首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NADP-isocitrate dehydrogenase (NADP-ICDH) activity of radish (Raphanus sativus L.) seedlings pretreated with various plant growth regulators: KiN, GA, and ABA and different nitrogen sources viz. KNO3, NH4Cl and NH4NO3 in light and dark was investigated. ICDH activity was significantly higher in light than in dark; addition of different nitrogen sources reduced it to a greater extent in NO3 supplementation. Among hormonal treatment only KiN showed slight promotion with KNO3 and NH4NO3. On the other hand in light KNO3 and/or NH4NO3 promoted ICDH activity and among hormones, KiN significantly promoted the activity in KNO3 and NH4NO3 supplemented seedlings while ABA was effective in NH4CL. It is suggested that in non-photosynthetic tissues, NADP-ICDH provides both reductant and carbon skeleton for glutamate synthesis.  相似文献   

2.
The influence of three nitrogen salts: NH4NO3, KNO3 and NH4Cl on wheat in vitro cultures was investigated. Both NO 3 and NH 4 + ions were indispensable for proliferation of embryogenic calli and development of wheat somatic embryos. It is possible to obtain wheat somatic embryos when the medium is enriched with NH4NO3 only as a source of inorganic nitrogen. The results of the statistical analysis showed that the level of NH4NO3 and KNO3 in the medium had a great influence on the efficiency of somatic embryogenesis. We observed tendency that calli on media containing 50 mM NH4NO3 and 0 to 20 mM KNO3 turned out to be more embryogenic than on control MS medium. High concentrations of KNO3- 100 mM inhibited somatic embryogenesis, while 100 mM NH4NO3 did not. The level of total N did not have significant influence on wheat somatic embryogenesis. Ratio NO 3 :NH 4 + also turned out to be not substantial. We observed that mutual connection of concentration levels between NH4NO3 and KNO3 and between NH4Cl and KNO3 was more important. The efficiency of somatic embriogenesis obtained in the experiment with NH4Cl and KNO3 was significantly lower than in experiment with NH4NO3 and KNO3.  相似文献   

3.
4.
When grown in vitro in a medium containing NH4NO3 as the sole source of nitrogen, seeds ro the orchid, Cattleya (C. labiata ‘Wonder’ X C. labiata ‘Treasure'), germinated readily and proceeded to form small plantlets. Development of the embryos was accompanied by an increase in their total nitrogen and a decline in the percent dry weight. Growth responses of the seedlings in other ammonium salts like (NH4)2SO4, (NH4)2HPO4, NH4Cl, ammonium acetate and ammonium oxalate were similar to that in NH4NO3. However, when grown in a medium containing NaNO3, development of the seedlings was drastically inhibited; KNO3, Ca(NO3)2, KNO2 and NaNO2 also were poor nitrogen sources. Attempts to grow the seedlings in NaNO3 by changing the pH or by addition of kinetin, molybdenum or ascorbic acid as supplements were completely unsuccessful. When seedlings growing in NH4NO3 for varying periods were transferred to NaNO3, it was found that those plants allowed to grow for 60 or more days in NH4NO3 could resume normal growth thereafter in NaNO3. Determination of the nitrate reductase activity in seedlings of different ages grown in NaNO3, after NH4NO3, showed that the ability of the seedlings to assimilate inorganic nitrogen was paralleled by the appearance of the enzyme.  相似文献   

5.
The action of sodium nitroprusside, a nitric oxide donor, and other nitrogen compounds (KNO3, KNO2, and (NH4)2SO4) on adhesion and penetration of nodule bacteria into root tissues of etiolated pea seedlings was studied. Only nitroprusside displayed a clearly negative effect on rhizobium adhesion and penetration and seedling growth. This effect was not observed with other nitrogen compounds even at high (20 mM) concentrations. Hemoglobin attenuated the negative effect of nitroprusside on bacteria and seedlings. The results are discussed in the context of the role of nitric oxide in the life of plants and nodule bacteria.  相似文献   

