首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A human truncated macrophage colony-stimulating factor (M-CSF) encoding the amino acid residues from 3 to 153 of the native M-CSF was expressed by using a two-cistron expression system in Escherichia coli. The truncated M-CSF found in inclusion bodies was renatured and had CSF activity. Purification, which included a QAE-ZeTa preparative cartridge concentration step followed sequentially by HPLC on TSK-gel Phenyl-5PW and TSK-gel DEAE-5PW columns, gave an overall yield of 63.8%. The purified truncated M-CSF had a specific activity of 4 x 10(7) units/mg of protein. Peptide mapping of a lysylendopeptidase digest by reversed-phase HPLC confirmed the amino acid sequence predicted from the cDNA sequence. SDS-PAGE of the purified truncated M-CSF gave a single band at 17 kDa under reducing conditions and at 32 kDa under non-reducing conditions. Activated Thiol-Sepharose 6B column chromatography and other experiments failed to detect any free cysteine residue in spite of the existence of 7 cysteine residues in the truncated M-CSF subunit. These results indicate that it is a dimeric structure linked by one or more intermolecular disulfide bonds.  相似文献   

2.
Infiltration of monocytes into arteries is an early event in the pathogenesis of atherosclerosis. This recruitment is interpreted as enhancing lesion development, but it could also be a host response limiting lipid accumulation. The ability of macrophages to limit cholesterol uptake, however, can be reduced by the impaired mobility and metabolic activity associated with foam cell development. As lesions enlarge, foam cells die and become the nidus for the necrotic core. Treatments to improve viability might improve foam cell function and promote regression. Macrophage colony-stimulating factor (M-CSF) is vital to monocyte/macrophage differentiation, proliferation, and activation. We found that foam cells of Watanabe heritable hyperlipidemic (WHHL) rabbits had faint staining for M-CSF. Treatment of rabbits with recombinant human M-CSF (rhM-CSF) increased M-CSF staining, which correlated with reduced cholesterol content of these foam cells. Mol Reprod Dev 46:92–95, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
A human macrophage colony-stimulating factor encoded by a 4-kilobase cDNA was expressed with bovine papillomavirus vectors in mouse cells. Pulse-chase analyses revealed that the 62-kilodalton (kDa) translation product was glycosylated, cleaved, and efficiently secreted within 1 h of synthesis. The secreted product contained both N-linked and O-linked oligosaccharide chains. Macrophage colony-stimulating factor was present extracellularly as an 80-kDa homodimer and as a multimeric species of greater than 200 kDa that may be associated with other glycoproteins.  相似文献   

4.
The tumoricidal effects of M-CSF were examined using two subcutaneously-transplanted rat brain tumor cell lines, 9L and T9 gliomas. In rats treated with high-dose M-CSF (16 million U/kg administered for 4 days a week for 3 weeks), 9L glioma growth was inhibited by 81.9% following subcutaneous (s.c.) injection and by 70.5% after intraperitoneal (i.p.) injection and T9 glioma growth was inhibited by 69.2% after i.p. injection. After short-term treatment with high-dose M-CSF (32 million U/kg administered s.c. for 6 consecutive days, 9L glioma growth was inhibited by 82.1%. All these inhibitory effects differed significantly compared with the respective untreated control groups. However, treatment with low-dose M-CSF (1.6 million U/kg administered s.c. for 4 days a week for 3 weeks) showed no significant effects against 9L and T9 glioma growth compared with the untreated controls. No significant effects of M-CSF against cell proliferation, measured as PCNA expression, were observed in any group. Significant hematopoietic effects on the leukocyte counts were observed only in the groups treated with high dose M-CSF. These results suggest that M-CSF at a high dose which produces hematopoietic effects on peripheral leukocytes inhibits the growth of gliomas. This inhibitory effect may have been due to a tumoricidal mechanism of M-CSF that depended on the production or release of some hematopoietic soluble factors, but was independent of PCNA expression by the tumors.Abbreviations BBB blood-brain barrier - G-CSF granulocyte colony-stimulating factor - GM-CSF granulocyte-macrophage colony-stimulating factor - hM-CSF human macrophage colony-stimulating factor - IFN interferon - IL-1 interleukin-1 - IL-6 interleukin-6 - M-CSF macrophage colony-stimulating factor - PCNA proliferating cell nuclear antigen - rhM-CSF recombinant human macrophage colony-stimulating factor - TNF tumor necrosis factor  相似文献   

