首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A fragment of subcomponent C1q, which contained all the collagen-like features present in the intact molecule, was isolated by pepsin digestion as described by Reid [Biochem. J. (1976) 155, 5-17]. 2. The pepsin-derived fragment of subcomponent C1q did not bind to antibody-coated erythrocytes under conditions where complete binding of sub-component C1q took place. 3. The peptic fragment blocked the reconstitution of C1 haemolytic activity by competing with intact subcomponent C1q in the utilization of a mixture of the other two subcomponents, C1r and C1s. 4. Reduction and alkylation of the interchain disulphide bonds in the pepsin fragment did not markedly affect its inhibitory effect, whereas heating at 56 degrees C for 30min completely abolished the effect. 5. Lathyritic rat skin collagen and CNBr-derived peptides of pig type II collagen showed no ability to mimic the inhibitory effect of the pepsin fragment when tested over the same concentration range as used for the peptic fragment. 6. The peptic fragment was unable to block efficiently the reconstitution of C1 haemolytic activity unless it was added to the mixture of subcomponents C1r and C1s before the attempt to reconstitute C1 haemolytic activity, in solution, or on the surface of antibody-coated erythrocytes. 7. Evidence was obtained that suggested that subcomponent C1q bound the subcomponent C1r-C1s complex more efficiently when the subcomponent C1q was bound to antibody than when it was free in solution.  相似文献   

2.
C Mays  T L Rosenberry 《Biochemistry》1981,20(10):2810-2817
Digestion of 18S and 14S acetylcholinesterase from eel electric organ with pepsin at 15 degrees C for 6 h results in extensive degradation of the catalytic subunits, but a major portion of the collagen-like tail structure associated with these enzyme forms resists degradation. The pepsin-resistant structures partially aggregate and can be isolated by gel exclusion chromatography on Sepharose CL-6B in buffered 1 M sodium chloride. The largest structure, denoted F3, has a molecular weight of 72 000 according to gel electrophoresis in sodium dodecyl sulfate and is composed of three 24 000 molecular weight polypeptides linked by intersubunit disulfide bonds. This structure is largely, but not completely, a collagen-like triple helix as indicated by a circular dichroism spectrum typical of triple-helical collagen and an amino acid composition characterized by 27% glycine, 5% hydroxyproline, and 5% hydroxylysine. Continued pepsin action results in degradation of the disulfide linkage region such that disulfide-linked dimers F2 and finally F1 monomers become the predominant forms in sodium dodecyl sulfate. Digested samples in which either F3 or F2 predominate have virtually identical circular dichroic spectra and amino acid compositions and generate similar diffuse 24 000 molecular weight polypeptides following disulfide reduction. Thus the intersubunit disulfide linkages in F3 must occur close to the end(s) of the fragment polypeptide chains. Pepsin conversion of F3 to F2 is particularly accelerated between 25 and 30 degrees C, suggesting that the triple-helical structure in the disulfide linkage region undergoes thermal destabilization in this temperature range. Digestion at 40 degrees C yields presumably triple-helical F1 structures devoid of disulfide linkages, although their degradation to small fragments can be detected at this temperature. The question of whether the three tail subunits that give rise to F1 polypeptides are identical remains open.  相似文献   

