首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Escherichia coli, two distinct lysyl-tRNA synthetase species are encoded by two genes: the constitutive lysS gene and the thermoinducible lysU gene. These two genes have been isolated and sequenced. Their nucleotide and deduced amino acid sequences show 79% and 88% identity, respectively. Codon usage analysis indicates the lysS product being more efficiently translated than the lysU one. In addition, the lysS sequence exactly coincides with the sequence of herC, a gene which is part of the prfB-herC operon. In contrast to the recent proposal of Gampel and Tzagoloff (1989, Proc. Natl. Acad. Sci. USA 86, 6023-6027), the lysU sequence is distinct from the open reading frame located adjacent to frdA, although large homologies are shared by these two genes.  相似文献   

2.
The complete nucleotide sequence of lysU, the gene for the heat-inducible lysyl-tRNA synthetase of Escherichia coli, was determined and compared with the published sequence of lysS (herC), the gene for the constitutive lysyl-tRNA synthetase. These unlinked genes were found to be identical over 72% of their lengths. The deduced amino acid sequences of the respective gene products, LysU and LysS, were identical over 85% and similar over 92% of their lengths. Accumulation of high levels of LysU during growth of strains carrying the wild-type allele of lysU on multicopy plasmids had no observable effect on growth or on the synthesis of LysS. A lysU deletion strain was constructed and was shown to grow normally at low temperature (28 degrees C) but poorly at 44 degrees C; the slow growth (45% of normal) at elevated temperature was fully reversed by plasmids bearing wild-type lysU. The implications of these findings for the existence of two aminoacyl-tRNA synthetases for lysine are discussed.  相似文献   

3.
4.
Abstract The gene encoding lysyl-tRNA synthetase ( lysS ) in Mycoplasma hominis was cloned and sequenced. The gene was found to have an open reading frame of 1466 bp encoding a polypeptide with a predicted molecular mass of 57 kDa. The amino acid sequence showed 44.3% and 43.7% identity to the Escherichia coli lysyl-tRNA synthetases, encoded by lysS and lysU . Only one lysyl-tRNA synthetase encoding gene was found in M. hominis . The G+C content of the gene was found to be 28.6%, which is significantly lower than in other prokaryotes. The gene was located 4 kb upstream of the M. hominis PG21 rRNA B operon.  相似文献   

5.
Structure and evolution of a group of related aminoacyl-tRNA synthetases   总被引:5,自引:0,他引:5  
A yeast nuclear gene, designated MSK1, has been selected from a yeast genomic library by transformation of a respiratory deficient mutant impaired in acylation of mitochondrial lysine tRNA. This gene confers a respiratory competent phenotype and restores the mutant's ability to acylate the mitochondrial lysine tRNA. The amino acid sequence of the protein encoded by MSK1 is homologous to yeast cytoplasmic lysyl-tRNA synthetase and to the product of the herC gene, which has recently been suggested to code for the Escherichia coli enzyme. These observations indicate that MSK1 codes for the lysyl-tRNA synthetase of yeast mitochondria. Several regions of high primary sequence conservation have been identified in the bacterial and yeast lysyl-tRNA synthetases. These domains are also present in the aspartyl- and asparaginyl-tRNA synthetases, further confirming the notion that all three present-day enzymes originated from a common ancestral gene. The most conserved domain, located near the carboxyl terminal ends of this group of synthetases is characterized by a cluster of glycines and is also highly homologous to the carboxyl-terminal region of the E. coli ammonia-dependent asparagine synthetase. A catalytic function of the carboxyl terminal domain is indicated by in vitro mutagenesis of the yeast mitochondrial lysyl-tRNA synthetase. Replacement of any one of three glycine residues by alanine and in one case by aspartic acid completely suppresses the activity of the enzymes, as evidenced by the inability of the mutant genes to complement an msk1 mutant, even when present in high copy. Other mutations result in partial loss of activity. Only one glycine replacement affects the stability of the protein in vivo. The observed presence of a homologous domain in asparagine synthetase, which, like the aminoacyl-tRNA synthetases, catalyzes the formation of an aminoacyladenylate, suggests that the glycine-rich sequence is part of a catalytic site involved in binding of ATP and of the aminoacyladenylate intermediate.  相似文献   