5.
The crystal structure of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) has been determined at 2.8 A resolution using multiple isomorphous replacement techniques. There are two molecules in the crystallographic asymmetric unit, which are related by an approximate non-crystallographic 2-fold axis. The overall structure is highly compact and globular with a predominantly hydrophobic core. The main structural feature of rhGM-CSF is a four alpha-helix bundle, which represents approximately 42% of the structure. The helices are arranged in a left-handed antiparallel bundle with two overhand connections. Within the connections is a two-stranded antiparallel beta-sheet. The tertiary structure of rhGM-CSF has a topology similar to that of porcine growth factor and interferon-beta. Most of the proposed critical regions for receptor binding are located on a continuous surface at one end of the molecule that includes the C terminus.  相似文献   

6.
Human monocytes exposed in vitro to recombinant macrophage-colony-stimulating factor (rhMCSF) differentiate into monocyte-derived macrophages (MDM), which mediate efficient antibodydependent cytotoxicity (ADCC) against tumor cells. We and others have shown that this form of ADCC is unusual in that phagocytosis, rather than extracellular lysis, appears to play the major role in target cell killing. In this study, we asked whether the phagocytic form of cytotoxicity seen with ADCC could occur in the absence of an opsonizing antibody. We now report that, whereas cell lines derived from solid tumors are often resistant to antibody-independent cytotoxicity, malignant cells of lymphoid origin appear particularly susceptible to such antibody-independent killing. We found that all of nine lymphocytic leukemia and lymphoma cell lines tested in a total of 35 experiments, plus all four samples of fresh leukemic blasts, were consistently susceptible to antibody-independent MDM cytotoxicity. Antibody-independent cytotoxicity against these cells was efficient (40%–63% killing) at effector: target (E:T) ratios as low as 2:1. Like ADCC, antibody-independent cytotoxicity involved phagocytosis of target cells, as demonstrated by ingestion of fluorescently labeled targets and analysis by flow cytometry. At the time of phagocytosis, the majority of target cells retained membrane integrity, as indicated by the direct transfer of intracellular [51Cr]chromate from radiolabeled targets to phagocytosing MDM, without release of the label into the medium. However, in contrast to ADCC, we found that the degree of antibody-independent cytotoxicity was not a function of the E:T ratio. Instead, a constant proportion of the available target cells were killed regardless of the E:T ratio, suggesting that target cell recognition, rather than effector cell potency, might be the limiting factor in determining cytotoxicity. In additional experiments, we have also identified a second tumor cell type, nueroblastoma, as being susceptible to antibody-independent phagocytosis (all of five cell lines tested, cytotoxicity 40%–93%, E:T=3:1). Our data thus indicate that the cytotoxicity induced by rhMCSF is not confined to antibody-mediated killing, and that phagocytosis can play a significant role in target cell destruction even in the absence of opsonizing antibody.Supported in part by grants CA-33049 and CA-53624 from the National Institutes of Health, grant IRG-174b from the American Cancer Society, the Friends of Children Toys-R-Us Foundation. Inc., and the Robert Steel Foundation  相似文献   

7.
Disulfide bond interchange has been pointed out as a considerable problem in preparing recombinant proteins from Escherichia coli cells. This has been reported in the system of reducing denaturation followed by a refolding process, where incorrectly folded molecules are sometimes produced. As the possibility of disulfide bond interchange may also arise in the cytoplasm of E. coli cells, the state of sulfhydryl groups of recombinant proteins obtained from a nonreducing and nondenaturing process should be examined. The state of sulfhydryl groups of E. coli-derived recombinant human interferon-beta 1, which had been purified under nonreducing and nondenaturing conditions, was examined by using the N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM) labeling technique. Among the three cysteine residues in E. coli-derived human interferon-beta 1, the 17th cysteine was identified as being unpaired, as in the natural molecule. However, it was found that three isomers of the recombinant protein could be formed when the protein was denatured with 6 M guanidine hydrochloride. These three isomers were identified as having unpaired cysteine residues at positions 17, 31, and 141, respectively. These results indicate that disulfide bond interchange occurs in E. coli-derived recombinant human interferon-beta 1 under denaturing conditions in spite of the absence of a reducing agent.  相似文献   

8.
In this work we provide evidence showing that granulocytes produce macrophage colony-stimulating factor (M-CSF) from the band cell stage and secrete this factor when induced to differentiate into polymorphonuclear cells by recombinant human granulocyte colony-stimulating factor (rhG-CSF). Using an enriched population of myeloid band cells from murine bone marrow, we identified the presence of M-CSF with a chromophore-labelled monoclonal anti-M-CSF antibody. Using ELISA we detected the secretion of M-CSF in the supernatants of cultures of enriched band cells when induced with rhG-CSF to differentiate into mature neutrophils. We also found that M-CSF is the only factor responsible for the colony forming activity in the supernatants and lysates of band cells treated with rhG-CSF.  相似文献   

