首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activated protein C (APC) cleavage of Factor Va (FVa) at residues R506 and R306 correlates with its inactivation. APC resistance and increased thrombotic risk are due to the mutation R506Q in Factor V (FV). To study the effects of individual cleavages in FVa by APC and the importance of regions near the cleavage sites, the following recombinant (r) human FVs were prepared and purified: wild-type, Q306-rFV, Q506-rFV, and Q306Q506-rFV. All had similar time courses for thrombin activation. Q506-rFVa was cleaved by APC at R306 and was moderately resistant to APC in plasma-clotting assays and in prothrombinase assays measuring FVa residual activity, in agreement with studies of purified plasma-derived Q506-FVa. Q306-rFVa was cleaved by APC at R506 and gave a low APC-resistance ratio similar to Q506-rFVa in clotting assays, whereas unactivated Q306-rFV gave a near-normal APC-resistance ratio. When FVa residual activity was measured after long exposure to APC, Q306-rFVa was inactivated by only < or = 40% under conditions where Q506-rFVa was inactivated > 90%, supporting the hypothesis that efficient inactivation of normal FVa by APC requires cleavage at R306. In addition, the heavy chain of Q306-rFVa was cleaved at R506 much more rapidly than activity was lost, suggesting that FVa cleaved at only R506 is partially active. Under the same conditions, Q306Q506-rFVa lost no activity and was not cleaved by APC. Therefore, cleavage at either R506 or R306 appears essential for significant inactivation of FVa by APC. Modest loss of activity, probably due to cleavage at R679, was observed for the single site rFVa mutants, as evidenced by a second phase of inactivation. Q306Q506-rFVa had a low activity-to-antigen ratio of 0.50-0.77, possibly due to abnormal Factor Xa (FXa) binding. Furthermore, Q306Q506-rFV was very resistant to cleavage and activation by FXa. Q306Q506-rFV appeared to bind FXa and inhibit FXa's ability to activate normal FV. Thus, APC may downregulate FV/Va partly by impairing FXa-binding sites upon cleavage at R306 and R506. This study shows that R306 is the most important cleavage site for normal efficient inactivation of FVa by APC and supports other studies suggesting that regions near R306 and R506 provide FXa-binding sites and that FVa cleaved at only R506 retains partial activity.  相似文献   

2.
Procoagulant factor Va (FVa) is inactivated via limited proteolysis at three Arg residues in the A2 domain by the anticoagulant serine protease, activated protein C (APC). Cleavage by APC at Arg306 in FVa causes dissociation of the A2 domain from the heterotrimeric A1:A2:A3 structure and complete loss of procoagulant activity. To help distinguish inactivation mechanisms involving A2 domain dissociation from inactivation mechanisms involving unfavorable changes in factor Xa (FXa) affinity, we used our FVa homology model to engineer recombinant FVa mutants containing an interdomain disulfide bond (Cys609-Cys1691) between the A2 and A3 domains (A2-SS-A3 mutants) in addition to cleavage site mutations, Arg506Gln and Arg679Gln. SDS-PAGE analysis showed that the disulfide bond in A2-SS-A3 mutants prevented dissociation of the A2 domain. In the absence of A2 domain dissociation from the A1:A2:A3 trimer, APC cleavage at Arg306 alone caused a sevenfold decrease in affinity for FXa, whereas APC cleavages at Arg306, Arg506, and Arg679 caused a 70-fold decrease in affinity for FXa and a 10-fold decrease in the k(cat) of the prothrombinase complex for prothrombin without any effect on the apparent K(m) for prothrombin. Therefore, for FVa inactivation by APC, dissociation of the A2 domain may provide only a modest final step, whereas the critical events are the cleavages at Arg506 and Arg306, which effectively inactivate FVa before A2 dissociation can take place. Nonetheless, for FVa Leiden (Gln506-FVa) inactivation by APC, A2 domain dissociation may become mechanistically important, depending on the ambient FXa concentration.  相似文献   