6.
Radish (Raphanus sativus L.) seedlings pretreated with different hormones viz. kinetin, gibberellic acid and abscisic acid were subjected to different N-forms. The seedlings were treated with different concentrations of KNO3, NH4Cl and NH4NO3 and the changes in nitrate reductase activity were seen in light and dark conditions in the cotyledons. Nitrate reductase activity was affected differently by hormone application. Nitrate increased and ammonia decreased nitrate reductase activity; in both light and dark-grown seedlings KNO3 induced more in vitro nitrate reductase activity. NH 4 + when combined with NO 3 , however, could level up to some extent, with KNO3 in light, except in kinetin. A transient response of induction of NR activity was evident with decreased levels after a certain specific ambient N-concentration, despite the presence of high N in the medium. However, the pattern of transition varied with the hormones applied. Further, hormones are found to affect induction of different isoforms of nitrate reductase by NH 4 + and NO 3 . NH 4 + induced isoform was prominently promoted by kinetin treatment in dark. The data documents a particular kind of interaction between controlling factors (light, N-source and phytohormones) which affect nitrate reductase levels.  相似文献   

7.
The response of net O2 exchange to light intensity by intact Anacystis nidulans cells in the presence of saturating NaHCO3 concentrations followed a curve with an inflection near the light-compensation point. Addition of either KNO3 or NH4Cl stimulated O2 uptake in the dark and at light intensities below the light-compensation point. This resulted in steeper slopes of the curve calculated below and above the light-compensation point. At O2 concentrations limiting dark respiration, addition of inorganic nitrogen had no effect on either dark respiration or O2 exchange in the light. The apparent changes in photosynthetic yield observed under normal O2 concentration disappeared when respiration was limited by O2 availability, indicating that the effects of inorganic nitrogen on O2 exchange at low light intensities are due to stimulation of respiration rather than to increases in photosynthetic yield.  相似文献   

8.
Mature-embryo derived primary calli of the basmati rice (Oryza sativa L.) cv Karnal Local showed significant enhancement in in vitro green-plantlet regeneration efficiency through modification of nitrogen content of the callusing medium. Using KNO3 as the source of nitrate nitrogen and (NH4)2SO4 as the source of ammonium nitrogen, forty-five media combinations involving 9 levels of KNO3 (0–40 mM) and 5 concentrations (0–6.5 mM) of (NH4)2SO4 were examined. The highest frequency of plantlet regeneration (100%) and a maximum number of green-plantlets (~ 7) per embryo-derived primary callus was obtained in calli derived from the medium having 35 mM KNO3 and 5 mM (NH4)2SO4. Higher concentrations of KNO3 and/or (NH4)2SO4 showed a decline in the regeneration efficiency. It was also observed that although the nitrogen content of the callus induction medium had a profound effect on the regenerability of the callus, the nitrogen composition of the regeneration medium also affected it significantly.  相似文献   

9.
Conditions for assay of molybdenum cofactor in barley shoot extracts in the presence of molybdate (25 mM N2MoO4) and the sulphydryl-group protector, reduced glutathione (5 mM) were optimized. Both total Mo-cofactor (assayed after heat-treatment of cell-free extracts) and ‘free’ Mo-cofactor (assayed in untreated cell-free extracts) were assayed. Compared to control plants grown in the absence of an exogenous nitrogen source total Mo-cofactor levels increased around 70 % when plants were grown for 4 days in the presence of either 15 mM KNO3 or 15 mM NH4NO3. Growth in the presence of 15 mM (NH4)2SO4 did not affect the Mo-cofactor level. Very similar results were seen when plants were transferred to these nitrogen sources for 24 hr after previous growth in the absence of an exogenous nitrogen source. In contrast ‘free’ Mo-cofactor levels of both KNO3 and NH4NO3-treated plants were increased 2-3-fold over untreated controls. Growth in the presence of (NH4)2SO4 did not affect the ‘free’ Mo-cofactor level.  相似文献   