6.
In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5')tetraphospho(5')adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.  相似文献   

7.
Two temperature-sensitive mutants (lysS1 and lysS2) of the lysyl-transfer ribonucleic acid synthetase (l-lysine:tRNA ligase [adenosine 5'-monophosphate], EC 6.1.1.6) of Bacillus subtilis have been isolated. Although protein synthesis is inhibited in both mutants at the restrictive temperature (42 to 45 C), the mutants remain viable in a minimal medium. In comparison with the wild-type lysyl-tRNA synthetase, the l-lysine-dependent exchange of [(32)P]pyrophosphate with adenosine 5'-triphosphate (ATP) for both mutant enzymes is decreased. The lysS1 enzyme is completely defective in the ATP-dependent attachment of l-lysine to tRNA, whereas the lysS2 enzyme has 3- to 10-fold reduced levels of this activity. Temperature-resistant transformants have wild-type enzyme levels, whereas partial revertants to temperature resistance have varied levels of enzyme activity. The attachment and exchange activities of the lysS2 enzyme are more heat labile in vitro than the wild-type enzyme, as is the attachment activity of a partial revertant of the lysS1 mutant. The lysS1 and the lysS2 lysyl-tRNA synthetases have higher apparent K(m) values for lysine and ATP, in both the activation and the attachment reactions. The lysS2 enzyme has a V(max) for tRNA(lys) one-third that of the wild-type enzyme. Molecular weights of approximately 150,000 for the wild-type and lysS2 enzymes and approximately 76,000 for the lysS1 enzyme were estimated from sedimentation positions in sucrose density gradients assayed by the ATP-pyrophosphate exchange activity. We propose that the two mutations (lysS1 and lysS2) directly affect the sites for exchange activity, but indirectly alter attachment activity as a consequence of defective subunit association.  相似文献   

8.
The growth of thermosensitive Bacillus subtilis lysyl- and tryptophanyl-transfer ribonucleic acid synthetase mutants (lysS1 and trypS1) (l-lysine:transfer ribonucleic acid [tRNA] ligase [AMP], EC 6.1.1.6; and l-tryptophan:tRNA ligase [AMP], EC 6.1.1.2) was terminated when exponential phase cells were shifted from 30 to 43 C in a rich medium. Under these conditions, the temperature-inhibited cells undergo thermal death; they rapidly lose their ability to form colonies at 30 C. Another lysyl-tRNA synthetase mutant (lysS2) is refractory to thermal death even though its growth is inhibited at 43 C. The thermal death response of the lysS1 mutant is affected by the stage of cell development. At periods in spore outgrowth and sporogenesis these cells become refractory to thermal death. The refractory state does not result from the production of an inhibitor, or from the degradation of an activator of thermal death. However, culture medium composition does modify the thermal death response. Rich media enhance the effect, and no thermal death occurs in the lysS1 strain grown in a minimal medium. Temperature-sensitive cells can grow in a lysine- (0.25 mM) or tryptophan- (0.25 mM) supplemented minimal medium at 43 C, but amino acid concentrations of 25 mM only transiently protect trypS1 and lysS1 cells from thermal death in a rich medium. Osmotic agents such as sucrose (0.5 M) and NaCl (0.34 M) completely prevent thermal death in the lysS1 strain, although growth is still arrested. On solid media, sucrose stabilized lysS1 cells can form colonies at the restrictive temperature, but neither sucrose (0.5 M) nor NaCl (0.34 M) stabilized the lysS1 enzyme in vitro. Chloramiphenicol increased the rate of thermal death of the lysS1 strain but decreased the thermal death response of the trypS1 mutant. Considering the nature of the enzyme defect in the lysS1 strain, the common genetic origin of the spore and vegetative lysyl-tRNA synthetase, and the protective effects exerted by lysine and osmotic agents, it is tentatively concluded that thermal death results from irreversible inactivation of the mutant gene product. According to this hypothesis, either the lysS1 enzyme is altered during sporogenesis or some physiological or structural aspect of this developmental phase can stabilize the mutant phenotype and thereby rescue cells from thermal death.  相似文献   