3.
The study of the continuous culture of Clostridium thermosaccharolyticum on xylose showed multiple steady states and hysteresis. A quantitative model based on the biochemistry and physiology of xylose fermentation by C. thermosaccharolyticum was developed. The objective in developing this model was to bring together the observations both of this study and of other researchers on the fermentation of xylose. The model equations were written based on the metabolic pathway for xylose utilization by C. thermosaccharolyticum and the requirement that the carbon, ATP, and NADH within the cell be balanced. Given the specific growth rate mu and the specific xylose utilization rate q(s), a set of product distributions (ethanol, acetate, and lactate) satisfying these balances was obtained. This set was plotted on a triangular plot and named the permitted region. The product distributions within this permitted region were shown to be affected by the environmental parameters such as iron concentration and hydrogen partial pressure. The model predicted trends in product distribution which correlate with experimentally observed phenomena. The model was also used to analyze the continuous-culture data from our experimental work.  相似文献   

4.
To test whether neutral glycosphingolipids can serve as anticoagulant cofactors, the effects of incorporation of neutral glycosphingolipids into phospholipid vesicles on anticoagulant and procoagulant reactions were studied. Glucosylceramide (GlcCer), lactosylceramide (LacCer), and globotriaosylceramide (Gb(3)Cer) in vesicles containing phosphatidylserine (PS) and phosphatidylcholine (PC) dose dependently enhanced factor Va inactivation by the anticoagulant factors, activated protein C (APC) and protein S. Addition of GlcCer to PC/PS vesicles enhanced protein S-dependent APC cleavage in factor Va at Arg-506 by 13-fold, whereas PC/PS vesicles alone minimally affected protein S enhancement of this reaction. Incorporation into PC/PS vesicles of GlcCer, LacCer, or Gb(3)Cer, but not galactosylceramide or globotetraosylceramide, dose dependently prolonged factor Xa-1-stage clotting times of normal plasma in the presence of added APC without affecting baseline clotting times in the absence of APC, showing that certain neutral glycosphingolipids enhance anticoagulant but not procoagulant reactions in plasma. Thus, certain neutral glycosphingolipids (e.g. GlcCer, LacCer, and Gb(3)Cer) can enhance anticoagulant activity of APC/protein S by mechanisms that are distinctly different from those of phospholipids alone. We speculate that under some circumstances certain neutral glycosphingolipids either in lipoprotein particles or in cell membranes may help form antithrombotic microdomains that might enhance down-regulation of thrombin by APC in vivo.  相似文献   

5.
Inactivation of factor Va (FVa) by activated protein C (APC) is a predominant mechanism in the down-regulation of thrombin generation. In normal FVa, APC-mediated inactivation occurs after cleavage at Arg306 (with corresponding rate constant k'306) or after cleavage at Arg506 (k506) and subsequent cleavage at Arg306 (k306). We have studied the influence of heparin on APC-catalyzed FVa inactivation by kinetic analysis of the time courses of inactivation. Peptide bond cleavage was identified by Western blotting using FV-specific antibodies. In normal FVa, unfractionated heparin (UFH) was found to inhibit cleavage at Arg506 in a dose-dependent manner. Maximal inhibition of k506 by UFH was 12-fold, with the secondary cleavage at Arg306 (k306) being virtually unaffected. In contrast, UFH stimulated the initial cleavage at Arg306 (k'306) two- to threefold. Low molecular weight heparin (Fragmin) had the same effects on the rate constants of FVa inactivation as UFH, but pentasaccharide did not inhibit FVa inactivation. Analysis of these data in the context of the 3D structures of APC and FVa and of simulated APC-heparin and FVa-APC complexes suggests that the heparin-binding loops 37 and 70 in APC complement electronegative areas surrounding the Arg506 site, with additional contributions from APC loop 148. Fewer contacts are observed between APC and the region around the Arg306 site in FVa. The modeling and experimental data suggest that heparin, when bound to APC, prevents optimal docking of APC at Arg506 and promotes association between FVa and APC at position Arg306.  相似文献   