3.
1. Digestion of human subcomponent C1q with pepsin at pH4.45 for 20h at 37 degrees C fragmented most of the non-collagen-like amino acid sequences in the molecule to small peptides, whereas the entire regions of collagen-like sequence that comprised 38% by weight of the subcomponent C1q were left intact. 2. The collagen-like fraction of the digest was eluted in the void volume of a Sephadex G-200 column, was was showm to be composed of two major fragments when examined by electrophoresis on polyacrylamide gels run in buffers containing sodium dodecyl sulphate. These fragments were separated on CM-cellulose at pH4.9 in buffers containing 7.5M-urea. 3. Human subcomponent C1q on reduction and alkylation yields equimolar amounnts of three chains, which have been designated A, B and C [Reid et al. (1972) Biochem. J. 130, 749-763]. One of the pepsin fragments was shown to be composed of the N-terminal 95 residues of the A chain linked, via residue A4, by a single disulphide bond to a residue in the sequence B2-B6 in the N-terminal 91 residues of the B chain. The second pepsin fragment was shown to be composed of a disulphide-linked dimer of the N-terminal 94 residues of the C chain, the only disulphide bond being located at residue C4.4. The mol. wts. of the unoxidized and oxidized pepsin fragments were estimated from their amino acid compositions to be 20 000 and 18 200 for the A-B and C-C dimers and 11 400, 8800 and 9600 for the collagen-like fragments of the A, B and C chains respectively. Estimation of the molecular weights of the peptic fragments by polyacrylamide-gel electrophoresis run in the presence of sodium dodecyl sulphate gave values that were approx. 50% higher than expected from the amino acid sequence data. This is probably due to the high collagen-like sequence content of these fragments.  相似文献   

4.
1. The subunit structure of rabbit subcomponent C1q was examined in a previous publication (Reid et al., 1972). The present paper describes some aspects of the structure of the polypeptide chains derived from the molecule. 2. The three polypeptide chains, produced by performic oxidation, of rabbit subcomponent C1q were isolated by ion-exchange chromatography in 8m-urea on DEAE-cellulose. 3. Each chain was found to contain 15-18% glycine and significant amounts of the amino acids hydroxyproline and hydroxylysine. 4. By means of collagenase digestion it was shown that all three chains of rabbit subcomponent C1q contain collagen-like sequences of amino acids which constitute about 40% of each chain. 5. By use of carboxypeptidase A it was established, indirectly, that the collagen-like sequences, in one of the chains, are probably located near, or at, the N-terminal end of the chain. 6. Collagenase digestion and heating at 52 degrees C (but not at 49 degrees C) caused rapid loss of native rabbit subcomponent C1q haemolytic activity.  相似文献   

5.
The interaction of purified human plasma fibronectin with the C1q subcomponent of complement was investigated by using a solid-phase radiobinding assay. 125I-fibronectin binding to native C1q, purified collagen domain (C1q-c) or globular domain (C1q-g) was compared. When the purified domains were insolubilized by binding to plastic, the C1q-c exhibited 59% of the binding demonstrated with intact C1q, whereas the C1q-g exhibited 35% of the binding. N-Terminal sequencing of the globular domain showed that a sequence of seven collagen-like amino acids was retained on each chain of the C1q-g fragment. 125I-fibronectin binding to C1q could be inhibited equally well by fluid-phase C1q and C1q-c, but not by fluid-phase C1q-g, implying that the collagen-like region retained on the C1q-g is masked in the fluid phase. In addition, studies were performed to determine which subunit(s) of C1q bind(s) fibronectin. The percentages of fibronectin bound by the A, B, and C chain of C1q were found to be 38, 21 and 41% respectively. Inhibition studies with purified 200-180 kDa, 50 kDa or 29 kDa fragments of fibronectin show that the binding site on fibronectin for C1q is the 50 kDa gelatin-binding domain.  相似文献   