9.
The constitutive lysyl-tRNA synthetase gene (lysS) was mapped at 62.1 min on the Escherichia coli chromosome by a combination of conjugation and transduction, with physical confirmation by two-dimensional gel electrophoresis. Revertant analysis suggests that the altered isoelectric point and the low amount of the mutant LysS protein may be due to a single mutational event.  相似文献   

10.
Lysyl-tRNA synthetase occurs in the high molecular weight form in rat liver. The high molecular weight lysyl-tRNA synthetase has been previously demonstrated to exist as multienzyme complexes of aminoacyl-tRNA synthetases. The multienzyme complexes can be dissociated by hydrophobic interaction chromatography and yield fully active, free lysyl-tRNA synthetase. The free form is found to be twice as active as the complexed form in lysylation. Bisubstrate and product inhibition kinetics of lysylation are systematically carried out for highly purified free lysyl-tRNA synthetase and the 18 S synthetase complex. Surprisingly, the two enzyme forms exhibit distinctly different kinetic patterns in bisubstrate and product inhibition kinetics under identical conditions. The 18 S synthetase complex shows kinetic patterns consistent with an ordered bi uni uni bi ping pong mechanism, while the results of free lysyl-tRNA synthetase do not. We conclude that structural organization of lysyl-tRNA synthetase beyond quaternary structure of proteins may alter the enzyme behavior.  相似文献   

11.
Lysyl-tRNA synthetase [L-lys:tRNAlys ligase (AMP forming) EC:6.1.1.6] has been purified to homogeneity from Mycobacterium smegmatis SN2. The enzyme is a dimer of molecular weight 126,000 and is composed of identical subunits. A detailed analysis of the kinetic mechanism of the lysyl-tRNA synthetase has been carried out. A rapid equilibrium random ter ter mechanism is proposed based on initial velocity and product inhibition studies. There is no evidence for the formation of enzyme-bound lysyl-adenylate. The reverse reaction, studied by the deacylation of lysyl-tRNA, requires the presence of both AMP and PPi. This observation is consistent with the mechanism proposed.  相似文献   

12.
13.
Affinity chromatography of rat liver aminoacyl-tRNA synthetase complex   总被引:3,自引:0,他引:3  
The affinity column lysyldiaminohexyl-Sepharose 4B has been synthesized for the purification of aminoacyl-tRNA synthetase complexes. Lysyl-tRNA synthetase (EC 6.1.1.6) bound specifically to the Sepharose-bound lysine. The purified lysyl-tRNA synthetase was associated with arginyl-tRNA synthetase (EC 6.1.1.16) and sedimented at 18S and 12S. A 24S lysyl-tRNA synthetase bound specifically to the affinity column and also found associated with arginyl-tRNA synthetase. The results favor the model of a heterotypic multienzyme complex of mammalian aminoacyl-tRNA synthetases.  相似文献   

14.
The myositis-specific anti-Jo-1 autoantibody, which is directed against histidyl-tRNA-synthetase, is found in 30% of polymyositis patients. The Jo-1 antigen has been reported to be a nuclear antigen by some authors. On the contrary we show that less than 2% of the total histidyl-tRNA and lysyl-tRNA synthetase activities are associated with purified rat liver nuclei or the hepatocyte intermediate filament-nuclear fraction. In the presence of polyethylene glycol, in which the high Mr multi-enzyme complex containing lysyl-tRNA synthetase is insoluble, 65% of the lysyl-tRNA synthetase and only 15% of histidyl-tRNA synthetase activities remained associated with the cytoskeletal framework. The Jo-1 antigen exhibited a diffuse granular cytoplasmic distribution in cultured rat hepatocytes as determined by indirect immunofluorescent microscopy. Hence, the Jo-1 antigen is cytoplasmic and unassociated with the cytoskeletal framework or high Mr synthetase complex in situ.  相似文献   