6.
The kinetics of alpha-factor Xa inhibition by antithrombin III (AT) were studied in the absence and presence of heparin (H) with high affinity for antithrombin by stopped-flow fluorometry at I 0.3, pH 7.4 and 25 degrees C, using the fluorescence probe p-aminobenzamidine (P) and intrinsic protein fluorescence to monitor the reactions. Active site binding of p-aminobenzamidine to factor Xa was characterized by a 200-fold enhancement and 4-nm blue shift of the probe fluorescence emission spectrum (lambda max 372 nm), 29-nm red shift of the excitation spectrum (lambda max 322 nm), and dissociation constant (KD) of about 80 microM. Under pseudo-first order conditions [( AT]0, [H]0, [P]0 much greater than [Xa]0), the observed factor Xa inactivation rate constant (kobs) measured by p-aminobenzamidine displacement or residual enzymatic activity increased linearly with the "effective" antithrombin concentration (i.e. corrected for probe competition) up to 300 microM in the absence of heparin, indicating a simple bimolecular process with a rate constant of 2.1 x 10(3) M-1 s-1. In the presence of heparin, a similar linear dependence of kobs on effective AT.H complex concentration was found up to 25 microM whether the reaction was followed by probe displacement or the quenching of AT.H complex protein fluorescence due to heparin dissociation, consistent with a bimolecular reaction between AT.H complex and free factor Xa with a 300-fold enhanced rate constant of 7 x 10(5) M-1 s-1. Above 25 microM AT.H complex, an increasing dead time displacement of p-aminobenzamidine and a downward deviation of kobs from the initial linear dependence on AT.H complex concentration were found, reflecting the saturation of an intermediate Xa.AT.H complex with a KD of 200 microM and a limiting rate of Xa-AT product complex formation of 140 s-1. Kinetic studies at catalytic heparin concentrations yielded a kcat/Km for factor Xa at saturating antithrombin of 7 x 10(5) M-1 s-1 in agreement with the bimolecular rate constant obtained in single heparin turnover experiments. These results demonstrate that 1) the accelerating effect of heparin on the AT/Xa reaction is at least partly due to heparin promoting the ordered assembly of antithrombin and factor Xa in an intermediate ternary complex and that 2) heparin catalytic turnover is limited by the rate of conversion of the ternary complex intermediate to the product Xa-AT complex with heparin dissociation occurring either concomitant with this step or in a subsequent faster step.  相似文献   

7.
Kinetic analyses were done to determine what effect factor Xa and protein S had on the activated protein C (APC)-catalyzed inactivation of factor Va bound to phospholipid vesicles or human platelets. In the presence of optimal concentrations of phospholipid vesicles and Ca2+, a Km of 19.7 +/- 0.6 nM factor Va and a kcat of 23.7 +/- 10 mol of factor Va inactivated/mol of APC/min were obtained. Added purified plasma protein S increased the maximal rate of factor Va inactivation only 2-fold without effect on the Km. Protein S effect was unaltered when the phospholipid concentration was varied by 2 orders of magnitude. The reaction on unactivated human platelets yielded a Km = 12.5 +/- 2.6 nM and kcat = 6.2 +/- 0.6 mol of factor Va inactivated/mol of APC/min. Added purified plasma protein S or release of platelet protein S by platelet activation doubled the kcat value without affecting the Km. Addition of a neutralizing anti-protein S antibody abrogated the effect of plasma protein S or platelet-released protein S, but was without effect in the absence of plasma protein S or platelet activation. Studies with factor Xa indicated that factor Xa protects factor Va from APC-catalyzed inactivation by lowering the effective concentration of factor Va available to interact with APC. From these data a dissociation constant of less than 0.5 nM was calculated for the interaction of factor Xa with membrane-bound factor Va. Protein S abrogated the ability of factor Xa to protect factor Va from inactivation by APC without affecting the interaction of factor Xa with factor Va. These combined data suggest that one physiological function of protein S is to allow the APC-catalyzed inactivation of factor Va in the presence of factor Xa.  相似文献   

8.
The rate of inhibition of Factor Xa by antithrombin III was found to be influenced by either phospholipid or Factor Va combined with phospholipid. Our results confirmed that Factor Va and phospholipid could protect Factor Xa from inhibition. However, when antithrombin III levels were extrapolated to infinity, the protective effect of lipid and Factor Va were eliminated and the rate of inhibition was accelerated. This indicated that the protective effect that was observed at low antithrombin III concentrations in the presence of phospholipid and Factor Va was due to inhibition of binding of the inhibitor to Factor Xa.  相似文献   