9.
The cell-surface form of human macrophage colony-stimulating factor (CSF-1(256), M-CSFalpha) is a plasma membrane-anchored transmembrane protein from which the soluble CSF-1 is released by ectodomain proteolytic cleavage. We have previously generated two forms of cell surface CSF-1 which failed to undergo the cleavage by deleting residues 161-165 or residues 159-165 in the extracellular juxtamembrane region (1). To determine the biologic significance of the ectodomain cleavage, we compared the biosynthesis and biologic activities of uncleavable mutant CSF-1 forms with those of the cleavable wild-type (WT) CSF-1. We found that the uncleavable CSF-1 forms were able to accumulate on cell surface at about threefold higher level than the cleavable WT CSF-1 did. We further demonstrated that the uncleavable plasma membrane-anchored forms of CSF-1 were biologically active in mediating the proliferation of CSF-1-dependent cells as well as the intercellular adhesion between CSF-1 receptor-bearing cells and CSF-1 expressing cells. Furthermore, the adhesive activity of uncleavable CSF-1 forms was about twofold stronger than that of WT CSF-1, which indicated that the ectodomain cleavage system plays an important role in regulating the biologic activities of membrane-anchored CSF-1.  相似文献   

10.
Human granulocyte colony-stimulating factor (hG-CSF) is a glycoprotein, consisting of 174 amino acids, which plays an important role in hematopoietic cell proliferation, differentiation of hemopoietic precursor cells, and activation of mature neutrophilic granulocytes. In this study, secretory production of hG-CSF in the periplasmic space of Escherichia coli using the Bacillus sp. endoxylanase signal peptide was examined. For the efficient expression of hG-CSF gene, the first five codons at the N-terminal were altered based on the E. coli high-frequency codon database. The hG-CSF gene fused to the endoxylanase signal sequence was expressed using an inducible trc promoter. However, recombinant E. coli cells were completely lysed after induction with 1 mM isopropyl-beta-D-thiogalactopyranoside. Insertion of a small oligopeptide (13 amino acids) containing the histidine hexamer and factor Xa cleavage site between the signal peptide and the mature hG-CSF protein allowed successful secretion of hG-CSF into the periplasm without cell lysis. Among the several E. coli strains examined, E. coli BL21(DE3) and E. coli MC4100 allowed production of hG-CSF to the highest levels (20-22% of total proteins) with the secretion efficiencies greater than 98%. The circular dichroism spectra showed that the conformation of purified hG-CSF is almost identical to native hG-CSF.  相似文献   

11.
Anti-atherosclerotic effects of human macrophage colony-stimulating factor were investigated using rabbits fed a high cholesterol diet. Rabbits fed a diet containing 2% cholesterol for 59 days developed hyperlipidemia and atheromatous aortic plaques. They were then administered 80 microg/kg/day of either macrophage colony-stimulating factor or human serum albumin, as a control, for the next 12 weeks. Compared with the control group, rabbits treated with macrophage colony-stimulating factor had significantly fewer plaques on the inner surface of the thoracic and abdominal aortae, and half the sectional area of thickened intima in the aortic arch, as well as in the thoracic and abdominal aortae. Macrophage colony-stimulating factor also decreased the cholesterol content of the atherosclerotic lesions. Serobiochemical analyses revealed that macrophage colony-stimulating factor increased the levels of high density lipoprotein-cholesterol significantly, without influencing other lipid parameters such as the level of low density lipoproteins. The effects of macrophage colony-stimulating factor were evident until the fourth week of drug injection, at which time anti-human macrophage colony-stimulating factor antibodies were clearly induced in the serum. These results indicate that exogenously administered macrophage colony-stimulating factor suppresses atherosclerotic lesions induced by a high cholesterol diet by activating lipid metabolism in vivo.  相似文献   