15.
Partial characterization of a lysU mutant of Escherichia coli K-12.   总被引:5,自引:3,他引:2       下载免费PDF全文
The Escherichia coli K-12 strain GNB10181 shows no inducible lysyl-tRNA synthetase (LysRS) activity. Two-dimensional gel electrophoretic analysis of the polypeptides synthesized by this strain indicates that the normal lysU gene product, LysU, is absent. When both GNB10181 and its parent, MC4100, were grown at elevated temperatures (42 to 45 degrees C) no significant difference between their growth rates was observed. The lysU mutation was transferred to other E. coli K-12 backgrounds by using P1 transduction. The lysU transductants behaved comparably to their lysU+ parents at different growth temperatures. Therefore, the LysU proteins does not appear to be essential for growth at high temperatures, at least under the conditions examined here. In addition, lysU transductants were found to be defective for inducible lysine decarboxylase, (LDC), inducible arginine decarboxylase (ADI), and melibiose utilization (Mel), which are all missing in GNB10181. Complementation of the above missing functions was achieved by using the Clarke-Carbon plasmids pLC4-5 (LysU LDC) and pLC17-38 (LysU Mel ADI). From these experiments, it appears that GNB10181 has suffered a chromosomal deletion between 93.4 and 93.7 min, which includes the lysU gene. By using plasmid pLC17-38, the position of ADI on two-dimensional gels was identified. Finally, lysS delta lysU double mutants were constructed which can potentially be used as positive selection agents for the isolation of LysRS genes from other sources.  相似文献   

16.
17.
Two mutations (lysS1 and lysS2), each independently resulting in a thermosensitive, lysyl-transfer RNA synthetase (l-lysine: tRNA ligase [adenosine 5'-monophosphate] EC 6.1.1.6), have been mapped on the Bacillus subtilis chromosome between purA16 (adenine requirement) and sul (sulfanilamide resistance). They are linked by transformation with sul (70 to 74% cotransfer) in the order purA16-lysS1-lysS2-sul. The mutant loci are either in the same gene or in two closely linked genes. They are not linked to the tryptophanyl-tRNA synthetase structural gene or to the lys-1 locus.  相似文献   

18.
The high molecular weight aminoacyl-tRNA synthetase complex (the 24S complex) was isolated from rat liver by ultracentrifugation. The lysyl-tRNA synthetase (E.C. 6.1.1.6) was selectively dissociated by hydrophobic interaction chromatography on 1,6 diaminohexyl agarose followed by hydroxylapatite chromatography and DEAE chromatography. The lysyl-tRNA synthetase dissociated from the 24S synthetase complex was purified approximately to 2700 fold with 14% yield.  相似文献   

19.
Summary TheKRS1 gene encodes the cytoplasmic form ofSaccharomyces cerevisiae lysyl-tRNA synthetase. TheKRS1 locus has been characterized. The lysyl-tRNA synthetase gene is unique in the yeast genome. The gene is located on the right arm of chromosome IV and disruption of the open reading frame leads to lethality. These results contrast with the situation encountered inEscherichia coli where lysyl-tRNA synthetase is coded by two distinct genes,lysS andlysU, and further address the possible biological significance of this gene duplication. The nucleotide sequence of the 3′-flanking region has been established. It encodes a long open reading frame whose nucleotide and amino acid structures are almost identical toPMR2, a cluster of tandemly repeated genes coding for P-type ion pumps. The sequence alterations relative toPMR2 are mainly located at the C-terminus of the protein.  相似文献   

20.
In Escherichia coli K-12, expression of the lysU gene is regulated by the lrp gene product, as indicated by an increase in the level of lysyl-tRNA synthetase activity and LysU protein in an lrp mutant. Comparison of the patterns of protein expression visualized by two-dimensional gel electrophoresis indicated that LysU is present at higher levels in an lrp strain than in its isogenic lrp+ parent. The purified lrp gene product was shown to bind to sites upstream of the lysU gene and to protect several sites against DNase I digestion. A region extending over 100 nucleotides, between 60 and 160 nucleotides upstream from the start of the lysU coding sequence, showed altered sensitivity to DNase I digestion in the presence of the Lrp protein. The extent of protected DNA suggests a complex interaction of Lrp protein and upstream lysU DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号