9.
Protein S enhances the rate of Factor Va inactivation by activated Protein C (Walker, F. J. (1980) J. Biol. Chem. 255, 5521-5524). The activity of protein S is saturable, appearing to interact stoichiometrically with activated Protein C. Diisopropylphosphate-modified activated Protein C reversed the effect of Protein S, further indicating that a Protein S-activated Protein C interaction is required for expression of the activity of Protein S. In the absence of phospholipid, Protein S had no effect on the rate of activated Protein C-catalyzed inactivation of Factor Va. The activity of Protein S was only expressed in the presence of phospholipid vesicles, where it appeared to increase the affinity of the inactivation system for phospholipid. Protein S had no effect upon the rate of Factor Va inactivation in the presence of saturating levels of phospholipid vesicles. The effects of Protein S on the kinetics of Factor Va inactivation corresponded with its effect on the interaction between activated Protein C and phospholipid vesicles, measured by light scattering. In the presence of Protein S, the binding of activated Protein C to phospholipid vesicles was enhanced. Protein S had no effect upon the binding on the zymogen (Protein C to phospholipid vesicles). In conclusion, the stimulatory effect of Protein S on the inactivation of Factor Va by activated Protein C can be attributed, in part, to the enhancement of the binding of activated Protein C to phospholipid vesicles.  相似文献   

10.
Factor V (FV) is a single-chain plasma protein containing 13-25% carbohydrate by mass. Studies were done to determine if these carbohydrate moieties altered the activated protein C (APC)-catalyzed cleavage and inactivation of both FV and the cofactor which results from its activation by alpha-thrombin, factor Va(IIa) (FVa(IIa)). Treatment of purified FV with N-glycanase and neuraminidase under nonprotein-denaturing conditions removed approximately 20-30% of the carbohydrate from the heavy chain region of the molecule. When glycosidase-treated FV was analyzed in an aPTT (activated partial thromboplastin time)-based APC sensitivity assay, the APC sensitivity ratio (APC-SR) increased from 2.34 to 3.33. In contrast, when glycosidase-treated FV was activated with alpha-thrombin, the addition of the resulting FVa(IIa) to the plasma-based APC sensitivity assay produced no substantial increase in the APC-SR. Additional functional analyses of the APC-catalyzed inactivation of FVa(IIa) in an assay consisting of purified components indicated that both glycosidase-treated and untreated FVa(IIa) expressed identical cofactor activities and were inactivated at identical rates. Analyses of the APC-catalyzed cleavage of glycosidase-treated FV at Arg(306), the initial cleavage site, revealed a 10-fold rate increase when compared to untreated FV. In contrast, and consistent with functional assays, similar analyses of FVa(IIa), derived from those FV species, revealed near-identical rates of APC-catalyzed cleavage at both the Arg(506) and Arg(306)sites. These combined results indicate that N-linked carbohydrate moieties play a substantial role in the APC-catalyzed cleavage and inactivation of FV but not FVa(IIa) at position Arg(306) and that the Arg(306) cleavage sites of FV and FVa(IIa) are distinct substrates for APC.  相似文献   