10.
11.
The influence of the source of inorganic nitrogen (KNO3, (NH4)2SO4 and NH4NO3) and its concentration (5, 10, 20 and 30 mM N) on total N incorporation, as well as on N distribution into different fractions (amminiacal, amino, amide and protein) and on free amino acid levels has been determined in grape vine explants cultured in vitro.Increasing concentrations of the nitrogen source resulted in increased total N content in tissues. This effect was small for KNO3, higher for (NH4)2SO4 and maximal for NH4NO3. In addition, nitrate promoted an increase in amino-N only, whereas ammonium increased both the ammoniacal-N and the amino-N fractions. Incorporation of N into amide-N and protein-N were not affected significantly by the N sources tested.The application of increasing quantities of N enhanced the accumulation of most free amino acids, especially arginine, alanine and proline, but to different extents, depending on both the N source and its concentration. The combination of ammonium and nitrate resulted in a higher accumulation of amino acids than that observed with either one of the two forms alone.  相似文献   

12.
In vitro germination of 20-day old immature ovules of Impatiens platypetala Lindl. was inhibited at concentrations as low as 50 mM sucrose or mannitol and 100 mM glucose. Younger ovules (12, 14, and 16 days old) were similarly inhibited at 100 mM sucrose.Inorganic nitrogen concentration did not affect germination regardless of ovule age, but seedling fresh weight was significantly less and abnormal development of seedlings was significantly increased by total inorganic nitrogen concentrations higher or lower than 30 mM (at a ratio of 20: 10 mM NO3 -: NH4 +) in the culture medium.  相似文献   

13.
The effects of nitrogen applied at increasing levels of 0, 4, 8, 16 and 32 mM N (KNO3 or NH4Cl) were studied in faba bean (Vicia faba) nodulated byRhizobium leguminosarum bv.viceae RCR lool. Nitrogenase activity was higher at 4 and 8 mM N than the zero N treatment (control), but 16 and 32 mM N significantly reduced the efficiency of nodule functions. Nitrate reductase activities (NRA) of leaves, stems, roots, nodules and nodule fractions (bacteroid and cytosol) were increased with rising the NO3 ? or NH4 + levels. NRA decreased in the order of nodules>leaves>stems>roots. Cytosolic NR was markedly higher than that recorded in the bacteroid fractions. Nitrate levels were linearly correlated to NRA of nodules. Accumulation of NO2 ? within nodules suggests that NO2 ? inhibits nodule’s activity after feeding plants with NO3 ? or NH4 +.  相似文献   

14.
The 7- to 8-day-old barley (Hordeum vulgare L.) seedlings grown in KNO3 solutions (1-40 mM) were characterized by the substrate activation of nitrate reductase (NR) in the apical leaf segments (1–2 cm in length), as well as by stimulated growth, broadened leaf blades, and by vigorously developed system of shortened roots. When the seedlings were grown in the presence of 20 mM KNO3, the ability of leaf segments to generate superoxide anion radical remained at the level typical of control plants grown in water. The content of 5-aminolevulinic acid (ALA) in plants grown in the presence of 20 mM KNO3 was 2.2–2.4 times higher than in control plants. The plants grown in the presence of nitrate had an elevated content of chlorophylls a and b, heme, and protein (by 42%). At the same time, the proline content was almost twofold lower than in control plants, which was due to substantial reduction (by 40%) in activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS). It is concluded that the substrate activation of NR by KNO3 under normal growth conditions results in predominant utilization of glutamic acid (the primary product of inorganic nitrogen assimilation) for biosynthesis of tetrapyrroles and protein amino acids at the expense of inhibition of proline synthesis. When barley seedlings were grown in 150 mM NaCl solution, the plant growth and the root system development were suppressed to the levels of 63 ± 6% and 61 ± 11% of the control values, respectively. In the apical leaf tissues of plants adapted to NaCl, there was a slight decrease in the total NR activity (by 10%), a significant reduction in protein content (by 32%), and a parallel increase in the content of ALA (by a factor of 4.3), chlorophylls, heme, carotenoids, proline (2.2-fold) and P5CS (1.6-fold) with respect to the control values. It is proposed that the accumulation of ALA and proline under salinity-induced suppression of nitrogen assimilation results from the predominant allocation of glutamate for biosyntheses of ALA and proline at the expense of inhibition of growth-related processes requiring intense protein synthesis. The substrate activation of NR by KNO3 under salinity conditions was associated with prevailing allocation of the assimilated nitrogen for synthesis of proline and protein amino acids, which reinforced plant cell protection against salinity and stimulated plant growth.  相似文献   

