrested in an orderly manner. Here, we show that S. cerevisiae (both wild-type and several cold-sensitive strains) and C. elegans embryos exhibit a dramatic decrease in viability that is associated with dysregulation of the cell cycle when exposed to low temperatures. Further, we find that when the yeast or worms are first transitioned into a state of anoxia-induced suspended animation before cold exposure, the associated cold-induced viability defects are largely abrogated. We present evidence that by imposing an anoxia-induced reversible arrest of the cell cycle, the cells are prevented from engaging in aberrant cell cycle events in the cold, thus allowing the organisms to avoid the lethality that would have occurred in a cold, oxygenated environment.  相似文献   

10.
We discuss under the McCulloch and Pitts assumptions for neural nets a circuit consisting ofk cycles such that one cycle is activated by an outside stimulus and sends an impulse to a second cycle which in its turn sends an impulse to the next cycle, etc., up to thekth cycle, which sends an impulse to a response. We thus have a “series” ofk cycles “interacting”. We give several theorems regarding the response patterns of such circuits under the additional constraint that the stimulus acts but once, and at the time it acts the circuit is at rest.  相似文献   

11.
细胞周期是高度有组织的时序调控过程,受到DNA损伤检控点、DNA复制检控点和纺锤体检控点等细胞周期检控点的精确调控。细胞周期检控点的作用主要是调节细胞周期的时序转换,以确保DNA复制、染色体分离等细胞重要生命活动的高度精确性,并对DNA损伤、DNA复制受阻、纺锤体组装和染色体分离异常等细胞损伤及时做出反应,以防止突变和遗传不稳定的发生。细胞周期检控点的功能缺陷,将导致细胞基因组的不稳定,与细胞癌变密切相关。因此细胞周期检控点对于维持细胞遗传信息的稳定性和完整性以及防止细胞癌变和遗传疾病的发生起着至关重要的作用。  相似文献   

12.
Major proteins synthesized by Swiss 3T3 cells at different stages of the cell cycle have been analyzed using double isotope labeling and one-dimensional SDS-polyacrylamide slab gels. The synthesis of actin was previously shown to be markedly enhanced a few hours after quiescent cells initiated growth following addition of serum. In contrast, the synthesis of actin remained at a constant rate, similar to that in quiescent cells, relative to synthesis of other proteins during the entire cell cycle. We conclude that enhanced actin synthesis is a process specific for the G0 to S transit, and may serve as a marker event during this interval. In contrast, three other proteins (90,000, 57,000, and 33,000 daltons) were synthesized throughout the cell cycle at higher rates than in G0 cells, and thus, are markers characteristic of cells traversing the cell cycle. A transient increase, such as seen for actin synthesis, by cells emerging from quiescence, may represent a process that these cells must perform before they can enter the G1 portion of the cell cycle. A transient event such as this need not be a periodic event that occurs during each cycle.  相似文献   

13.
14.
Collis SJ  Boulton SJ 《Chromosoma》2007,116(4):331-339
For life forms to survive, they must adapt to their environmental conditions. One such factor that impacts on both prokaryotic and eukaryotic organisms is the light–dark cycle, a consequence of planetary rotation in relation to our sun. In mammals, the daily light cycle has affected the regulation of many cellular processes such as sleep–wake and calorific intake activities, hormone secretion, blood pressure and immune system responses. Such rhythmic behaviour is the consequence of circadian rhythm/biological clock (BC) systems which are controlled in a light stimulus-dependent manner by a master clock called the suprachiasmatic nucleus (SCN) situated within the anterior hypothalamus. Peripheral clocks located in other organs such as the liver and kidneys relay signals from the SCN, which ultimately leads to tightly controlled expression of several protein families that in turn act on a broad range of cellular functions. Work in lower organisms has demonstrated a link between aging processes and BC factors, and studies in both animal models and clinical trials have postulated a role for certain BC-associated proteins in tumourigenesis and cancer progression. Recent exciting data reported within the last year or so have now established a molecular link between specific BC proteins and factors that control the mammalian cell cycle and DNA damage checkpoints. This mini review will focus on these discoveries and emphasise how such BC proteins may be involved, through their interplay with cell cycle/DNA damage response pathways, in the development of human disease such as cancer.  相似文献   