11.
A Cometabolism enzyme kinetics model has been presented which takes into account changes in bacterial activity associated with enzyme inhibitiion, inactivation, inactivation of enzyme resulting from product toxicty, and respondent synthesis of new enzyme. Although this process is inherently unsteady-state, the model assumes that cometabolic degradation of a compound exhibiting product toxicity can be modeled as pseudo-steady-staate under certain conditions. In its simplified from, the model also assumes that enzyme inactivation is directly propoertional to nongrawth substrate oxidation, and that recovery is directly proportionla to growth substrate oxidation. In part 1, model drivation, simplification, and analyses were described. In this articles, model assuptiions are tested by analyzing data from experiments exmining trichloroethylene (TCE) degradation by the ammoniaoxidizing baceterium Nitrosomonas europaea in a quasisteady-state bioreactor. Model solution results showed steady-state bioreactor. Model solution results showed TCE to be a competitive inhibitoer of ammonia oxidation, with TCE affinity for ammonia monooxygenase (AMO) being about four times greater than that of ammonia for the enzyme. Inhibition was independent fo TCE oxidation and occurred essentially instantly upon exposure to TCE. In contrast, inactivation of AMO occurred more gradually and was proportional to the rate and amount of TCE oxidized. Evaluation of other O(2)-dependent enzymes and electron transport proteins suggested that TCE-related damage was predominantly confined to AMO. In response to inhibition and/or inactivation, bacterial recovery was initiated, even in the presence of TCE, implying that membranes adn protein synthesis systems were functioning. Analysis of data and comparison of model results showed the inhibition/inactivation/recovery concept to provide a reasonable basis for understandign the effects fo TCE on AMO function and bacterial response. The model assumptions were verified except tht questions remain regarding the factores controlling recovery and its role in the long term. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
Aerobic growth of Shewanella oneidensis MR-1 in minimal lactate medium was studied in batch cultivation. Acetate production was observed in the middle of the exponential growth phase and was enhanced when the dissolved oxygen (DO) concentration was low. Once the lactate was nearly exhausted, S. oneidensis MR-1 used the acetate produced during growth on lactate with a similar biomass yield as lactate. A two-substrate Monod model, with competitive and uncompetitive substrate inhibition, was devised to describe the dependence of biomass growth on lactate, acetate, and oxygen and the acetate growth inhibition across a broad range of concentrations. The parameters estimated for this model indicate interesting growth kinetics: lactate is converted to acetate stoichiometrically regardless of the DO concentration; cells grow well even at low DO levels, presumably due to a very low K(m) for oxygen; cells metabolize acetate (maximum specific growth rate, micro(max,A) of 0.28 h(-1)) as a single carbon source slower than they metabolize lactate (micro(max,L) of 0.47 h(-1)); and growth on acetate is self-inhibiting at a concentration greater than 10 mM. After estimating model parameters to describe growth and metabolism under six different nutrient conditions, the model was able to successfully estimate growth, oxygen and lactate consumption, and acetate production and consumption under entirely different growth conditions.  相似文献   

13.
Activation of factor VIII by factor Xa is followed by proteolytic inactivation resulting from cleavage within the A1 subunit (residues 1-372) of factor VIIIa. Factor Xa attacks two sites in A1, Arg(336), which precedes the highly acidic C-terminal region, and a recently identified site at Lys(36). By using isolated A1 subunit as substrate for proteolysis, production of the terminal fragment, A1(37-336), was shown to proceed via two pathways identified by the intermediates A1(1-336) and A1(37-372) and generated by initial cleavage at Arg(336) and Lys(36), respectively. Appearance of the terminal product by the former pathway was 7-8-fold slower than the product obtained by the latter pathway. The isolated A1 subunit was cleaved slowly, independent of the presence of phospholipid. The A1/A3-C1-C2 dimer demonstrated an approximately 3-fold increased cleavage rate constant, and inclusion of phospholipid further enhanced this value by approximately 2-fold. Although association of A1 or A1(37-372) with A3-C1-C2 enhanced the rate of cleavage at Arg(336), inclusion of A3-C1-C2 did not affect the cleavage at Lys(36) in A1(1-336). A synthetic peptide 337-372 blocked the cleavage at Lys(36) (IC(50) = 230 microm) while showing little if any effect on cleavage at Arg(336). Proteolysis at Lys(36), and to a lesser extent Arg(336), was inhibited in a dose-dependent manner by heparin. These results suggest that inactivating cleavages catalyzed by factor Xa at Lys(36) and Arg(336) are regulated in part by the A3-C1-C2 subunit. Furthermore, cleavage at Lys(36) appears to be selectively modulated by the C-terminal acidic region of A1, a region that may interact with factor Xa via its heparin-binding exosite.  相似文献   

14.
The blood coagulation proteinase, thrombin, converts factor V into factor Va through a multistep activation pathway that is regulated by interactions with thrombin exosites. Thrombin exosite interactions with human factor V and its activation products were quantitatively characterized in equilibrium binding studies based on fluorescence changes of thrombin covalently labeled with 2-anilinonaphthalene-6-sulfonic acid (ANS) linked to the catalytic site histidine residue by Nalpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl ([ANS]FPR-thrombin). Exosite I was shown to play a predominant role in the binding of factor V and factor Va from the effect of the exosite I-specific ligand, hirudin54-65, on the interactions. Factor V and factor Va bound to exosite I of [ANS]FPR-thrombin with similar dissociation constants of 3.4 +/- 1.3 and 1.1 +/- 0.4 microM and fluorescence enhancements of 182 +/- 41 and 127 +/- 17%, respectively. Native thrombin and labeled thrombin bound with similar affinity to factor Va. Among factor V activation products, the factor Va heavy chain was shown to contain the site of exosite I binding, whereas exosite I-independent, lower affinity interactions were observed for activation fragments E and C1, and no detectable binding was observed for the factor Va light chain. The results support the conclusion that the factor V activation pathway is initiated by exosite I-mediated binding of thrombin to a site in the heavy chain region of factor V that facilitates the initial cleavage at Arg709 to generate the heavy chain of factor Va. The results further suggest that binding of thrombin through exosite I to factor V activation intermediates may regulate their conversion to factor Va and that similar binding of thrombin to the factor Va produced may reflect a mode of interaction involved in the regulation of prothrombin activation.  相似文献   