6.
Previously, a type IV collagen fraction was isolated from chicken gizzard and further fractionated into three components called F1, F2 and F3 [Mayne, R. and Zettergren, J.G. (1980) Biochemistry, 19, 4065-4072]. F1 and F2 were consistently isolated in a 2:1 proportion, and the existence of a small native fragment of structure (F1)2F2 was proposed. In the present series of experiments, a type IV collagen fraction was isolated from the chicken kidney and shown to consist almost entirely of F1 and F2 which were again present in a 2:1 proportion. Identical one-dimensional peptide maps for F1 and F2 from both sources were obtained by polyacrylamide gel electrophoresis of peptides obtained after cleavage with cyanogen bromide or Staphylococcus aureus V8 protease. The denaturation temperature of a preparation containing F1 and F2 in native form was determined by optical rotatory dispersion and a single melting curve was observed with a melting temperature of 33 degrees C. This result provides further supportive evidence that F1 and F2 exist as a native fragment (F1)2F2. Antibodies were prepared in rabbits against a type IV collagen fraction isolated from chicken gizzard, and immunofluorescent staining of a wide variety of basement membranes was demonstrated. Experiments were performed in which various type IV collagen fractions were observed in the electron microscope after rotary shadowing. The lengths of (F1)2F2 and F3 were 147 nm and 174 nm respectively, the sum of these lengths (321 nm) corresponding closely to the length of the major triple-helical domain of type IV collagen (326-328 nm). A specific cleavage site was located at a distance of 215 nm from the 7-S domain which, together with the length of (F1)2F2, gives a total length of 362 nm. This value corresponds closely to the maximum length of the arms which originate from the 7-S domain (355 nm) when type IV collagen was solubilized with a low concentration of pepsin. The results suggest that (a) type IV collagen isolated from the chicken gizzard is closely related, if not identical, to type IV collagen isolated from other tissues; (b) there is a single type IV collagen molecule of chain organization[alpha 1(IV)]2 alpha2(IV); (c) the order of the pepsin-resistant fragments within a type IV molecule is 7S-F3-(F1)2F2.  相似文献   

7.
Both the collagen-like and the globular fragments of a subcomponent C1q of the first component of bovine and human complement were highly purified by enzymic digestion followed by gel filtration. Analyses by polyacrylamide gel electrophoresis showed that the former was composed of covalently linked peptide chains with an average molecular weight of 14 000, and that the latter was composed of three non-covalently linked peptide chains each having a molecular weight of approximately 15 000. Great similarities between amino acid compositions of the globular fragments and some similarities between those of the collagen-like fragments were found. Moreover, great similarities of amino acid compositions were found among three non-covalently linked chains of each globular fragment as well as between the corresponding chains of both globular fragments. These results suggested that both the collagen-like and the globular domains on the C1q molecule remained highly conserved in its evolution.  相似文献   

8.
Folding of collagen IV   总被引:5,自引:0,他引:5  
Collagen IV dimers of two collagen IV molecules connected by their C-terminal globular NC1 domains were isolated by limited digestion with bacterial collagenase from mouse Engelbreth-Holm-Swarm (EHS) sarcoma tissue. The collagenous domains were only 300 nm long as compared to 400 nm of intact collagen IV but the disulfide bonds in the N-terminal region of the major triple helix were retained. Unfolding of the collagenous domains as monitored by circular dichroism occurred in a temperature range of 30 to 44 degrees C with a midpoint at 37 degrees C. The transition is significantly broader than that of the continuous triple helices in collagens I, II and III, a feature which can be explained by the frequent non-collagenous interruptions in the triple-helical domain of collagen IV. Refolding at 25 degrees C following complete unfolding at 50 degrees C was monitored by circular dichroism, selective proteolytic digestion of non-refolded segments and by a newly developed method in which the recovered triple-helical segments were visualized by electron microscopy. Triple-helix formation was found to proceed in a zipper-like fashion from the C-terminal NC1 domains towards the N-terminus, indicating that this domain is essential for nucleations. For collagen IV dimers with intact NC1 domains the rate of triple-helix growth was of comparable magnitude to that of collagen III, demonstrating that the non-collagenous interruptions do not slow down the refolding process where the rate-limiting step is the cis-trans isomerization of proline peptide bonds. Refolding was near to 100% and the refolding products were similar to the starting material as judged by thermal stability and electron microscopic appearance. Removal of the NC1 domains by pepsin or dissociation of their hexametric structures by acetic acid led to a loss of the refolding ability. Instead products with randomly dispersed short triple-helical segments were formed in a slow reaction. In no case, even when the disulfide bonds in the N-terminal region of the triple-helical domain were intact, was refolding from the N- towards the C-terminus observed. Taken together with results in other collagens, this suggests that C to N directionality might be an intrinsic property of triple-helix folding.  相似文献   