12.
M-CSF (CSF-1) can be produced in a variety of structural forms that may affect function in vivo. Truncated, nonglycosylated forms of recombinant M-CSF (rM-CSF) from E. coli have been refolded in vitro in high yield and shown to be functionally equivalent in vitro to glycosylated rM-CSF secreted from mammalian cells. An N-terminal domain of 149 amino acids is produced by all of the known M-CSF mRNA splice variants and is the region responsible for bioactivity observed in vitro. Heterodimeric rM-CSFs from different splice variants containing this domain were produced in pure form by refolding in vitro, and are fully active, but have yet to be observed in vivo. The circulating half-life of truncated M-CSF forms injected intravenously into rats increased with the MW of the M-CSF used. Large increases in half-life in vivo were observed following chemical addition of a single molecule of 10 kD polyethylene glycol to rM-CSF in vitro. The crystal structure of rM-CSF revealed that M-CSF is a member of a family of molecules related by having a distinctive four-helical-bundle structural core. Site-directed mutagenesis showed that residues in or near helix A and helix C are involved in receptor binding, as reflected by decreased bioactivity and receptor binding of certain mutants. A soluble form of the M-CSF receptor, c-fms, was produced in a baculovirus/Sf9 expression system and purified to homogeneity. The MW of rM-CSF saturated with this soluble receptor was determined by molecular sieve chromatography and light scattering. Each dimeric M-CSF molecule appears to bind two soluble receptor molecules in vitro, supporting the observation that M-CSF signaling is linked to receptor dimerization. Mol Reprod Dev 46:31–38, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
14.
Homogeneous E. coli-derived recombinant human interferon-beta (E. coli-rHuIFN-beta) was characterized in order to elucidate its physicochemical properties, as compared with those of fibroblast human interferon-beta (fibroblast HuIFN-beta). Purified E. coli-rHuIFN-beta and fibroblast HuIFN-beta exhibited a single band of Mr 19,000 and 23,000, respectively, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The primary structure of E. coli-rHuIFN-beta was identical to the prediction from the cDNA sequence. Furthermore, both the circular dichroism (CD) spectra and the 1H nuclear magnetic resonance (NMR) spectra of E. coli-rHuIFN-beta and fibroblast HuIFN-beta at pH 6.8 were closely similar to each other. On the other hand, on reverse-phase high-performance liquid chromatography (HPLC) using a C18 column, the retention time of E. coli-rHuIFN-beta was longer than that of fibroblast HuIFN-beta. Moreover, although the isoelectric point of E. coli-rHuIFN-beta was pH 8.9, purified fibroblast HuIFN-beta exhibited multiple isoelectric points, probably due to heterogeneity of the carbohydrate moiety. These results indicate that the E. coli-rHuIFN-beta polypeptide folds similarly to fibroblast HuIFN-beta, and the carbohydrate moiety of natural HuIFN-beta has little influence on higher-order structure but does influence the hydrophobic and the electrostatic properties of the molecule.  相似文献   

15.
Renaturation of recombinant human interleukin-3 produced as inclusion bodies in the transformed cells of Escherichia coli was studied and optimized. Importance was shown of removing from the protein solution the hydrophobic cellular components causing irreversible aggregation of the protein under renaturation conditions. An effect of pH on the secondary structure of the denatured protein was revealed by CD spectroscopy. It was thereby found that at pH 8.5, which is the optimal value for denaturation, the protein has the secondary structure most close to the native one. The isolation according to the scheme proposed allows preparation of interleukin-3 in 50% yield with 99% purity and biological activity 2 x 10(7) U/mg.  相似文献   

16.
带有pBV221-hBMP-7的E.coli表达得到的rhBMP-7以不溶的包涵体形式存在,用高浓度的变性利溶解后,经过DEAE-FF纯化,得到高纯度的目的蛋白,达95%以上。分别用尿素浓度梯度降低法、添加促复性剂及人工分子伴侣法对蛋白质进行复性,并通过不同方法对复性结果进行比较。Western blot中辉度扫描结果显示,GSH/GSSG法样品二聚体/单体比例为79.5/20.5,尿素浓度梯度降低法二聚体/单体比例为73.6/26.4,表明GSH/GSSG法复性样品溶液上清中含较高比例的蛋白质二聚体。根据不同复性样品对NIH3T3细胞ALP活性影响大小的比较结果,氧化还原剂最有助于二聚体的形成,蛋白质活性最高。  相似文献   

17.
The effects of recombinant human hemopoietic growth factors on early and late human erythroid progenitors (BFU-e and CFU-e) were investigated in serum-free cultures. Recombinant human erythropoietin (rhEpo) induced the formation of not only human CFU-e-derived colonies but also human BFU-e-derived bursts. Recombinant human interleukin 3 (rhIL-3) alone did not induce the formation of human BFU-e-derived bursts and human CFU-e-derived colonies. In the presence of rhEpo, rhIL-3 dose dependently increased the number of bursts stimulated by rhEpo, although rhIL-3 did not have the augmentative effect on human CFU-e growth. On the other hand, rhIL-3 did not stimulate the formation of murine BFU-e-derived bursts, and murine IL-3 did not stimulate the formation of human BFU-e-derived bursts. The results indicated that the burst-promoting activity of IL-3 was species-specific between human and murine cells. Recombinant human GM-CSF (rhGM-CSF) or recombinant human G-CSF (rhG-CSF) failed to induce human burst formation and did not augment the effect of rhEpo on human burst formation. The results of the present study suggest that in vitro, IL-3 can stimulate BFU-e in collaboration with Epo, but GM-CSF and G-CSF do not stimulate BFU-e growth in the presence or absence of Epo.  相似文献   