15.
16.
17.
Rate constants for human factor Va inactivation by activated human protein C (APC) were determined in the absence and presence of Ca2+ ions, protein S and varying concentrations of phospholipid vesicles of different lipid composition. APC-catalyzed factor Va inactivation in free solution (in the presence of 2 mM Ca2+) was studied under first-order reaction conditions with respect to both APC and factor Va and was characterized by an apparent second-order rate constant of 6.1 x 10(5) M-1 s-1. Stimulation of APC-catalyzed factor Va inactivation by phospholipids was dependent on the concentration and composition of the phospholipid vesicles. Optimal acceleration (230-fold) of factor Va inactivation was observed with 10 microM phospholipid vesicles composed of 20 mol% dioleoylglycerophosphoserine (Ole2GroPSer) and 80 mol% dioleoylglycerophosphocholine (Ole2GroPCho). At higher vesicle concentrations and at higher molar fractions of Ole2GroPSer some inhibition of APC-catalyzed factor Va inactivation was observed. Membranes that contained anionic phospholipids other than phosphatidylserine also promoted factor Va inactivation. The ability of different anionic lipids to enhance factor Va inactivation increased in the order phosphatidylethanolamine less than oleic acid less than phosphatidic acid less than phosphatidylglycerol less than phosphatidylmethanol less than phosphatidylserine. APC-catalyzed factor Va inactivation in the presence of phospholipid vesicles could be saturated with respect to factor Va and the reaction obeyed Michaelis-Menten kinetics. Both the Km for factor Va and the Vmax of factor Va inactivation were a function of the phospholipid concentration. The Km increased from 1 nM at 2.5 microM phospholipid (Ole2GroPSer/Ole2GroPCho 20:80, mol/mol) to 65 nM at 250 microM phospholipid. The Vmax increased from 20 mol factor Va inactivated.min-1.mol APC-1 at 2.5 microM phospholipid to 62 mol factor Va inactivated.min-1.mol APC-1 at 10 microM phospholipid and remained constant at higher phospholipid concentrations. Protein S appeared to be a rather poor stimulator of APC-catalyzed factor Va inactivation. Protein-S-dependent rate enhancements were only observed in reaction mixtures that contained negatively charged phospholipid vesicles. Independent of the concentration and the lipid composition of the vesicles, protein S caused a twofold stimulation of APC-catalyzed factor Va inactivation. This suggests that, in the human system, enhancement of APC binding to phospholipid vesicles by protein S is of minor importance. Considering that protein S is a physiologically essential antithrombotic agent, it is likely that other factors or phenomena contribute to the in vivo antithrombotic action of protein S.  相似文献   

18.
C Labie  F Bouch    J P Bouch 《Journal of bacteriology》1990,172(10):5852-5855
We have determined the nucleotide sequence of the minB operon of 10 min mutants of Escherichia coli, characterized by impaired inhibition of polar divisions. These mutants were either sensitive or resistant to the division inhibitor DicB. All the mutations were found to lie in minC or minD, confirming the requirement of both gene products in the process of inhibition of polar sites. Mutations conferring resistance to inhibitor DicB were found exclusively in minC. In agreement with de Boer et al. (P. A. J. de Boer, R. E. Crossley, and L. I. Rothfield, Proc. Natl. Acad. Sci. USA 87:1129-1133, 1990), these results provide evidence that, in addition to promoting division inhibition with MinD, protein MinC acts in concert with DicB to inhibit division by a second, MinD-independent process.  相似文献   