15.
Michael WM 《Current biology : CB》2001,11(11):R443-R445
Checkpoints have been a staple of eukaryotic cell cycle research for the past decade, but little is known about checkpoints in prokaryotes. New work on sporulation in Bacillus fills that gap by showing that such control systems function to coordinate aspects of the bacterial cell cycle.  相似文献   

16.
Studies of gene expression during the eukaryotic cell cycle in whole-culture synchronized cultures have been published using many methodologies. These procedures alter the state of the cell cycle for a population of cells, rather than purifying a population of cells that are in the same state. Criticism of these methods (e.g. see Cooper, this issue, pp. 266-269, ) suggests that these studies are flawed, and posits that such methodologies cannot be used to study the cell cycle because they alter the size and age distributions of the cultures. We believe that whole-culture cell cycle studies work even though they alter the size and age distributions: these cells still progress through the cell cycle and although we do not suggest that the methods are perfect, we will explain how these microarray studies have successfully identified cell cycle regulated genes and why these results are biologically meaningful.  相似文献   

17.
Several reports describe the existence of a redox cycle within the normal cell cycle that helps control the process of cell proliferation. According to some of these reports, this redox cycle comprises an intracellular redox potential E that oscillates above and below θ during the cell cycle process. θ is the threshold for dephosphorylation of protein regulators associated with serine residues such as the retinoblastoma protein. This article describes how insulin action may be the source of the redox cycle within the cell cycle. The relative lack of insulin action as a consequence of oxidative stress results in the hallmarks of type 2 diabetes.  相似文献   

18.
Evidence showing the ectopic re-expression of cell cycle-related proteins in specific vulnerable neuronal populations in Alzheimer disease led us to formulate the hypothesis that neurodegeneration, like cancer, is a disease of inappropriate cell cycle control. To test this notion, we used adenoviral-mediated expression of c-myc and ras oncogenes to drive postmitotic primary cortical neurons into the cell cycle. Cell cycle re-entry in neurons was associated with increased DNA content, as determined using BrdU and DAPI, and the re-expression of cyclin B1, a marker for the G2/M phase of the cell cycle. Importantly, we also found that cell cycle re-entry in primary neurons leads to tau phosphorylation and conformational changes similar to that seen in Alzheimer disease. This study establishes that the cell cycle can be instigated in normally quiescent neuronal cells and results in a phenotype that shares features of degenerative neurons in Alzheimer disease. As such, our neuronal cell model may be extremely valuable for the development of novel therapeutic strategies.  相似文献   

19.
Protein kinases play a central role in the regulation of the eukaryotic cell cycle. Recent research has concentrated on a particular family of protein kinases, the cyclin-dependent kinases (CDKs), and their involvement in regulating particular cell cycle transitions, such as the initiation of DNA synthesis (S phase) or of cell division (mitosis). One can think of these enzymes as the basic machinery of the cell; their activity is then modulated by proteins which transduce signals from the external environment, and by proteins that monitor the progress of events such as DNA replication or the formation of the mitotic spindle. This review will be structured so as to introduce the cyclin-CDK motif, outline which cyclin-CDKs are involved at different cell cycle stages, their direct regulation by other protein kinases and phosphatases, and lastly the importance of other protein kinases in the cell cycle.  相似文献   

20.
细胞周期与细胞凋亡   总被引:9,自引:0,他引:9  
从海洋生物胚胎细胞到哺乳动物的细胞周期,主要是在其细胞周期基因产物周期素及P34的调控下启动,运行和脱出周期的;某些原癌基因或抑癌基因的产物如p53,pRB也直接调控着细胞周期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号