9.
H Sage  P Pritzl  P Bornstein 《Biochemistry》1980,19(25):5747-5755
A unique collagen, designated EC, has been isolated from the culture medium of adult bovine aortic endothelial cells. After diethylaminoethylcellulose chromatography of [3H]proline-labeled culture medium, three non-disulfide-bonded bacterial collagenase-sensitive components with apparent Mr of 177000 (EC 1), 125000 (EC 2), and 100000 (EC 3) were demonstrated. Molecular sieve chromatography, cyanogen bromide cleavage, and two-dimensional peptide mapping of radioiodinated EC fragments produced by protease digestion suggest that the lower molecular weight components originate from EC 1. Both EC 1 and EC 2 were digested by pepsin within 10 min to products of less than 60000 molecular weight, under conditions which supported only limited proteolysis of other native collagens. A pepsin-resistant fragment of Mr 50000, derived from a digest of EC 2, contained equal amounts of hydroxyproline and proline, suggesting that at least a portion of the endothelial collagen contains a stable, collagen-like triple helix. Comparative mapping using mast cell protease and cyanogen bromide cleavage, followed by polyacrylamide gel electrophoresis, indicates that the primary structure of this collagen differs from that of other known collagen types.  相似文献   

10.
1. Human C1q, a subcomponent of the first component of complement, contains 67 disaccharides (glucosylgalactose) and 2.4 monosaccharides (galactose) linked to hydroxylysine in one molecule. It was found that 82.6% of the hydroxylsine residues were glycosylated. The suggestion of the possible existence of glucosylgalactosylhydroxylysine reported previously [Yonemasu, Stroud, Niedermeir & Butler (1971) Biochem. Biophys. Res. Commun. 43, 1388--1394] was confirmed. 2. The hydroxylysine-glycosides are not detected in the C-terminal, non-collagen-like, globular regions, but only in the collagen-like regions in the subcomponent C1q molecule. 3. Alpha 1(I) and alpha 2 in pig skin, alpha 1(II) in bovine cartilage and alpha 1(III) in bovine skin collagens contain 2.0, 2.2, 13.2 and 2.0 residues of hydroxylysine-glycosides per molecule, respectively. The percentage of hydroxylysine residues glycosylated in each of these chains is relatively low (on average 38%). 4. Neither the high percentage of hydroxylysine residues glycosylated nor the high values for the ratios of disaccharides to monosaccharides in the subcomponent C1q resembles that in alpha 1(I), alpha 2, alpha 1(II) and alpha 1(III). 5. Similarities between the extent of glycosylation of hydroxylysine residues in collagen-like regions in the subcomponent C1q molecule and that of the collagenous constituents of human glomerular basement membranes, aortic intima, skin A- and B-chains and of bovine anterior lens capsule are discussed.  相似文献   

11.
Fluorescence polarization techniques were used to study the rotational dynamics of the C1q subcomponent of human complement. C1q was covalently labeled with dansyl (DNS) chloride. Digestion of either C1q-DNS4.0 or C1q-DNS1.8 conjugates with pepsin showed that about 75% of the DNS probes were attached to the C1q globular heads and that the remainder were on the collagen-like stalk (peptic fragment). C1q-DNS conjugates readily agglutinated IgG-coated latex beads and combined with C1r2C1s2 to form hemolytically active 16 S C1-DNS. Both C1q-DNS and C1-DNS samples displayed steady-state rotational correlation time and fluorescence lifetime transitions near 48 degrees C. Hydrodynamic studies showed that C1q formed soluble aggregates near the transition temperature. In contrast, stalk samples with a DNS probe apparently attached to the large central fibril showed no thermal transitions or aggregation even when heated above 50 degrees C. Nanosecond fluorescence depolarization measurements detected restricted flexible motions of the C1q heads with an associated rotational correlation time, phi s, of about 25 ns. The C1q anisotropy decay was dominated, however, by a long component, phi L, of perhaps 1000 ns. Except for probe wiggle, the stalk-DNS anisotropy profile was essentially flat. The rapid rotations associated with phi s could represent restricted twisting motions of the arm-head segments or wobbling motions of the heads themselves. Such motions may facilitate binding of the C1q heads to immune complexes. Straightforward diffusion calculations indicated that phi L could represent either global tumbling of the entire C1q molecule or wagging motions of the individual arm-head segments, as suggested by electron micrographs. Upon binding of the C1q heads to an activator, some of the C1q segments may be held in a slightly more open or more closed conformation, which in turn may trigger activation of the C1 proenzymes. In conclusion, we suggest a plausible triggering mechanism for C1 activation that is compatible with the flexible properties of its subcomponents.  相似文献   