19.
In order to specifically evaluate the role of Factor Va in the prothrombinase complex, studies of the activation of prothrombin, Fragment 1.2-prethrombin-2, and active-site-blocked meizothrombin were carried out, both in the absence of phospholipid and at concentrations of substrates and Factor Va sufficient to approach saturation in all components. Km values were independent of Factor Va concentrations, whereas kcat (apparent) values approached saturation with respect to Factor Va concentrations. The three respective substrates exhibited the following parameters of kinetics (Km, microM; kcat, s-1 at saturating [Factor Va]): prothrombin (9.0 +/- 0.4; 31 +/- 1); Fragment 1.2-prethrombin-2 (5.4 +/- 0.4; 13 +/- 2); and meizothrombin (3.6 +/- 0.3; 51 +/- 5). Models of kinetics were constructed to interpret the results, and two of these were formally consistent with experimental results. Both models indicated that the variation of kcat(app) with concentrations of Factor Va reflects the formation of a Factor Va-Factor Xa binary complex. Analysis of kinetics indicated Kd values for this interaction of 1.3 +/- 0.1, 3.0 +/- 0.5, and 1.0 +/- 0.1 microM for the three respective substrates. The models differed in the interpretation of Km. One indicated that Km reflects a binary interaction between Factor Xa and prothrombin, whereas the other indicated a binary interaction between Factor Va and prothrombin. Both indicated that two of the three possible binary interactions between the three components would be reflected in Km and kcat values but not the third. To distinguish these models, the binary interactions were studied by extrinsic fluorescence (Va.Xa), light-scattering (Factor Va.prothrombin), and competition kinetics (Xa.II). The first two interactions were detected and were characterized by Kd values of 2.7 +/- 0.1 microM (Va.Xa) and 8.8 +/- 0.8 microM (Factor Va.prothrombin). No active-site-dependent interaction between prothrombin and Factor Xa could be detected in the absence of Factor Va. The results of these studies suggest that Factor Va interacts with both Factor Xa and prothrombin and effectively presents one to the other in the formation of a ternary enzyme-substrate-cofactor complex. In addition, a comparison of the parameters of kinetics of conversion of prothrombin and its intermediates indicates that meizothrombin is the major intermediate of prothrombin activation in the absence, as well as in the presence of phospholipid.  相似文献   

20.
The coagulation cofactor Va (FVa) is a noncovalent heterodimer consisting of a heavy chain (FVaH) and a light chain (FVaL). Previously, the fibrinolytic effector plasmin (Pn) has been shown to inhibit FVa function. To understand this mechanism, the fragmentation profile of human FVa by Pn and the noncovalent association of the derived fragments were determined in the presence of Ca(2+) using anionic phospholipid (aPL)-coated microtiter wells and large (1 microm) aPL micelles as affinity matrices. Following Pn inactivation of aPL-bound FVa, a total of 16 fragments were observed and their NH(2) termini sequenced. These had apparent molecular weights and starting residues as follows (single letter abbreviation is used): 50(L1766), 48(L1766), 43(Q1828), 40(Q1828), 30(S1546), 12(T1657), and 7(S1546) kDa from FVaL; and 65(A1), 50(A1), 45(A1), 34(S349), 30(L94), 30(M110), and 3 small <5(W457, W457, and K365) kDa from FVaH. Of these, 50(L1766), 48(1766), 43(Q1828), and 40(Q1828) spanning the C1/C2 domains, and 30(L94), but not the similar 30(M110), positioned within the A1 domain remained associated with aPL. These were detected antigenically during Pn- or tissue plasminogen activator-mediated lysis of fibrin clot formed in plasma. Chelation by EDTA dissociated the 30(L94)-kDa fragment, which was observed to associate with intact FVaL upon recalcification, indicating that the Leu-94 to Lys-109 region of the A1 domain plays a critical role in the FVaL and FVaH Ca(2+)-dependent association. By using domain-specific monoclonal antibodies and an assay for thrombin generation, loss of FVa prothrombinase function was coincident with proteolysis at sites in the A2 and A3 domains resulting in their dissociation. Inactivation of FV or FVa by Pn was independent of the thrombophilic R506Q mutation. These results identify the molecular composition of Pn-cleaved FVa that remains bound to membrane as largely A1-C1/C2 in the presence of Ca(2+) and suggest that Pn inhibits FVa by a process involving A2 and A3 domain dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号