15.
Summary Studies under growth cabinet conditions investigated the effect of source and concentration of nitrogen and timing of nitrogen application on the growth and nitrogen fixation byLotus pedunculatus cv. Maku andTrifolium repens cv. S184. KNO3, NaNO3 and NH4NO3 were added at transplanting at the following rates: 3.33, 7.78 and 13.33 mg N/plant. KNO3 was added at 3.33 and 7.78 mg N/plant at 0, 6, 12, 18, 24 or 30 days after transplanting.Lotus shoot weight increased with all increasing nitrogen sources but clover only responded to KNO3 and NaNO3. The root weight of both species increased with increasing KNO3 and NH4NO3. The percentage increase in lotus and clover shoot growth was greater than that of root growth when KNO3 was added within a week of transplanting. Increases in growth by both species resulted from added nitrogen except with lotus when NaNO3 was applied where increased nitrogen fixation also contributed to increased growth.Weight and number of effective nodules on both species were increased with 3.33 mg N per plant as KNO3 but nitrogen fixation was not affected. Addition of 13.33 mg N as NaNO3 reduced weight and number of effective nodules in both species and also nitrogen fixation by lotus.KNO3 increased growth and nodulation of both species when applied within one week after transplanting. Nodulated lotus plants responded to KNO3 by increasing growth but not nodulation.KNO3 appeared to affect infection and development of nodules on lotus and may affect the growth of existing nodules on clover.  相似文献   

16.
Soil cultures, enrichment cultures, and pure culture isolates produced substantial quantities of salicylic acid from naphthalene in a mineral salts medium containing NH4Cl as the nitrogen source. However, when KNO3 was substituted for NH4Cl, these same cultures failed to accumulate detectable quantities of salicylic acid but did turn the medium yellow. When an isolate identified as a Pseudomonas species was used, viable cell numbers were much greater in the medium containing KNO3, but up to 94% of the naphthalene was utilized in both media. After 48 h of incubation in a 0.1% naphthalene-mineral salts medium, the cultures containing NH4Cl showed irregular clumped cells, a pH of 4.7, 42 μg of salicylic acid per ml, and the production of 4.4 ml of CO2. Under the same conditions, the cultures in the medium containing KNO3 showed uniform cellular morphology, a pH of 7.3, no salicylic acid, the production of 29.7 ml of CO2, and a distinct yellow coloration of the medium. The differences between nitrogen sources could not be accounted for by pH alone since results obtained using buffered media were similar. Growth with NH4NO3 displayed a pattern similar to that obtained when NH4Cl was used. The yellow coloration in the medium containing KNO3 was apparently due to more than one compound, none of which were 1,2-naphthoquinone or acidic in nature, as suggested by other investigators. Further attempts to identify the yellow compounds by high-pressure liquid chromatography, infrared analysis, and gas chromatography-mass spectrometry have been unsuccessful thus far.  相似文献   