12.
Bovine C1q, a subcomponent of the first component of complement, was purified in high yield by a combination of euglobulin precipitation, and ion-exchange and molecularsieve chromatography on CM-cellulose and Ultrogel AcA 34. Approx. 12-16mg can be isolated from 1 litre of serum, representing a yield of 13-18%. The molecular weight of undissociated subcomponent C1q, as determined by equilibrium sedimentation, is 430000. On sodium dodecyl sulphate/polyacrylamide gels under non-reducing conditions, subcomponent C1q was shown to consist of two subunits of mol.wts. 69000 and 62000 in a molar ratio of 2:1. On reduction, the 69000-mol.wt. subunit gave chains of mol.wts. 30000 and 25000 in equimolar ratio, and the 62000-mol.wt. subunit decreased to 25000. The amino acid composition, with a high value for glycine, and the presence of hydroxyproline and hydroxylysine, suggests that there is a region of collagen-like sequence in the molecule. This is supported by the loss of haemolytic activity and the degradation of the polypeptide chains of subcomponent C1q when digested by collagenase. All of these molecular characteristics support the structure of six subunits, each containing three different polypeptide chains, with globular heads connected by collagen triple helices as proposed by Reid & Porter (1976) (Biochem. J.155, 19-23) for human subcomponent C1q. Subcomponent C1q contains approx. 9% carbohydrate; analysis of the degree of substitution of the hydroxylysine residues revealed that 91% are modified by the addition of the disaccharide unit Gal-Glc. Bovine subcomponent C1q generates full C1 haemolytic activity when assayed with human subcomponents C1r and C1s.  相似文献   

13.
The results of a large number of studies indicate that pulmonary surfactant contains a unique protein whose principal isoform has a molecular weight of about 30,000, and whose presence in surfactant is associated with important metabolic and physicochemical properties. This protein, SP-A, as isolated from canine surfactant, contains a domain of 24 repeating triplets of Gly-X-Y, similar to that found in collagens. These studies were undertaken to determine whether SP-A forms a collagen-like triple helix when in solution, and to describe certain aspects of its size and shape. Our experiments were done on SP-A extracted by two different methods from canine surfactant, and on SP-A produced by molecular cloning. The results from all three preparations were similar. The circular dichroism of the complete protein was characterized by a relatively large negative ellipticity at 205 nm, with a negative shoulder ranging from 215 to 230 nm. There was no positive ellipticity, and the spectrum was not characteristic of collagen. Trypsin hydrolysis resulted in a fragment with peak negative ellipticity at about 200 nm, without the negative shoulder. Further hydrolysis of this fragment with pepsin resulted in a CD spectrum similar to that of collagen. The spectrum of the collagen-like fragment was reversibly sensitive to heating to 50 degrees C, and was irreversibly lost after treatment with bacterial collagenase. SP-A migrated on molecular sieving gels with an equivalent Stokes radius of 110 to 120 A, and had a sedimentation coefficient of 14 S. Using these data we calculate a molecular weight of about 700,000. The hydrodynamic characteristics can be approximated as a prolate ellipsoid of revolution having an axial ratio of about 20. We conclude that SP-A aggregates into a complex of 18 monomers, which may form six triple-helices. The shape of the complex is considerably more globular than collagen and is not consistent with end-to-end binding of the helices to form fibrous structures.  相似文献   