18.
Interleukin-1 (IL-1), which plays an important role in the inflammatory response, was found to induce colony-stimulating factor-1 (CSF-1) expression in the MIA PaCa-2 cells. IL-1-induced CSF-1 production was markedly suppressed (70%) by pertussis toxin. This inhibition by pertussis toxin was reversed by benzamide, an inhibitor of ADP-ribosylation reactions. Similarly, IL-1-induced CSF-1 production was inhibited by cholera toxin and this inhibition was reversed by an arginine analog, p-methoxy-benzylaminodecamethylene guanidine sulfate. Dibutyryl-cAMP as well as other cAMP elevating agents such as theophylline and forskolin also suppressed IL-1-induced CSF-1 production, suggesting that cAMP concentrations inversely regulate the biosynthesis of CSF-1. Measurement of cAMP concentration indicated that IL-1 treatment of MIA PaCa-2 cells did not change the cAMP level. IL-1-induced CSF-1 production was not suppressed by the protein kinase C (PKC) inhibitor, H7, under conditions in which 12-O-tetradecanoylphorbol-13-acetate-induced CSF-1 production was completely abolished. These data suggest that IL-1-induced CSF-1 production is not mediated via the activation of PKC. Analysis of oncogene c-fos and c-jun expression has shown the enhancement of expression of both protooncogenes prior to CSF-1, suggesting that the expression of these two oncogenes may be the mechanism which triggers CSF-1 gene expression.  相似文献   

19.
We studied the ability of the recombinant human-active hemopoietic growth factors granulocyte-macrophage colony-stimulating factor (GM-CSFrh) and granulocyte colony-stimulating factor (G-CSFrh) to activate receptor-mediated transduction pathways which have been implicated in the stimulation of cytotoxic functions in granulocytes. With the use of a panel of fluorescent probes, we found that these two growth factors exerted no detectable immediate effect on the resting transmembrane electrical potential, the intracellular concentration of free calcium ions, or the cytosolic pH of isolated, mature granulocytes. However, when granulocytes were "primed" by preincubation for 90 min with GM-CSFrh or G-CSFrh, the rate of membrane depolarization induced by 10(-7) M N-formyl-methionyl-leucyl-phenylalanine, but not the rate of rise in free calcium ions, was greatly accelerated. In examining potential mechanisms to account for the priming effect of these growth factors, we found that although they did not induce translocation of protein kinase C or stimulate significant degranulation, they each directly caused prompt release of arachidonic acid from plasma membrane phospholipids. Our data indicate that although GM-CSFrh and G-CSFrh do not activate the transduction signals that have most clearly been implicated in receptor-mediated activation of cytotoxic functions in granulocytes--namely, those coupled to membrane depolarization or release of intracellular calcium ions--they appear directly to induce the release of arachidonic acid esterified to membrane phospholipids, an event which may represent the receptor-mediated activation of membrane phospholipases and which may contribute to the "priming" of the cells for enhancement of their functional responsiveness.  相似文献   

20.
The antiviral activity of recombinant human macrophage CSF (M-CSF) against genital herpes simplex virus type-2 (HSV-2) infection in guinea pigs was investigated. M-CSF stimulates proliferation of human and guinea pig peripheral blood monocytes, specifically the plastic adherent esterase-positive mononuclear cells. When anti-HSV-2 activity of M-CSF was evaluated in guinea pigs by 6 daily injection (s.c.) of M-CSF at various doses (5 x 10(5) to 7 x 10(7) U/kg), we found 2 x 10(6) U/kg to be the optimum dose for protective efficacy against primary HSV-2 infection. Either at a lethal, 5 x 10(5) pfu, or sublethal 5 x 10(4) pfu of virus challenge, animals treated with the optimum regimen of M-CSF exhibited lower herpetic lesion scores (p less than 0.005), and lower mortality (p less than 0.025) than animals in placebo group. M-CSF treatment increased the HSV-infected cell killing activities of plastic-adherent mononuclear cells, indicating that in vivo administration of M-CSF may activate the antiviral effects of guinea pig macrophages that may play a role in protection against severity and mortality of herpetic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号