17.
This paper seeks to calarify conflicting reports on the nitrogen requirements for in vitro embryogenesis in Daucus carota. Tissue derived from petiole explants of the wild strain of this species were tested with a variety of sources of cellular nitrogen under conditions otherwise favorable for in vitro embryogenesis. The use of very small, sieved and well-washed inocula reduced the carry-over of soluble materials with the inoculum. Embryo yield was quantified by direct counting of samples. Nitrate at concentrations ranging from 5 to 95 mM KNO3 supportes only weak growth and very low embryogenesis under the exacting conditions of these experiments. As little as 0.1 mM NH4Cl added to a nitrate medium allows some embryogenesis and 10 mM NH4Cl is near optimal when KNO3 is in the range of 12 to 40 mM concentration. Glutamine, glutamic acid, urea and alanine can individually partially replace NH4Cl as a supplement to KNO3. Glutamine, alanine, and possibly glutamic acid can serve as sole sources of nitrogen supporting both good growth and embryogenesis. It was concluded that a reduced nitrogen source is required, at least as a supplement to nitrate, for rapid growth and for in vitro embryogenesis of cultured wild carrot tissue. The relationship of pH of the culture medium to growth and embryogenesis was explored and optima observed at approximately pH 5.4 for both processes.  相似文献   

18.
The effect of various nitrogen sources on the synthesis and activity of nitrogenase was studied in the marine, non-heterocystous cyanobacterium Trichodesmium sp. NIBB1067 grown under defined culture conditions. Cells grown with N2 as the sole inorganic nitrogen source showed light-dependent nitrogenase activity (acetylene reduction). Nitrogenase activity in cells grown on N2 was not suppressed after 7 h incubation with 2 mM NaNO3 or 0.02 mM NH4Cl. However, after 3 h of exposure to 0.5 mM of urea, nitrogenase was inactivated. Cells grown in medium containing 2 mM NaNO3, 0.5 mM urea or 0.02 mM NH4Cl completely lacked the ability to reduce acetylene. Western immunoblots tested with polyclonal antisera against the Fe-protein and the Mo–Fe protein, revealed the following: (1) both the Fe-protein and the Mo–Fe protein were synthesized in cells grown with N2 as well as in cells grown with NaNO3 or low concentration of NH4Cl; (2) two bands (apparent molecular mass of 38 000 and 40 000) which cross-reacted with the antiserum to the Fe-protein, were found in nitrogen-fixing cells; (3) only one protein band, corresponding to the high molecular mass form of the Fe-protein, was found in cells grown with NaNO3 or low concentration of NH4Cl; (4) neither the Fe-protein nor the Mo–Fe protein was found in cells grown with urea; (5) the apparent molecular mass of the Fe-protein of Trichodesmium sp. NIBB1067 was about 5000 dalton higher than that of the heterocystous cyanobacterium, Anabaena cylindrica IAM-M1.  相似文献   

19.
Arthrospira (Spirulina) platensis (Nordstedt) Gomont was cultivated under light‐limited conditions in 5‐L open tanks by daily supplying NH4Cl as nitrogen source. Exponentially increasing feeding rates were adopted to prevent ammonia toxicity. The total feeding time (T) was varied between 12 and 20 days, and the starting (m0) and total (mT) quantities of the nitrogen source per unit reactor volume were varied in the ranges 0.19–1.7 mM and 2.3–23.1 mM, respectively. This intermittent addition of the nitrogen source prevented ammonia from reaching inhibitory levels and ensured final cell concentrations (Xm) and cell productivities (Px) comparable with those of batch runs with KNO3. Moreover, the lower nitrogen addition due to the use of NH4Cl rather than KNO3 allowed for higher nitrogen‐to‐cell conversions (Yx/n). These results were evaluated using three‐factor, five‐level, central composite experimental planning, combined with the response surface methodology, selecting T, m0, and mT as the independent variables and Xm, Px, and Yx/n as the response variables. This approach allowed us to identify, through the simultaneous optimization of the variables, T=16 days, m0=1.7 mM, and mT=21.5 mM as the best conditions for A. platensis cultivation at 72 μmol photons·m?2·s?1. Under these conditions, a maximum cell concentration of 1239 mg ·L?1 was obtained, which is a value comparable with that obtained using KNO3 as nitrogen source and nearly coincident with the theoretical one estimated by the response surface methodology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号