14.
Characterization of the precursor form of type VI collagen   总被引:10,自引:0,他引:10  
Well characterized monospecific antisera against pepsin-extracted bovine type VI collagen were used to identify and characterize the intact form of type VI collagen. In immunoblotting experiments the antisera reacted with the pepsin-resistant fragments of the alpha 1(VI) and alpha 3(VI) chains, but not with the fragment of the alpha 2(VI) chain. Extracts obtained from uterus and aorta with 6 M guanidine HCl contained two immunoreactive polypeptides of Mr = 190,000 and 180,000 based on globular protein standards. Cleavage of extracts with pepsin generated the previously characterized pepsin-resistant fragments of alpha 1(VI) and alpha 3(VI), indicating that the higher molecular weight polypeptides represent the intact parent chains, alpha 1(VI) and alpha 3(VI). Digestion of extracts with bacterial collagenase released an Mr = 100,000 noncollagenous fragment from the alpha 1(VI) chain. Thus, intact type VI collagen in tissues contains a relatively short triple helical domain and at least one very large globular domain which is sensitive to pepsin but resistant to collagenase digestion. Immunoblotting revealed a polypeptide of Mr = 240,000, which we suggest represents the pro-alpha 1(VI) chain, in the culture medium of bovine fibroblasts. Bands intermediate in molecular weight between 240,000 and 190,000 were identified in cell layers. These findings establish type VI collagen as a protein with very large nontriple helical domains, a property that undoubtedly plays an important role in its function.  相似文献   

15.
Collagen biosynthesis by organ cultures of the hypertrophic zone of calf growth-plate cartilage was studied. It was found that this tissue devotes a large portion of its biosynthetic commitment towards production of a collagen molecule comprising short collagen chains. This collagen is similar to short-chain collagens synthesized by chick-embryo tibiotarsus, rabbit growth-plate cartilage and chick chondrocytes grown in three-dimensional gels. However, in contrast with the collagen synthesized in these three systems, the short-chain collagen synthesized by calf growth-plate hypertrophic cartilage is stabilized by disulphide bonds localized within the pepsin-resistant triple-helical collagenous domains of these molecules.  相似文献   

16.
The triple-helical domain of type VII collagen was isolated from human placental membranes by mild digestion with pepsin, and polyclonal antibodies were raised in rabbits against this protein. After affinity purification the antibodies specifically recognized type VII collagen in both the triple-helical and the unfolded state. They also reacted with the fragments P1 and P2, derived from the triple-helical domain by further proteolysis with pepsin, but did not crossreact with other biochemical components of the dermal connective tissue. In skin the presence of a fragment of type VII collagen, similar to that isolated from placenta, was demonstrated by SDS-PAGE and immunoblotting. Type VII collagen represented less than 0.001% of the total collagen extracted by pepsin digestion from newborn or adult skin. The tissue form of type VII collagen was obtained from dermis after artificial epidermolysis with strongly denaturing buffers under conditions reducing disulfide bonds. The protein was identified by immunoblotting with the antibodies. The molecule was composed of three polypeptides with an apparent molecular mass of about 250 kDa, each. Similar large-molecular-mass chains could be identified by immunoblotting in extracts of human fibroblasts in culture.  相似文献   

17.
Human, bovine, and mouse C1q, a subcomponent of the first complement component, were purified, and both globular (GF) and collagen-like fragments (CLF) were isolated from human and bovine C1q. Antisera were produced in rabbits with these C1q or fragments, and F(ab')2 of immunoglobulin G (IgG) was purified from the antisera in order to avoid the possible non-specific binding of C1q of these animals to the Fc portion of rabbit IgG. Immunodiffusion analyses and radioimmune inhibition tests with these F(ab')2 showed that the definitive antigenic cross-reactivity was among C1q molecules of these animals, and that the regions participating in interspecies cross-reactions were located in both GF and CLF of C1q. These results suggest that both the C-terminal non-collagenous globular and the N-terminal collagen-like domains of C1q molecules may have remained highly conserved during evolution.  相似文献   

18.
Characterization of the tissue form of type V collagen from chick bone   总被引:8,自引:0,他引:8  
Type V collagen was prepared from acetic acid extracts of lathyritic chick bone. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the extracted material demonstrated two collagenous bands of slower mobility than pepsin-extracted alpha 1(V) and alpha 2(V) chains. Cyanogen bromide peptide maps of these protein bands identified them as forms of alpha 1(V) and alpha 2(V). Segment long spacing (SLS) crystallite banding patterns of the acid-extracted Type V were identical within the triple-helical domain to the SLS banding patterns of pepsin-extracted Type V collagen, supporting the identification of this material. A globular domain at one end of the triple helix of the acid-extracted Type V was visualized by both rotary shadowing and negative staining of SLS crystallites. The molecular weights of the globular terminal peptides were 18,000 and 29,000, respectively, for alpha 1(V) and alpha 2(V), as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after bacterial collagenase digestion of the isolated alpha chains. The results presented here indicate that fully processed Type V collagen in chick bone exists as a higher molecular weight form than that from pepsin extracts and retains a globular domain at one end of the triple helix. This is in contrast to the interstitial collagens in which only very small non-triple-helical domains (telopeptides) are retained in the fully processed molecules. In vitro aggregation studies demonstrated the intact fully processed form of Type V collagen forms uniform small-diameter fibrous structures. These results suggest that Type V collagen may be present in fibrous structures within tissues.  相似文献   

19.
The collagens are a family of animal proteins containing segments of repeated Gly-Xaa-Yaa (GXY) motifs that form a characteristic triple-helical structure. Genes encoding proteins with repeated GXY motifs have also been reported in bacteria and phages; however, it is unclear whether these prokaryotic proteins can form a collagen-like triple-helical structure. Here we used two recently identified streptococcal proteins, Scl1 and Scl2, containing extended GXY sequence repeats as model proteins. First we observed that prior to heat denaturation recombinant Scl proteins migrated as homotrimers in gel electrophoresis with and without SDS. We next showed that the collagen-like domain of Scl is resistant to proteolysis by trypsin. We further showed that circular dichroism spectra of the Scl proteins contained features characteristic of collagen triple helices, including a positive maximum of ellipticity at 220 nm. Furthermore the triple helices of Scl1 and Scl2 showed a temperature-dependent unfolding with melting temperatures of 36.4 and 37.6 degrees C, respectively, which resembles those seen for collagens. We finally demonstrated by electron microscopy that the Scl proteins are organized into "lollipop-like" structures, similar to those seen in human proteins with collagenous domains. This implies that the repeated GXY tripeptide motif is a structural indicator of collagen-like triple helices in proteins from such phylogenetically distant sources as bacteria and humans.  相似文献   

20.
The action of purified rheumatoid synovial collagenase on purified cartilage collagen, alpha-1(II)-3, in solution at 25 degrees C has been characterised. The enzyme attacked cartilage collagen in solution producing a 58% reduction in specific viscosity and resulting in the appearance of two reaction products which represented approximately three-quarter and one-quarter fragments of the intact molecule as shown by disc electrophoresis in polyacrylamide gels containing sodium dodecyl sulphate. The alpha-chain fragments which comprised each of these components corresponded to molecular weights of approximately 74000 and 21000. Electron microscopy of segment-long-spacing crystallites of the reaction products revealed three-quarter (TC-a) and one-quarter (TC-b) length fragments, and permitted accurate localization of the cleavage locus between bands 41 and 42 (I-41). This cleavage site and the formation of TC-a and TC-b reaction products are very similar to those found for type-I collagen substrates. Cartilage collagen in solution was found to be more resistant to collagenase attack than tendon collagen, the rate of cartilage collagen degradation being six times slower than that for tendon collagen, as judged by viscometry. The mid-point melting temperatures (T-m) for lathyritic cartilage and tendon collagen were 40.5 and 41.5 degrees C, and for the collagenase-produced reaction products 38.5 and 37.5 degrees C, respectively. The significance of these findings is discussed in relation to the structure of type I and II collagens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号